Top Banner
MECHANICS OF MATERIALS Demo Class By Bharath V G
33

Mechanics of Materials_Demo Class

Jul 21, 2016

Download

Documents

bharathvg8096

mom
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mechanics of Materials_Demo Class

MECHANICS OF MATERIALS

Demo ClassBy

Bharath V G

Page 2: Mechanics of Materials_Demo Class

• Many structural elements like bars, tubes, beams, columns, trusses, cylinders, spheres, shafts are used for the benefit of the mankind.

• They may be made up of timber, steel, copper, aluminum, concrete or any other materials.

• The application of the laws of mechanics to find the support reactions due to the applied forces is normally covered under the subject of ENGINEERING MECHANICS.

INTRODUCTION

Page 3: Mechanics of Materials_Demo Class

• In transferring, these forces from their point of application to supports the material of the structure develops the resistive forces and it undergoes deformation. The effect of these resisting forces, on the structural elements, is treated under the subject STRENGTH OF MATERIALS “OR” MECHANICS OF SOLIDS.

• The Strength Of Materials is an interdisciplinary subject.

INTRODUCTION

Page 4: Mechanics of Materials_Demo Class

• Architects and civil engineers like to see that the trusses, slabs, beams, columns, etc. of the buildings and bridges are safe.

• Aeronautical engineers need this subject for the design of the component of the aircraft.

• Mechanical engineers and the Chemical engineers must know this subject for the design of the machine components and the pressure vessels.

INTRODUCTION

Page 5: Mechanics of Materials_Demo Class

• Mining engineers need it to design safe mines.

• Metallurgist must understand this subject well so that he can think for further improvement of the mechanical properties of the materials.

• Electrical, Electronics and Computer Engineers need the basic knowledge of this subject because of several mechanical components they need in their products.

INTRODUCTION

Page 6: Mechanics of Materials_Demo Class

• When a member is subjected to load, it develops resisting forces; i.e. it is the force of resistance offered by the material from which the member is manufactured.

• To find the resisting force developed by a member, we will use the method of section. In this method a section plane may be passed through the member and equilibrium of any part of the member can be studied.

CONCEPT OF INTERNAL FORCES

Page 7: Mechanics of Materials_Demo Class

Force/Moment can be applied in the following ways:-

• Axial ( Push / Pull )• Flexural ( Bending)• Torsion (Twisting )• Shear ( Slicing )

Page 8: Mechanics of Materials_Demo Class

Axis of the memberAxial Force

Axial Force:- As it’s name suggests, it is the force which is acting along the axis of the member. In other words, it’s line of action is passing through to the axis of the member.

Push / comp.

Pull / Tens.

Page 9: Mechanics of Materials_Demo Class

Axis of the member

Flexural Force:- It is the force whose line of action is perpendicular to the axis of the member.

Flexural Forces

Page 10: Mechanics of Materials_Demo Class

Shear Force:- Any force which tries to shear-off the member, is termed as shear force.

Page 11: Mechanics of Materials_Demo Class

Torsion:- Any moment which tries to twist the member, is termed as Torsion.

Fixed end of the member

Axis of the member

Torsion

Page 12: Mechanics of Materials_Demo Class

In this subject we will derive the relationship between

FORCE, STRESS, STRAIN & DEFORMATION

To design any structure, our first aim is to find out the type, nature and magnitude of forces acting on it. Accordingly we will design the structure.

Our next aim is to ensure that the structure designed by us remain safe and serviceable.

Page 13: Mechanics of Materials_Demo Class

To ensure safety, the stresses developed in the member must remain within the permissible limits specified by the standards.

To ensure Serviceability, the deformations developed in the member must remain within the permissible limits specified by the standards.

Page 14: Mechanics of Materials_Demo Class

TYPES OF SUPPORTS• There are mainly three types of supports:1) Simple Support: It restrains movement of the

beam in only one direction, i.e. movement perpendicular to the base of the support. It is also known as Roller support.

Reaction

Page 15: Mechanics of Materials_Demo Class

2) Hinged support: It restrains movement of the beam in two directions i.e. movement perpendicular to the base of the support and movement parallel to the base of the support.

Reactions

Page 16: Mechanics of Materials_Demo Class

3) Fixed support: It restrains all the three possible movements of the beam. i.e. movement perpendicular to the base of the support and movement parallel to the base of the support and the rotation at the support.

