Top Banner

of 21

Mechanics of Materials Philpot 3rd Edition Solutions Manual

Aug 07, 2018

Download

Documents

Ian Kasai
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    1/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.1 A stainless steel tube with an outside diameter of 60 mm and a wall thickness of 5 mm is used as

    a compression member. If the axial normal stress in the member must be limited to 200 MPa,determine the maximum load P  that the member can support.

    Solution

    The cross-sectional area of the stainless steel tube is

    2 2 2 2 2

    ( ) [(60 mm) (50 mm) ] 863.938 mm4 4 A D d 

     

     

    The normal stress in the tube can be expressed as

     P 

     A    

    The maximum normal stress in the tube must be limited to 200 MPa. Using 200 MPa as the allowable

    normal stress, rearrange this expression to solve for the maximum load P  2 2

    max allow (200 N/mm )(863.938 mm ) 172,788 172.8 k  N  N P A     Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    2/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.2 A 2024-T4 aluminum tube with an outside diameter of 2.50 in. will be used to support a 27-kip

    load. If the axial normal stress in the member must be limited to 18 ksi, determine the wall thicknessrequired for the tube.

    Solution

    From the definition of normal stress, solve for the minimum area required to support a 27-kip load

    without exceeding a stress of 18 ksi

    2

    min

    27 kips1.500 in.

    18 ksi

     P P  A

     A 

       

    The cross-sectional area of the aluminum tube is given by

    2 2( )4

     A D d  

     

    Set this expression equal to the minimum area and solve for the maximum inside diameter d  

    2 2 2

    2 2 2

    2 2 2

    max

    [(2.50 in.) ] 1.500 in.4

    4(2.50 in.) (1.500 in. )

    4(2.50 in.) (1.500 in. )

    2.08330 in.

     

     

     

     

    The outside diameter D, the inside diameter d , and the wall thickness t  are related by

    2 D d t   Therefore, the minimum wall thickness required for the aluminum tube is

    min

    2.50 in. 2.08330 in.0.20835 in. 0.208 in.

    2 2

     D d t 

        Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    3/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.3 Two solid cylindrical rods (1) and (2)

    are joined together at flange B and loaded, asshown in Figure P1.3/4. If the normal stress

    in each rod must be limited to 40 ksi,

    determine the minimum diameter required

    for each rod.

    FIGURE P1.3/4

    Solution

    Cut a FBD through rod (1). The FBD should include the free end of the rod at A.

    As a matter of course, we will assume that the internal force in rod (1) is tension

    (even though it obviously will be in compression). From equilibrium,

    1

    1

    15 kips 0

    15 kips 15 kips (C)

     y F F 

     F 

     

     Next, cut a FBD through rod (2) that includes the free end of the rod at A. Again,we will assume that the internal force in rod (2) is tension. Equilibrium of this

    FBD reveals the internal force in rod (2):

    2

    2

    30 kips 30 kips 15 kips 0

    75 kips 75 kips (C)

     y F F 

     F 

     

     Notice that rods (1) and (2) are in compression. In this situation, we areconcerned only with the stress magnitude; therefore, we will use the force

    magnitudes to determine the minimum required cross-sectional areas. If

    the normal stress in rod (1) must be limited to 40 ksi, then the minimum

    cross-sectional area that can be used for rod (1) is

    211,min

    15 kips0.375 in.

    40 ksi

     F  A

       

    The minimum rod diameter is therefore

    2 2

    1,min 1 10.375 in. 0.6909 0.6919 i4

    inn. . A d d  

      Ans.

    Similarly, the normal stress in rod (2) must be limited to 40 ksi, which requires a minimum area of

    222,min

    75 kips 1.875 in.40 ksi

     F  A 

     

    The minimum diameter for rod (2) is therefore

    2 2

    2,min 2 21.875 in. 1.54509 1.545 in.7 in.

    4 A d d 

        Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    4/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.4  Two solid cylindrical rods (1) and (2) are

    oined together at flange B and loaded, as shown inFigure P1.3/4. The diameter of rod (1) is 1.75 in.

    and the diameter of rod (2) is 2.50 in. Determine the

    normal stresses in rods (1) and (2).

