Top Banner
7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17 http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 1/28  Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that  permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 11.1 A beam is loaded and supported as shown in Fig. P11.1. Use the double- integration method to determine the magnitude of the moment  M 0  required to make the slope at the left end of the beam zero. Fig. P11.1 Solution Moment equation: 0 2 0 () 0 2 () 2 a a  x  M Mx wx wx  M x Σ = + = =  Integration: 2 2 0 2 () 2 dv wx  EI Mx dx = =  3 0 1 6 dv wx  EI Mx dx = +  2 4 0 1 2 2 24  M x wx  EI v Cx = + +  Boundary conditions and evaluate constants: 3 0 1 3 1 0 ( ) at , 0 ( ) 0 6 6 dv wL  x L M L dx wL C ML = = + = =  Beam slope equation: 3 3 0 0 6 6 dv wx wL  EI Mx ML dx = +  Constraint: At x = 0, the slope of the beam is to be zero; therefore, 3 3 0 0 2 0 (0) (0) 0 6 6 6  A dv w wL  EI M ML dx wL  M = + = =  Ans. 
28

Mechanics of Materials Solutions Chapter11 Probs1 17

Mar 09, 2016

Download

Documents

ArishChoy

Mechanics of Materials Solutions Chapter11 Probs1 17
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 1/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.1 A beam is loaded and supported asshown in Fig. P11.1. Use the double-

integration method to determine the

magnitude of the moment  M 0  required to

make the slope at the left end of the beamzero.

Fig. P11.1

Solution

Moment equation:

0

2

0

( ) 02

( )2

a a

 x M M x wx M 

wx M x M 

⎛ ⎞Σ = + − =⎜ ⎟

⎝ ⎠

∴ = −  

Integration:2 2

02( )

2

d v wx EI M x M 

dx= = −  

3

0 16

dv wx EI M x C 

dx= − +  

2 4

01 2

2 24

 M x wx EI v C x C = − + +  

Boundary conditions and evaluate constants:3

0 1

3

1 0

( )at , 0 ( ) 0

6

6

dv w L x L M L C 

dxwL

C M L

= = − + =

∴ = −

 

Beam slope equation:3 3

0 06 6

dv wx wL EI M x M L

dx= − + −  

Constraint:

At x = 0, the slope of the beam is to be zero; therefore,

3 3

0 0

2

0

(0)(0) 06 6

6

 A

dv w wL EI M M Ldx

wL M 

= − + − =

∴ =   Ans. 

Page 2: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 2/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.2 When moment  M 0 is applied to the leftend of the cantilever beam shown in Fig.

P11.2, the slope of the beam is zero. Use the

double-integration method to determine the

magnitude of the moment M 0.

Fig. P11.2

Solution

Moment equation:

0

0

( ) 0

( )

a a M M x Px M 

 M x Px M 

−Σ = − + =

∴ = −  

Integration:2

02( )

d v EI M x Px M 

dx= = −  

2

0 12

dv Px EI M x C 

dx= − +  

3 2

01 2

6 2

 Px M x EI v C x C = − + +  

Boundary conditions and evaluate constants:2

0 1

2

1 0

( )at , 0 ( ) 02

2

dv P L x L M L C dx

 PLC M L

= = − + =

∴ = − +

 

Beam slope equation:2 2

0 02 2

dv Px PL EI M x M L

dx= − − +  

Constraint:

At x = 0, the slope of the beam is to be zero; therefore,2 2

0 0

0

(0)(0) 0

2 2

2

 A

dv P PL EI M M L

dx

 PL M 

= − − + =

∴ =   Ans. 

Page 3: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 3/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.3 When the load P  is applied to the rightend of the cantilever beam shown in Fig.

P11.3, the deflection at the right end of the

 beam is zero. Use the double-integration

method to determine the magnitude of theload P .

Fig. P11.3

Solution

Moment equation:

( ) ( ) ( ) 02

a a

 L x M w L x P L x M x−

−⎛ ⎞Σ = − − + − − =⎜ ⎟

⎝ ⎠ 

2( ) ( ) ( )2

w x L x P L x∴ = − − + −  

Integration:2

2

2( ) ( ) ( )

2

d v w EI M x L x P L x

dx= = − − + −  

3 2

1( ) ( )6 2

dv w P   EI L x L x C 

dx= − − − +  

4 3

1 2( ) ( )24 6

w P  EI v L x L x C x C = − − + − + +  

Boundary conditions and evaluate constants:

3 2

1

3 2

1

at 0, 0 ( 0) ( 0) 06 2

6 2

dv w P   x L L C dx

wL PLC 

= = − − − + =

∴ = − +

 

4 3

1 2

4 3

2

at 0, 0 ( 0) ( 0) (0) 024 6

24 6

w P  x v L L C C 

wL PLC 

= = − − + − + + =

∴ = −

 

Beam elastic curve equation:3 2 4 3

4 3

3 4 2 34 3

( ) ( )24 6 6 2 24 6

( ) ( )24 6 24 6 2 6

w P wLx PL x wL PL EI v L x L x

w wLx wL P PL x PL L x L x

= − − + − − + + −

= − − − + + − + −  

Page 4: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 4/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Constraint:

At x = L, the deflection of the beam is to be zero; therefore,3 4 2 3

4 3( ) ( )( ) ( ) 0

24 6 24 6 2 6 B

w wL L wL P PL L PL EI v L L L L= − − − + + − + − =  

which simplifies to4 4 3 3 4 3

06 24 2 6 8 3

 B

wL wL PL PL wL PL EI v   = − + + − = − + =  

Therefore, the magnitude of P  is3

8

wL P  =   Ans. 