Reactions:

Page 17: Mechanics of Materials_Demo Class

There are mainly five types of beams:1) Cantilever beam: It is a beam which has one end, as fixed, and the other end as free.

L

fixed endfree end

Page 18: Mechanics of Materials_Demo Class

2) Simply- supported beam: It is a beam, which has it’s ends, supported freely on walls or the columns. {Out of it’s two simple supports, one support will be hinged support and the other support will be roller support, then only the beam will be determinate}

L

Page 19: Mechanics of Materials_Demo Class

3) Over-hang beam: When the beam is continued beyond the support and behave as a cantilever then the combined beam is known as an over-hang beam.

L L1

L L1L2

Page 20: Mechanics of Materials_Demo Class

4) Fixed Beam: A beam whose both the ends are fixed or built-in

in the walls or in the columns, then that beam is known as the fixed beam.

L

Page 21: Mechanics of Materials_Demo Class

5) Continuous Beam:A beam which is supported on more than two

supports that, it is called a continuous beam.

L2L3L1

Page 22: Mechanics of Materials_Demo Class

POINT LOAD:- If a comparatively large load acts on a very small area, then that load is called a point load. It is expressed in N or kN.

L

point loadW kN

Page 23: Mechanics of Materials_Demo Class

UNIFORMLY DISTRIBUTED LOAD:- When the load is uniformly distributed over some length, then that load is called a uniformly distributed load. It is expressed in N/m or kN/m.

=

L

w kN/m

Total Load = w kN/m *L m = w*L kN

Page 24: Mechanics of Materials_Demo Class

UNIFORMLY VARYING LOAD:- When the load Intensity is varying uniformly over some length, then that load is called a uniformly varying load. In this case total load will be the area covered by the triangle.

L

Total Load = ½ *w * L = (w*L)/2 kN

w kN/m

Page 25: Mechanics of Materials_Demo Class

CONCENTRATED MOMENT ( moment acting at any point):- If, at a point, a couple forms a moment, then that is called Concentrated Moment. It is expressed in Nm or kNm.

L

M

Page 26: Mechanics of Materials_Demo Class

EQUILIBRIUM OF A RIGID BODY :-•A rigid body can be in equilibrium if the resultant force and moment of all forces at any point is zero.•A beam is noting but a rigid body.

•For a rigid body in equilibrium, the condition of static equilibrium are three, Viz; Fx = 0 ; Fy = 0 ; M = 0 ;

Page 27: Mechanics of Materials_Demo Class

A beam is said to be statically determinate if the total no. of unknown reactions are equal to the no. of conditions of static equilibrium.

Total no. of unknown reactions will depend upon the type of beam and the type of support.

Page 28: Mechanics of Materials_Demo Class

The no. of conditions of static equilibrium, for a rigid body, are 3 (three):

Fx = 0 ; Fy = 0 ; M = 0

A B

HA

VA VB

conditions of static equilibrium = 3,No. of unknown reactions = 3, SoThe beam is statically determinate.

Page 29: Mechanics of Materials_Demo Class

A beam is said to be statically indeterminate if the total no. of unknown reactions are more than the no. of conditions of static equilibrium.

A B

HA

VA VB

HB

Conditions of static equilibrium = 3,No. of unknown reactions = 4, Sothe beam is statically indeterminate.

Page 30: Mechanics of Materials_Demo Class

VA

HA

MA VB

VA

HA

MAVB

HB

VA

HA

MA VB

HB

MB

Page 31: Mechanics of Materials_Demo Class

We will limit our study to shear force and bending moment diagrams of STATICALLY DETERMINATE BEAMS.

Commonly encountered statically determinate beams are,

a) Cantilever Beam,b) Simply Supported Beam,c) Over-hanging Beam.

Page 32: Mechanics of Materials_Demo Class

These beams are usually subjected to the following types of loading;

a) Point Load,b) Uniformly Distributed Load,c) Uniformly Varying Load,d) Concentrated Moment.

The beam transfers the applied load to the supports. The effect of applied load is to create bending moment and shear force at each cross-section. In transferring the applied load to the supports, the beam develops resistance against moments and shear force at all of it’s cross-sections.

Page 33: Mechanics of Materials_Demo Class

The effect of applied load is to create bending moment and shear force at each cross-section. We will determine the shear force and bending moment caused by loads at each section, for various given loading condition. Then we will plot the Variation in the shear force and bending moment across the length of the beam.

=