    FIGURE P1.3/4

    Solution

    Cut a FBD through rod (1). The FBD should include the free end of the rod at A. We

    will assume that the internal force in rod (1) is tension (even though it obviously will

     be in compression). From equilibrium,

    1

    1

    15 kips 0

    15 kips 15 kips (C)

     y F F 

     F 

     

     Next, cut a FBD through rod (2) that includes the free end of the rod at A. Again, we

    will assume that the internal force in rod (2) is tension. Equilibrium of this FBD

    reveals the internal force in rod (2):

    2

    2

    30 kips 30 kips 15 kips 0

    75 kips 75 kips (C)

     y F F 

     F 

     

    From the given diameter of rod (1), the cross-sectional area of rod (1) is

    2 2

    1 (1.75 in.) 2.4053 in.4

     A     

    and thus, the normal stress in rod (1) is

    11 2

    1

    15 kips6.23627 ksi

    2.4053 in6.24 ksi )

    .(C

     F 

     A 

        Ans. 

    From the given diameter of rod (2), the cross-sectional area of rod (2) is

    2 2

    2(2.50 in.) 4.9087 in.

    4

     A     

    Accordingly, the normal stress in rod (2) is

    22 2

    2

    75 kips15.2789 ksi

    2.4053 in.15.28 ksi (C)

     F 

     A 

        Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    5/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.5 Axial loads are applied with rigid bearing plates to the

    solid cylindrical rods shown in Figure P1.5/6. The diameterof aluminum rod (1) is 2.00 in., the diameter of brass rod (2)

    is 1.50 in., and the diameter of steel rod (3) is 3.00 in.

    Determine the axial normal stress in each of the three rods.

    FIGURE P1.5/6

    Solution

    Cut a FBD through rod (1). The FBD should include the free end A. We will assume that the internal

    force in rod (1) is tension (even though it obviously will be in compression). From equilibrium,

    1 18 kips 4 kips 4 kips 0 16 kips 16 kips (C) y F F F   

    FBD through rod (1)

    FBD through rod (2)

    FBD through rod (3)

     Next, cut a FBD through rod (2) that includes the free end A. Again, we will assume that the internal

    force in rod (2) is tension. Equilibrium of this FBD reveals the internal force in rod (2):

    2 28 kips 4 kips 4 kips 15 kips 15 kips 0 14 kips 14 kips (T)

     y F F F   

    Similarly, cut a FBD through rod (3) that includes the free end A. From this FBD, the internal force in

    rod (3) is:

    3

    3

    8 kips 4 kips 4 kips 15 kips 15 kips 20 kips 20 kips 0

    26 kips 26 kips (C)

     y F F 

     F 

     

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    6/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    From the given diameter of rod (1), the cross-sectional area of rod (1) is

    2 2

    1 (2.00 in.) 3.1416 in.4

     A     

    and thus, the normal stress in aluminum rod (1) is

    11 2

    1

    16 kips5.0930 ksi

    3.1416 in5.09 ksi (C)

    .

     F 

     A 

        Ans.

    From the given diameter of rod (2), the cross-sectional area of rod (2) is

    2 2

    2(1.50 in.) 1.7671 in.

    4 A

         

    Accordingly, the normal stress in brass rod (2) is

    22 2

    2

    14 kips7.9224 ksi

    1.7671 in.7.92 ksi (T)

     F 

     A      Ans.

    Finally, the cross-sectional area of rod (3) is

    2 2

    3 (3.00 in.) 7.0686 in.

    4

     A     

    and the normal stress in the steel rod is

    33 2

    3

    26 kips3.6782 ksi

    7.0686 in3.68 ksi (C)

    .

     F 

     A 

        Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    7/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.6 Axial loads are applied with rigid bearing plates to the

    solid cylindrical rods shown in Figure P1.5/6. The normalstress in aluminum rod (1) must be limited to 18 ksi, the

    normal stress in brass rod (2) must be limited to 25 ksi, and

    the normal stress in steel rod (3) must be limited to 15 ksi.

    Determine the minimum diameter required for each of thethree rods.