Page 5: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 5/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.4 A beam is loaded and supported asshown in Fig. P11.4. Use the double-

integration method to determine the

reactions at supports A and B.

Fig. P11.4

Solution

Beam FBD:

0

0

0

 y A B

 A A B

 F R R

 M M R L M 

Σ = + =

Σ = − + − = 

Moment equation:

0 0( ) ( ) 0 ( ) ( )a a B B M x M R L x M x R L x M −Σ = − − + − = ∴ = − −  

Integration:2

02( ) ( ) B

d v EI M x R L x M 

dx= = − −  

2

0 1( )2

 Bdv R EI L x M x C 

dx= − − − +  

23 0

1 2( )6 2

 B R M x EI v L x C x C = − − + +  

Boundary conditions and evaluate constants:2

2

0 1 1at 0, 0 ( 0) (0) 02 2

 B Bdv R R L

 x L M C C dx= = − − − + = ∴ =

 

2 33 0

1 2 2

(0)at 0, 0 ( 0) (0) 0

6 2 6

 B B R M R L x v L C C C = = − − + + = ∴ = −  

2 2 33 0

3 2

0 0 0

( )at , 0 ( ) ( ) 0

6 2 2 6

3 3

3 2 2 2

 B B B

 B B

 R M L R L R L x L v L L L

 R L M L M M  R

 L L

= = − − + − =

= ∴ = = ↑  

Backsubstitute into equilibrium equations:

0 03 3

02 2

 y A B A B A

 M M  F R R R R R

 L LΣ = + = = − = − ∴ = ↓   Ans. 

00 0 0

0 0

30 0

2

  (cw)2 2

 A A B A B

 A

 M  M M R L M M R L M L M 

 L

 M M  M 

⎛ ⎞Σ = − + − = = − = − =⎜ ⎟

⎝ ⎠

∴ = =   Ans. 

Page 6: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 6/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.5 A beam is loaded and supported asshown in Fig. P11.5.

(a) Use the double-integration method to

determine the reactions at supports A and B.

(b) Draw the shear-force and bending-moment diagrams for the beam.

Fig. P11.5

Solution

Beam FBD:

0

02

 y A B

 A B B

 F R R wL

 L M M R L wL

Σ = + − =

⎛ ⎞Σ = + − =⎜ ⎟

⎝ ⎠

 

Moment equation:2

( ) 0 ( )

2 2

a a A A

 x wx M x wx R x M x R x−

⎛ ⎞Σ = + − = ∴ = − +⎜ ⎟

⎝ ⎠Integration:2 2

2( )

2 A

d v wx EI M x R x

dx= = − +  

3 2

16 2

 Adv wx R x EI C 

dx= − + +  

4 3

1 224 6

 Awx R x EI v C x C = − + + +  

Boundary conditions and evaluate constants:4 3

1 2 2

(0) (0)

at 0, 0 (0) 0 024 6

 Aw R

 x v C C C = = − + + + = ∴ =

 3 2 3 2

1 1

( ) ( )at , 0 0

6 2 6 2

 A Adv w L R L wL R L x L C C 

dx= = − + + = ∴ = −   (a)

4 3 3 2

1 1

( ) ( )at , 0 ( ) 0

24 6 24 6

 A Aw L R L wL R L x L v C L C = = − + + = ∴ = −   (b)

Solve Eqs. (a) and (b) simultaneously to find:3

1

3 3and

48 8 8 A

wL wL wLC R= − = = ↑   Ans.

Backsubstitute into equilibrium equations:

3 5 50

8 8 8 y A B B A B

wL wL wL F R R wL R wL R wL RΣ = + − = = − = − = ∴ = ↑   Ans. 

2 2 2 2

2 2

50

2 2 2 8 8

  (cw)8 8

 A B B B B

 B

 L wL wL wL wL M M R L wL M R L

wL wL M 

⎛ ⎞Σ = + − = = − = − = −⎜ ⎟

⎝ ⎠

∴ = − =   Ans. 

Page 7: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 7/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.6 A beam is loaded and supported asshown in Fig. P11.6. Use the double-

integration method to determine the

reactions at supports A and B.

Fig. P11.6

Solution

Beam FBD:

0

0

02

20

2 3

 y A B

 A B B

w L F R R

w L L M M R L

Σ = + − =

⎛ ⎞Σ = + − =⎜ ⎟

⎝ ⎠

 

Moment equation:2

0

3

0

( ) 02 3

( )6

a a A

 A

w x x M M x R x

 L

w x M x R x

 L

⎛ ⎞Σ = + − =⎜ ⎟

⎝ ⎠

∴ = − +  

Integration:2 3

0

2( )

6 A

d v w x EI M x R x

dx L= = − +  

4 2

01

24 2

 Adv w x R x EI C 

dx L= − + +  

5 3

01 2

120 6

 Aw x R x EI v C x C 

 L= − + + +  

Boundary conditions and evaluate constants:5 3

01 2 2

(0) (0)at 0, 0 (0) 0 0

120 6

 Aw R x v C C C 

 L

= = − + + + = ∴ =  

4 2 3 2

0 01 1

( ) ( )at , 0 0

24 2 24 2

 A Adv w L R L w L R L x L C C 

dx L= = − + + = ∴ = −   (a)

5 3 3 2

0 01 1

( ) ( )at , 0 ( ) 0

120 6 120 6

 A Aw L R L w L R L x L v C L C 

 L= = − + + = ∴ = −   (b)

Page 8: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 8/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Solve Eqs. (a) and (b) simultaneously to find:3

0 0 01 and

120 10 10 A

w L w L w LC R= − = = ↑   Ans.

Backsubstitute into equilibrium equations:

0 0 0 0 0 04 20

2 2 2 10 10 5 y A B B A B

w L w L w L w L w L w L F R R R R RΣ = + − = = − = − = ∴ = ↑   Ans. 

2 2 2 2

0 0 0 0 0

2 2

0 0

2 20

2 3 3 3 5 15

  (cw)15 15

 A B B B B

 B

w L L w L w L w L w L M M R L M R L

w L w L M 

⎛ ⎞Σ = + − = = − = − = −⎜ ⎟

⎝ ⎠

∴ = − =   Ans.

Page 9: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 9/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.7 A beam is loaded and supported asshown in Fig. P11.7. Use the fourth-order

integration method to determine the reaction

at roller support B.

Fig. P11.7

Solution

Integrate the load distribution:4 2

0

4 2

d v w x EI 

dx L= −  

3 3

013 23

d v w x EI C 

dx L= − +  

2 4

01 22 212

d v w x EI C x C 

dx L= − + +  

5 20 1

2 3260 2

dv w x C x EI C x C 

dx L= − + + +  

6 3 2

0 1 23 42360 6 2

w x C x C x EI v C x C 

 L= − + + + +  

Boundary conditions and evaluate constants:6 3 2

0 1 23 4 42

(0) (0) (0)at 0, 0 (0) 0 0

360 6 2

w C C  x v C C C 

 L= = − + + + + = ∴ =  

5 2

0 12 3 32

(0) (0)at 0, 0 (0) 0 0

60 2

dv w C   x C C C 

dx L= = − + + + = ∴ =  

6 3 2 2

0 1 2 01 22

( ) ( ) ( )at , 0 0 3360 6 2 60w L C L C L w L x L v C L C 

 L= = − + + = ∴ + =   (a)

2 4 2

0 01 2 1 22 2

( )at , 0 ( ) 0

12 12

d v w L w L x L M EI C L C C L C 

dx L= = = − + + = ∴ + =   (b)

Solve Eqs. (a) and (b) simultaneously to obtain:2 2 2 2

0 0 0 02 2

42

60 12 60 30

w L w L w L w LC C = − = − ∴ = −  

2 2 2

0 0 0 01 1

7 7

12 30 60 60

w L w L w L w LC L C = + = ∴ =  

Roller reaction at  B:3 3

0 0 0 0 0 0

3 2

( ) 7 20 7 13 13

3 60 60 60 60 60 B B

 x L

d v w L w L w L w L w L w LV EI R

dx L=

= = − + = − + = − ∴ = ↑   Ans.

Page 10: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 10/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.8 A beam is loaded and supported asshown in Fig. P11.8. Use the fourth-order

integration method to determine the reaction

at roller support A.

Fig. P11.8

Solution

Integrate the load distribution:4 2

0

4 2

d v w x EI 

dx L= −  

3 3

013 23

d v w x EI C 

dx L= − +  

2 4

01 22 212

d v w x EI C x C 

dx L= − + +  

5 20 1

2 3260 2

dv w x C x EI C x C 

dx L= − + + +  

6 3 2

0 1 23 42360 6 2

w x C x C x EI v C x C 

 L= − + + + +  

Boundary conditions and evaluate constants:6 3 2

0 1 23 4 42

(0) (0) (0)at 0, 0 (0) 0 0

360 6 2

w C C  x v C C C 

 L= = − + + + + = ∴ =  

2 4

01 2 22 2

(0)at 0, 0 (0) 0 0

12

d v w x M EI C C C 

dx L= = = − + + = ∴ =  

5 2 3

20 1 03 1 32

( ) ( )at , 0 0 260 2 30

dv w L C L w L x L C C L C dx L

= = − + + = ∴ + =   (a)

6 3 320 1 0

3 1 32

( ) ( )at , 0 ( ) 0 6

360 6 60

w L C L w L x L v C L C L C 

 L= = − + + = ∴ + =   (b)

Solve Eqs. (a) and (b) simultaneously to obtain:3 3 3 3

0 0 0 03 34

30 60 60 240

w L w L w L w LC C − = − = ∴ = −  

3 3 32 0 0 0 0

1 1

5 5

30 120 120 120

w L w L w L w LC L C = + = ∴ =  

Roller reaction at  A:3 3

0 0 0 0

3 2

0

(0) 5 5 5

3 120 120 120 A A

 x

d v w w L w L w LV EI R

dx L=

= = − + = ∴ = ↑   Ans.

Page 11: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 11/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.9 A beam is loaded and supported asshown in Fig. P11.9. Use the fourth-order

integration method to determine the

reaction at roller support A.