    FIGURE P1.5/6

    Solution

    The internal forces in the three rods must be determined. Begin with a FBD cut through rod (1) thatincludes the free end A. We will assume that the internal force in rod (1) is tension (even though it

    obviously will be in compression). From equilibrium,

    1 18 kips 4 kips 4 kips 0 16 kips 16 kips (C)

     y F F F   

    FBD through rod (1)

    FBD through rod (2)

    FBD through rod (3)

     Next, cut a FBD through rod (2) that includes the free end A. Again, we will assume that the internal

    force in rod (2) is tension. Equilibrium of this FBD reveals the internal force in rod (2):

    2 28 kips 4 kips 4 kips 15 kips 15 kips 0 14 kips 14 kips (T)

     y F F F   

    Similarly, cut a FBD through rod (3) that includes the free end A. From this FBD, the internal force in

    rod (3) is:

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    8/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    3

    3

    8 kips 4 kips 4 kips 15 kips 15 kips 20 kips 20 kips 0

    26 kips 26 kips (C)

     y F F 

     F 

     

     Notice that two of the three rods are in compression. In these situations, we are concerned only with the

    stress magnitude; therefore, we will use the force magnitudes to determine the minimum required cross-sectional areas, and in turn, the minimum rod diameters. The normal stress in aluminum rod (1) must be

    limited to 18 ksi; therefore, the minimum cross-sectional area required for rod (1) is

    211,min

    1

    16 kips 0.8889 in.18 ksi

     F  A 

     

    The minimum rod diameter is therefore

    2 2

    1,min 1 10.8889 in. 1.0638 in 1.064 in..4

     A d d  

      Ans.

    The normal stress in brass rod (2) must be limited to 25 ksi, which requires a minimum area of

    222,min

    2

    14 kips0.5600 in.

    25 ksi

     F  A

       

    which requires a minimum diameter for rod (2) of

    2 2

    2,min 2 20.5600 in. 0.8444 in 0.844 in..4

     A d d     Ans.

    The normal stress in steel rod (3) must be limited to 15 ksi. The minimum cross-sectional area required

    for this rod is:

    233,min

    3

    26 kips1.7333 in.

    15 ksi

     F  A

       

    which requires a minimum diameter for rod (3) of

    2 2

    3,min 3 31.7333 in. 1.4856 in 1.486 in..4

     A d d  

      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    9/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.7 Two solid cylindrical rods support a load o

     P  = 50 kN, as shown in Figure P1.7/8. If thenormal stress in each rod must be limited to 130

    MPa, determine the minimum diameter required

    for each rod.

    FIGURE P1.7/8

    Solution

    Consider a FBD of joint B. Determine the angle   between

    rod (1) and the horizontal axis:

    4.0 mtan 1.600 57.99462.5 m

       

    and the angle    between rod (2) and the horizontal axis:

    2.3 mtan 0.7188 35.7067

    3.2 m     

    Write equilibrium equations for the sum of forces in thehorizontal and vertical directions. Note: Rods (1) and (2)

    are two-force members.

    2 1cos(35.7067 ) cos(57.9946 ) 0 x F F F    (a)

    2 1sin(35.7067 ) sin(57.9946 ) 0 y F F F P    (b)

    Unknown forces F 1 and F 2 can be found from the simultaneous solution of Eqs. (a) and (b). Using the

    substitution method, Eq. (b) can be solved for F 2 in terms of F 1:

    2 1

    cos(57.9946 )

    cos(35.7067 ) F F 

     

      (c)

    Substituting Eq. (c) into Eq. (b) gives

    1 1

    1

    1

    cos(57.9946 )sin(35.7067 ) sin(57.9946 )

    cos(35.6553 )

    cos(57.9946 ) tan(35.7067 ) sin(57.9946 )

    cos(57.9946 ) tan(35.7067 ) sin(57.9946 ) 1.2289

     F F P 

     F P 

     P P  F 

     

    For the given load of P  = 50 kN, the internal force in rod (1) is therefore:

    1

    50 kN40.6856 kN

    1.2289 F    

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    10/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    Backsubstituting this result into Eq. (c) gives force F 2:

    2 1

    cos(57.9946 ) cos(57.9946 )(40.6856 kN) 26.5553 kN

    cos(35.7067 ) cos(35.7067 ) F F 

     

     

    The normal stress in rod (1) must be limited to 130 MPa; therefore, the minimum cross-sectional area

    required for rod (1) is

    211,min 2

    1

    (40.6856 kN)(1,000 N/kN)312.9664 mm

    130 N/mm

     F  A

     

     

    The minimum rod diameter is therefore

    2 2

    1,min 1 1312.9664 mm 19.9620 19.4

    96 mmmm A d d  

      Ans.