Fig. P11.9

Solution

Integrate the load distribution:4

04sin

2

d v x EI w

dx L

π  = −  

3

013

2cos

2

d v w L x EI C 

dx L

π  

π  

= +  

2 2

01 22 2

4sin

2

d v w L x EI C x C 

dx L

π  

π  

= + +  

3 20 1

2 33

8cos

2 2

dv w L x C x EI C x C 

dx L

π  

π  

= − + + +  

4 3 2

0 1 23 44

16sin

2 6 2

w L x C x C x EI v C x C 

 L

π  

π  

= − + + + +  

Boundary conditions and evaluate constants:4 3 2

0 1 23 4 44

16 (0) (0) (0)at 0, 0 sin (0) 0 0

2 6 2

w L C C   x v C C C 

 L

π  

π  

= = − + + + + = ∴ =  

2 2

01 2 22 2

4 (0)at 0, 0 sin (0) 0 0

2

d v w L x M EI C C C 

dx L

π  

π  

= = = + + = ∴ =  

3 220 1

3 1 33

8 ( ) ( )at , 0 cos 0 2 0

2 2

dv w L L C L x L C C L C 

dx L

π  

π  

= = − + + = ∴ + =   (a)

4 3 320 1 0

3 1 34 4

16 ( ) ( ) 96at , 0 sin ( ) 0 6

2 6

w L L C L w L x L v C L C L C 

 L

π  

π π  

= = − + + = ∴ + =   (b)

Solve Eqs. (a) and (b) simultaneously to obtain:3 3

0 03 34 4

96 244

w L w LC C 

π π  

− = − ∴ =  

3

2 0 01 14 424 482 w L w LC L C 

π π  

⎛ ⎞= − ∴ = −⎜ ⎟

⎝ ⎠ 

Roller reaction at  A:3

0 0 0 0

3 4 4

0

2 (0) 48 2 48cos

2 A A

 x

d v w L w L w L w LV EI R

dx L

π  

π π π π    =

= = − ∴ = −   Ans.

Page 12: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 12/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.10 A beam is loaded and supported asshown in Fig. P11.10. Use the fourth-order

integration method to determine the

reactions at supports A and B.

Fig. P11.10

Solution

Integrate the load distribution:4

04cos

2

d v x EI w

dx L

π  =  

3

013

2sin

2

d v w L x EI C 

dx L

π  

π  

= +  

2 2

01 22 2

4cos

2

d v w L x EI C x C 

dx L

π  

π  

= − + +  

3 2

0 12 33

8sin

2 2

dv w L x C x EI C x C 

dx L

π  

π  

= − + + +  

4 3 2

0 1 23 44

16cos

2 6 2

w L x C x C x EI v C x C 

 L

π  

π  

= + + + +  

Boundary conditions and evaluate constants:3 2

0 12 3 33

8 (0) (0)at 0, 0 sin (0) 0 0

2 2

dv w L C   x C C C 

dx L

π  

π  

= = − + + + = ∴ =  

4 3 2 4

0 1 2 0

4 44 4

16 (0) (0) (0) 16at 0, 0 cos 0

2 6 2

w L C C w L x v C C 

 L

π  

π π  

= = + + + = ∴ = −  

3 2 2

0 1 02 1 23 3

8 ( ) ( ) 16at , 0 sin ( ) 0 2

2 2

dv w L L C L w L x L C L C L C 

dx L

π  

π π  

= = − + + = ∴ + = (a)

4 3 2 4 2

0 1 2 0 01 24 4 4

16 ( ) ( ) ( ) 16 96at , 0 cos 0 3

2 6 2

w L L C L C L w L w L x L v C L C 

 L

π  

π π π  

= = + + − = ∴ + = (b)

Solve Eqs. (a) and (b) simultaneously to obtain:

[ ]2 2 2

0 0 02 23 4 4

16 96 166

w L w L w LC C    π  

π π π  

− = − ∴ = −  

[ ]2 2

0 0 01 13 4 4

48 192 484

w L w L w LC L C    π  

π π π  

− = − + ∴ = −  

Page 13: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 13/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Reactions at supports  A and  B 

[ ] [ ]

[ ]

3

0 0 0

3 4 4

0

0

4

2 (0) 48 48sin 4 4

2

484

 A

 x

 A

d v w L w L w LV EI 

dx L

w L R

π  π π  

π π π  

π  

π  

=

= = + − = −

∴ = − ↓   Ans.

[ ]3

30 0 03 4 4

30

4

2 ( ) 48 2sin 4 24 962

296 24

 B

 x L

 B

d v w L L w L w LV EI dx L

w L R

π   π π π  

π π π  

π π  

π  

=

⎡ ⎤= = + − = + −⎣ ⎦

⎡ ⎤∴ = − + ↓⎣ ⎦   Ans. 

[ ] [ ]

[ ]

2 2 2

0 0 0

2 2 4 4

0

2 2

0 0

2 4

220

4

4 (0) 48 (0) 16cos 4 6

2

4 166

424 4 (cw)

 A

 x

 A

d v w L w L w L M EI 

dx L

w L w L

w L M 

π  π π  

π π π  

π  

π π  

π π  

π  

=

= = − + − + −

= − + −

⎡ ⎤∴ = − −⎣ ⎦   Ans. 

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ]

2 2 2

0 0 0

2 2 4 4

2 2 2 2

0 0 0 0

4 4 4 4

2

0

4

4 ( ) 48 ( ) 16cos 4 6

2

48 16 16 164 6 3 12 6 2 6

323 (ccw)

 B

 x L

 B

d v w L L w L L w L M EI 

dx L

w L w L w L w L

w L M 

π  π π  

π π π  

π π π π π  

π π π π    

π  

π  

=

= = − + − + −

= − + − = − + − = −

∴ = −  Ans. 