    The minimum area required for rod (2) is

    222,min 2

    2

    (26.5553 kN)(1,000 N/kN)204.2718 mm

    130 N/mm

     F  A

       

    which requires a minimum diameter for rod (2) of

    2 2

    2,min 2 2

    204.2718 mm 16.1272 16.4

    13 mmmm A d d  

      Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    11/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.8 Two solid cylindrical rods support a load

    of  P  = 27 kN, as shown in Figure P1.7/8. Rod(1) has a diameter of 16 mm and the diameter

    of rod (2) is 12 mm. Determine the axial

    normal stress in each rod.

    FIGURE P1.7/8

    Solution

    Consider a FBD of joint B. Determine the angle   between rod (1)and the horizontal axis:

    4.0 mtan 1.600 57.99462.5 m

       

    and the angle    between rod (2) and the horizontal axis:

    2.3 mtan 0.7188 35.7067

    3.2 m     

    Write equilibrium equations for the sum of forces in the horizontaland vertical directions. Note: Rods (1) and (2) are two-force

    members.

    2 1cos(35.7067 ) cos(57.9946 ) 0 x F F F    (a)

    2 1

    sin(35.7067 ) sin(57.9946 ) 0 y

     F F F P    (b)

    Unknown forces F 1 and F 2 can be found from the simultaneous solution of Eqs. (a) and (b). Using thesubstitution method, Eq. (b) can be solved for F 2 in terms of F 1:

    2 1

    cos(57.9946 )

    cos(35.7067 ) F F 

     

      (c)

    Substituting Eq. (c) into Eq. (b) gives

    1 1

    1

    1

    cos(57.9946 )sin(35.7067 ) sin(57.9946 )

    cos(35.6553 )

    cos(57.9946 ) tan(35.7067 ) sin(57.9946 )

    cos(57.9946 ) tan(35.7067 ) sin(57.9946 ) 1.2289

     F F P 

     F P 

     P P  F 

     

    For the given load of P  = 27 kN, the internal force in rod (1) is therefore:

    1

    27 kN21.9702 kN

    1.2289 F    

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    12/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    Backsubstituting this result into Eq. (c) gives force F 2:

    2 1

    cos(57.9946 ) cos(57.9946 )(21.9702 kN) 14.3399 kN

    cos(35.7067 ) cos(35.7067 ) F F 

     

     

    The diameter of rod (1) is 16 mm; therefore, its cross-sectional area is:

    2 2

    1 (16 mm) 201.0619 mm4

     A     

    and the normal stress in rod (1) is:21

    1 2

    1

    (21.9702 kN)(1,000 N/kN)109.2710 N/mm

    201.0109.3 MPa (T)

    619 mm

     F 

     A     Ans.

    The diameter of rod (2) is 12 mm; therefore, its cross-sectional area is:

    2 2

    2 (12 mm) 113.0973 mm4

     A     

    and the normal stress in rod (2) is:

    22

    2 2

    2

    (14.3399 kN)(1,000 N/kN)126.7924 N/mm

    113.0126.8 MPa (T)

    973 mm

     F 

     A      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    13/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.9 A simple pin-connected truss is loaded

    and supported as shown in Figure P1.9. Allmembers of the truss are aluminum pipes that

    have an outside diameter of 4.00 in. and a wall

    thickness of 0.226 in. Determine the normal

    stress in each truss member.

    FIGURE P1.9

    Solution

    Overall equilibrium:Begin the solution by determining the

    external reaction forces acting on the

    truss at supports A and B. Writeequilibrium equations that include all

    external  forces. Note that only theexternal forces (i.e., loads and

    reaction forces) are considered at this

    time. The internal forces acting in the

    truss members will be consideredafter the external reactions have been

    computed. The free-body diagram

    (FBD) of the entire truss is shown.