Page 14: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 14/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.11 A beam is loaded and supported asshown in Fig. P11.11. Use the fourth-order

integration method to determine the

reactions at supports A and B.

Fig. P11.11

Solution

Integrate the load distribution:4

04sin

d v x EI w

dx L

π  =  

3

013

cosd v w L x

 EI C dx L

π  

π  

= − +  

2 2

01 22 2

sind v w L x

 EI C x C 

dx L

π  

π  

= − + +  

3 2

0 12 33

cos2

dv w L x C x EI C x C 

dx L

π  

π  

= + + +  

4 3 2

0 1 23 44

sin6 2

w L x C x C x EI v C x C 

 L

π  

π  

= − + + + +  

Boundary conditions and evaluate constants:3 2 3

0 1 02 3 33 3

(0) (0)at 0, 0 cos (0) 0

2

dv w L C w L x C C C 

dx L

π  

π π  

= = + + + = ∴ = −  

4 3 2

0 1 23 4 4

4

(0) (0) (0)at 0, 0 sin (0) 0 0

6 2

w L C C   x v C C C 

 L

π  

π  

= = − + + + + = ∴ =  

3 2 3 2

0 1 0 02 1 23 3 3

( ) ( ) 4at , 0 cos ( ) 0 2

2

dv w L L C L w L w L x L C L C L C 

dx L

π  

π π π  

= = + + − = ∴ + =  (a)

4 3 2 3 2

0 1 2 0 01 24 3 3

( ) ( ) ( ) 6at , 0 sin ( ) 0 3

6 2

w L L C L C L w L w L x L v L C L C 

 L

π  

π π π  

= = − + + − = ∴ + =  (b)

Solve Eqs. (a) and (b) simultaneously to obtain:2 2 2

0 0 02 23 3 3

6 4 2w L w L w LC C 

π π π  

= − ∴ =  

2 2

0 01 13 3

4 22 0

w L w LC L C 

π π  

⎛ ⎞= − ∴ =⎜ ⎟

⎝ ⎠ 

Page 15: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 15/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Reactions at supports  A and  B 3

0 0

3

0

0

(0)cos A

 x

 A

d v w L w LV EI 

dx L

w L R

π  

π π  

π  

=

= = − = −

∴ = ↓   Ans.

3

0 03

0

( )cos B

 x L

 B

d v w L L w LV EI dx L

w L R

π  

π π  

π  

=

= = − =

∴ = ↓   Ans. 

2 2 2 2

0 0 0

2 2 3 3

0

2

0

3

(0) 2 2sin

2  (cw)

 A

 x

 A

d v w L w L w L M EI 

dx L

w L M 

π  

π π π  

π  

=

= = − + =

∴ =   Ans. 

2 2 2 2

0 0 0

2 2 3 3

2

0

3

( ) 2 2sin

2  (ccw)

 B

 x L

 B

d v w L L w L w L M EI 

dx L

w L M 

π  

π π π  

π  

=

= = − + =

∴ =   Ans. 

Page 16: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 16/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.12 A beam is loaded and supported asshown in Fig. P11.12.

(a) Use the double-integration method to

determine the reactions at supports A and C .

(b) Draw the shear-force and bending-moment diagrams for the beam.

(c) Determine the deflection in the middle

of the span.

Fig. P11.12

Solution

Beam FBD:from symmetry,

2

and

 A C 

 A C 

 P  R R

 M M 

= =

=

 

Moment equation:

( ) 0 ( )2 2

a a A A

 P Px M x M x M x M −Σ = − − = ∴ = +  

Integration:2

2( )

2 A

d v Px EI M x M 

dx= = +  

2

14

 A

dv Px EI M x C 

dx= + +  

3 2

1 212 2

 A Px M x EI v C x C = + + +  

Boundary conditions and evaluate constants:

2

1 1(0)at 0, 0 (0) 0 04

 Adv P  x M C C dx

= = + + = ∴ =  

3 2

2 2

(0) (0)at 0, 0 0 0

12 2

 A P M  x v C C = = + + = ∴ =  

Page 17: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 17/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(a) Beam reaction forces:

2 A C 

 P  R R= =   Ans.

(a) Beam reaction moments:2( / 2)

at , 0 02 4 2

  (ccw) (cw)8 8 8

 A

 A C 

 L dv P L L x M 

dx

 PL PL PL M M 

⎛ ⎞= = + =⎜ ⎟

⎝ ⎠

= − = =   Ans. 

Elastic curve equation:

[ ]

[ ]

3 2 3 2 2

2

3 412 2 12 16 48

3 448

 A Px M x Px PLx Px EI v L x

 Pxv L x

 EI 

= + = − = − −

∴ = − −

 

(c) Midspan deflection:

[ ]2 3( / 2)

3 4( / 2)48 192

 B

 P L PLv L L

 EI EI = − − = −   Ans. 

Page 18: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 18/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.13 A beam is loaded and supported asshown in Fig. P11.13.

(a) Use the double-integration method to

determine the reactions at supports A and B.(b) Draw the shear-force and bending-

moment diagrams for the beam.

(c) Determine the deflection in the middle

of the span.

Fig. P11.13

Solution

Beam FBD:from symmetry,

2

and

 A B

 A B

wL R R

 M M 

= =

=

 

Moment equation:

2

( ) 02 2

( )2 2

a a A

 A

 x wL M M x M wx x

wx wLx M x M 

⎛ ⎞ ⎛ ⎞Σ = − + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∴ = − + +

 

Integration:2 2

2( )

2 2 A

d v wx wLx EI M x M 

dx= = − + +  

3 2

16 4

 A

dv wx wLx EI M x C 

dx= − + + +  

4 3 2

1 224 12 2

 Awx wLx M x EI v C x C = − + + + +  

Boundary conditions and evaluate constants:

3 2

1 1

(0) (0)at 0, 0 (0) 0 06 4

 A

dv w wL x M C C dx

= = − + + + = ∴ =  

4 3 2

2 2

(0) (0) (0)at 0, 0 0 0

24 12 2

 Aw wL M   x v C C = = − + + + = ∴ =  

Page 19: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 19/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(a) Beam reaction forces:

2 A B

wL R R= =   Ans.

(a) Beam reaction moments:3 2

2 2 2 2

( / 2) ( / 2)at , 0 0

2 6 4 2

  (ccw) (cw)12 12 12 12

 A

 A B

 L dv w L wL L L x M 

dx

wL wL wL wL M M 

⎛ ⎞= = − + + =⎜ ⎟

⎝ ⎠

= − = = − =   Ans. 

Elastic curve equation:4 3 2 4 3 2 2 2 2

2 2 2

22

2 ( )24 12 2 24 12 24 24 24

( )24

 Awx wLx M x wx wLx wL x wx wx EI v x Lx L x L

wxv x L

 EI 

⎡ ⎤= − + + = − + − = − − + = − −⎣ ⎦

∴ = − −

 

(c) Midspan deflection:22 4

/ 2

( / 2))

24 2 384 x L

w L L wLv L

 EI EI =

⎡ ⎤⎛ ⎞= − − = −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦  Ans.

Page 20: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 20/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.14 A beam is loaded and supported asshown in Fig. P11.14.

(a) Use the double-integration method to

determine the reactions at supports A and C .(b) Determine the deflection in the middle

of the span.

Fig. P11.14

Solution

Beam FBD:

0

from symmetry,

2

and

 A C 

 A C 

w L R R

 M M 

= =

=

 

Moment equation:2

0 0

3

0 0

( ) 02 3 2

( )6 2

a a A

 A

w x x w L M M x M x

 L

w x w Lx M x M 

 L

⎛ ⎞ ⎛ ⎞Σ = − + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∴ = − + +

 

Integration:2 3

0 0

2( )

6 2 A

d v w x w Lx EI M x M 

dx L= = − + +  

4 2

0 01

24 4 A

dv w x w Lx EI M x C 

dx L= − + + +  

5 3 2

0 01 2

120 12 2

 Aw x w Lx M x EI v C x C 

 L= − + + + +  

Boundary conditions and evaluate constants:4 2

0 01 1

(0) (0)at 0, 0 (0) 0 0

24 4

 A

dv w w L x M C C 

dx L

= = − + + + = ∴ =  

5 3 2

0 02 2

(0) (0) (0)at 0, 0 0 0

120 12 2

 Aw w L M   x v C C 

 L= = − + + + = ∴ =  

(a) Beam reaction forces:

0

2 A C 

w L R R= =   Ans.

Page 21: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 21/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(a) Beam reaction moments:4 2

0 0

2 2 2 2

0 0 0 0

( ) ( )at , 0 ( ) 0

24 4

5 5 5 5  (ccw) (cw)

24 24 24 24

 A

 A C 

dv w L w L L x L M L

dx L

w L w L w L w L M M 

= = − + + =

= − = = − =   Ans. 

Elastic curve equation:5 3 2 5 3 2 2

0 0 0 0 0

5 2 3 3 2 23 2 30 0 0 0

23 2 30

5

120 12 2 120 12 48

2 20 252 20 25

240 240 240 240

2 20 25240

 Aw x w Lx M x w x w Lx w L x EI v

 L L

w x w L x w L x w x L x L

 L L L L

w xv x L x L

 L EI 

= − + + = − + −

⎡ ⎤= − + − = − − +⎣ ⎦

⎡ ⎤∴ = − − +⎣ ⎦

 

(c) Midspan deflection:2 4

3 2 30 0( ) 7

2( ) 20 ( ) 25240 240 B

w L w L

v L L L L L EI EI ⎡ ⎤= − − + = −⎣ ⎦   Ans.

Page 22: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 22/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.15 A beam is loaded and supported asshown in Fig. P11.15.

(a) Use the double-integration method to

determine the reactions at supports A and C .(b) Draw the shear-force and bending-

moment diagrams for the beam.

(c) Determine the deflection in the middle

of the span.

Fig. P11.15

Solution

Beam FBD:

0

02

 y A C 

 A C C 

 F R R P 

 L M M R L P 

Σ = + − =

⎛ ⎞Σ = + − =⎜ ⎟

⎝ ⎠

 

Moment equation:

( ) 0

( ) 02

a a A

 A

 M M x R x

 L M x R x x

−Σ = − =

⎛ ⎞∴ = ≤ ≤⎜ ⎟

⎝ ⎠

 

( ) 02

( )2 2

b b A

 A

 L M M x R x P x

 PL L x R x Px x L

⎛ ⎞Σ = − + − =⎜ ⎟

⎝ ⎠

⎛ ⎞∴ = − + ≤ ≤⎜ ⎟

⎝ ⎠

Integration:

For beam segment  AB:2

2( )  A

d v EI M x R x

dx= =  

2

12

 Adv R x EI C 

dx= +  

3

1 2

6

 A R x EI v C x C = + +  

For beam segment  BC :2

2( )

2 A

d v PL EI M x R x Px

dx= = − +  

2 2

32 2 2

 Adv R x Px PLx EI C 

dx= − + +  

3 3 2

3 4

6 6 4

 A R x Px PLx EI v C x C = − + + +  

Boundary conditions and evaluate constants:3

1 2 2

(0)at 0, 0 (0) 0 0

6

 A R x v C C C = = + + = ∴ =  

2 2 2

3 3

( ) ( ) ( )at , 0 0

2 2 2 2

 A Adv R L P L PL L R L x L C C 

dx= = − + + = ∴ = −  

Page 23: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 23/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

3 3 2 2 3 3

4 4

( ) ( ) ( )at , 0 ( ) 0

6 6 4 2 3 12

 A A A R L P L PL L R L R L PL x L v L C C = = − + − + = ∴ = −  

Slope continuity condition at  x  =  L/2:

2 2 2 2

1

2 2

1

at ,2

( / 2) ( / 2) ( / 2) ( / 2)

2 2 2 2 2

8 2

 AB BC 

 A A A

 A

 L dv dv x

dx dx

 R L R L P L PL L R LC 

 PL R LC 

= =

+ = − + −

∴ = −

 

Deflection continuity condition at  x  =  L/2:

3 2 2 3 3 2 2 3 3

at ,2

6 8 2 6 6 4 2 3 12

 B B AB BC 

 A A A A A

 L x v v

 R x PL x R L x R x Px PLx R L x R L PL

= =

+ − = − + − + −

 

eliminate terms and rearrange:3 3 2 2 3

3 6 4 8 12

 A R L Px PLx PL x PL= − + +  

Substitute x = L/2 to obtain:3 3 2 2 3 3( / 2) ( / 2) ( / 2) 5

3 6 4 8 12 48

5

16

 A

 A

 R L P L PL L PL L PL PL

 P  R

= − + + =

∴ =  

(a) Beam reaction forces:

5 1116 16

 A C  P P  R R= =   Ans.

(a) Beam reaction moment:

11 3 3 3  (cw)

2 2 16 16 16 16C C C 

 L PL PL PL PL PL M P R L M 

⎛ ⎞= − = − = − = − =⎜ ⎟

⎝ ⎠  Ans. 

Elastic curve equation for beam segment  AB:3 2 2 3 2 2 3 2

2 2

5 5 5 3

6 8 2 96 8 32 96 96

5 396

 A A R x PL x R L x Px PL x PL x Px PL x EI v

 Pxv x L

 EI 

= + − = + − = −

⎡ ⎤∴ = −⎣ ⎦  

(c) Midspan deflection:2 3

2( / 2) 75 3

96 2 768 B

 P L L PLv L

 EI EI 

⎡ ⎤⎛ ⎞= − = −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦  Ans. 

Page 24: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 24/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.16 A beam is loaded and supported asshown in Fig. P11.16.

(a) Use the double-integration method to

determine the reactions at supports A and C .(b) Draw the shear-force and bending-

moment diagrams for the beam.

Fig. P11.16

Solution

Beam FBD:

0

0

0

 y A C C A

 A A C 

 F R R R R

 M M R L M 

Σ = + = ∴ = −

Σ = − + − = 

Moment equation:

( ) 0

( ) 02

a a A A

 A A

 M M x R x M 

 L M x R x M x

−Σ = − − =

⎛ ⎞∴ = + ≤ ≤⎜ ⎟

⎝ ⎠

 

0

0

( ) 0

( )2

b b A A

 A A

 M M x R x M M 

 L x R x M M x L

−Σ = − − − =

⎛ ⎞∴ = + + ≤ ≤⎜ ⎟

⎝ ⎠

Integration:

For beam segment  AB:2

2( )  A A

d v EI M x R x M 

dx= = +  

2

12

 A A

dv R x EI M x C 

dx= + +  

3 2

1 26 2

 A A R x M x EI v C x C = + + +  

For beam segment  BC :2

02( )  A A

d v EI M x R x M M 

dx= = + +  

2

0 32

 A A

dv R x EI M x M x C 

dx= + + +  

3 2 20

3 46 2 2

 A A R x M x M x EI v C x C = + + + +  

Boundary conditions and evaluate constants for segment  AB:3 2

1 2 2

(0) (0)at 0, 0 (0) 0 0

6 2

 A A R M  x v C C C = = + + + = ∴ =  

Page 25: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 25/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

2

1 1

(0)at 0, 0 (0) 0 0

2

 A A

dv R x M C C 

dx= = + + = ∴ =  

Slope continuity condition at  x  =  L/2:

2 2

0 3

03

at ,2

2 2

2

 AB BC 

 A A

 A A

 L dv dv x

dx dx

 R x R x

 x M x M x C 

 M LC 

= =

+ = + + +

∴ = −

 

Deflection continuity condition at  x  =  L/2:

3 2 3 2 2

0 04

20

4

at ,2

6 2 6 2 2 2

8

 B B AB BC 

 A A A A

 L x v v

 R x M x R x M x M x M LxC 

 M LC 

= =

+ = + + − +

∴ =

 

Boundary condition for segment  BC :3 2 2 2

0 0 0 0( ) ( ) ( ) 3at , 0 ( ) 0 3

6 2 2 2 8 4

 A A A A

 R L M L M L M L M L M  x L v L R L M = = + + − + = ∴ + = −  

Also, the beam moment equilibrium equation can be written as:

0 A A R L M M + = −  

(a) Beam Reactions: Solve these two equations simultaneously to obtain:0 0 0 0 09 9 9

  (cw)8 8 8 8 8

 A A C 

 M M M M M  M R R

 L L L= = = − = ↓ = ↑   Ans. 

Page 26: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 26/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

11.17 A beam is loaded and supported asshown in Fig. P11.17.

(a) Use the double-integration method to

determine the reactions at supports A and C .(b) Draw the shear-force and bending-

moment diagrams for the beam.

Fig. P11.17

Solution

Beam FBD:

02

02 4

 y A C 

 A C C 

wL F R R

wL L M M R L

Σ = + − =

⎛ ⎞Σ = + − =⎜ ⎟

⎝ ⎠

 

Moment equation:

2

( ) 02

( ) 02 2

a a A

 A

 x M M x wx R x

wx L M x R x x

− ⎛ ⎞Σ = + − =⎜ ⎟⎝ ⎠

⎛ ⎞∴ = − + ≤ ≤⎜ ⎟

⎝ ⎠

 

( ) 02 4

( )2 4 2

b b A

 A

wL L M M x x R x

wL L L x x R x x L

⎛ ⎞Σ = + − − =⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞∴ = − − + ≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

Integration:

For beam segment  AB:2 2

2( )

2 A

d v wx EI M x R x

dx= = − +  

3 2

16 2

 Adv wx R x EI C 

dx= − + +  

4 3

1 2

24 6

 Awx R x EI v C x C = − + + +  

For beam segment  BC :2

2( )

2 4 A

d v wL L EI M x x R x

dx

⎛ ⎞= = − − +⎜ ⎟

⎝ ⎠ 

2 2

34 4 2

 Adv wL L R x EI x C 

dx

⎛ ⎞= − − + +⎜ ⎟

⎝ ⎠ 

3 3

3 412 4 6

 AwL L R x

 EI v x C x C 

⎛ ⎞

= − − + + +⎜ ⎟⎝ ⎠  

Boundary conditions and evaluate constants for segment  AB:4 3

1 2 2

(0) (0)at 0, 0 (0) 0 0

24 6

 Aw R x v C C C = = − + + + = ∴ =  

Page 27: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 27/28

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Slope continuity condition at  x  =  L/2:

Equate the slope expressions for the two beam segments:23 2 2

1 36 2 4 4 2

 A Awx R x wL L R xC x C 

⎛ ⎞− + + = − − + +⎜ ⎟

⎝ ⎠ 

Set x = L/2 and solve for the constant C 1:2 23 3 3 3

1 3 3 3

3

1 3

( / 2)

6 4 4 6 4 2 4 48 64

192

wx wL L w L wL L L wL wLC C x C C  

wLC C 

⎛ ⎞ ⎛ ⎞= + − − = + − − = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∴ = +  

Deflection continuity condition at  x  =  L/2:

Equate the deflection expressions for the two beam segments:34 3 3

1 3 424 6 12 4 6

 A Awx R x wL L R xC x x C x C  

⎛ ⎞− + + = − − + + +⎜ ⎟

⎝ ⎠ 

Set x = L/2 and solve for the constant C 4:34 3

3 3 4

4 4 4

3 3 4

4

4

( / 2)

24 192 2 12 2 4 2

384 2 384 768 2

768

w L wL L wL L L L

C C C 

wL L wL wL LC C C 

wLC 

⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + = − − + +

⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞− + + = − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∴ =

 

Boundary conditions and evaluate constants for segment  BC :2 2 3 2

3 3

( ) 9at , 0 0

4 4 2 64 2

 A Adv wL L R L wL R L x L L C C 

dx

⎛ ⎞= = − − + + = ∴ = −⎜ ⎟

⎝ ⎠

 

at x = L, v = 03 3 4

3

4 3 3 2 4

4 3 4 3 4

3 3 4 4

3 4

( )( ) 0

12 4 6 768

27 9( ) 0

768 6 64 2 768

27 90

768 6 64 2 768

3 26 1086 6 768 768

82 41

3 768 128

 A

 A A

 A A

 A A

 A A

wL L R L wL L C L

wL R L wL R L wL L

wL R L wL R L wL

 R L R L wL wL

 R L wL wL R

⎛ ⎞− − + + + =⎜ ⎟

⎝ ⎠

⎡ ⎤− + + − + =⎢ ⎥

⎣ ⎦

− + + − + =

− = −

= ∴ =  

Page 28: Mechanics of Materials Solutions Chapter11 Probs1 17

7/21/2019 Mechanics of Materials Solutions Chapter11 Probs1 17

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter11-probs1-17 28/28

 

Solve for C 3:3 3 3

3

9 41 5

64 256 256

wL wL wLC   = − = −  

and for C 1:3 3 3

1

5 11

256 192 768

wL wL wLC   = − + = −  

(a) Beam force reactions:

41

128 A

wL R   =   Ans. 

41 23 23

2 2 128 128 128C A C 

wL wL wL wL wL R R R= − = − = ∴ = ↑   Ans. 

Beam moment reaction:2 2 2 2 2 223 7 7 7

  (cw)8 8 128 128 128 128

C C C 

wL wL wL wL wL wL M R L M = − = − = − ∴ = − =   Ans.