    The following equilibrium equations

    can be written for this structure:2 kips

    2 ki

    0

     ps

     x

     x

     x F A

     A

     

    (6 ft) (5 kips)(14 ft) (2 kips)(7 ft)

    14 kips

    0

     y

     A y B

     B

     M 

     

    5 kips 0

    9 kips

     y y y

     y

     F A B

     A

     

    Method of joints:

    Before beginning the process of determining the internal forces in the axial members, the geometry ofthe truss will be used to determine the magnitude of the inclination angles of members AC  and BC . Use

    the definition of the tangent function to determine   AC  and   BC :

    7 fttan 0.50 26.565

    14 ft

    7 fttan 0.875 41.186

    8 ft

     AC AC 

     BC BC 

     

     

     

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    14/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

     Joint A: 

    Begin the solution process by considering a FBD of joint A. Consideronly those forces acting directly on joint A. In this instance, two axial

    members, AB and AC , are connected at joint A. Additionally, two

    reaction forces, A x and A y, act at joint A. Tension forces will be

    assumed in each truss member.

    cos(26.565 ) 0 x AC AB x F F F A   (a)

    sin(26.565 ) 0 y AC y

     F F A   (b)

    Solve Eq. (b) for F  AC :

    9 kips

    sin(26.565 ) sin(26.520.125 kip

    65 )s

     y

     AC 

     A F 

     

     

    and then compute F  AB using Eq. (a):

    cos(26.565 )

    (20.125 kips)cos(26.5 16.000 kips65 ) ( 2 kips)

     AB AC x F F A

       

     Joint B: Next, consider a FBD of joint B. In this instance, the equilibriumequations associated with joint B seem easier to solve than those that

    would pertain to joint C . As before, tension forces will be assumed in

    each truss member.

    cos(41.186 ) 0 x AB BC  F F F    (c)

    sin(41.186 ) 0 y BC y F F B   (d)

    Solve Eq. (d) for F  BC :

    14 kips

    sin(41.186 ) sin(41.18

    21.260 kip

    6

    s

    )

     y

     BC 

     B F     

     

    Eq. (c) can be used as a check on our calculations:

    cos(41.186 )

    ( 16.000 kips) ( 21.260 kips)cos(41.186 ) 0

     x AB BC  F F F 

      Checks!

    Section properties:For each of the three truss members:

    2 2 24.00 in. 2(0.226 in.) 3.548 in. (4.00 in.) (3.548 in.) 2.67954 in.4

    d A   

     

    Normal stress in each truss member:

    2

    16.000 kips5.971 ksi

    2.679545.97 ksi (C)

     in.

     AB AB

     AB

     F 

     A 

        Ans. 

    2

    20.125 kips7.510 ksi

    2.679547.51 ksi (T)

     in.

     AC 

     AC 

     AC 

     F 

     A      Ans. 

    2

    21.260 kips7.934 ksi

    2.679547.93 ksi (C)

     in.

     BC 

     BC 

     BC 

     F 

     A 

        Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    15/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.10 A simple pin-connected truss is loaded

    and supported as shown in Figure P1.10. Allmembers of the truss are aluminum pipes that

    have an outside diameter of 60 mm and a wall

    thickness of 4 mm. Determine the normal

    stress in each truss member.

    FIGURE P1.10

    Solution

    Overall equilibrium:Begin the solution by determining the

    external reaction forces acting on the truss at

    supports A and B. Write equilibrium

    equations that include all external  forces.

     Note that only the external forces (i.e., loadsand reaction forces) are considered at this

    time. The internal forces acting in the trussmembers will be considered after the external

    reactions have been computed. The free-

     body diagram (FBD) of the entire truss isshown. The following equilibrium equations

    can be written for this structure:

    12 k 

    12

     N 0

     kN x

     x x F A

     A

     

    (1 m) (15 kN)(4.3 m) 064.5 kN y

     A y B B

     M 

     

    15 kN

    49.5 kN

    0

     y

     y y y F 

     A

     A B

     

    Method of joints:

    Before beginning the process of determining the internal forces in the axial members, the geometry ofthe truss will be used to determine the magnitude of the inclination angles of members AB and BC . Use

    the definition of the tangent function to determine   AB and   BC :

    1.5 m

    tan 1.50 56.3101.0 m

    1.5 mtan 0.454545 24.444

    3.3 m

     AB AB

     BC BC 

     

     

     

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    16/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

     Joint A: 

    Begin the solution process by considering a FBD of joint A. Consideronly those forces acting directly on joint A. In this instance, two axial

    members, AB and AC , are connected at joint A. Additionally, two

    reaction forces, A x and A y, act at joint A. Tension forces will be assumed

    in each truss member.

    cos(56.310 ) 0 x AC AB x F F F A   (a)

    sin(56.310 ) 0 y y AB

     F A F    (b)

    Solve Eq. (b) for F  AB:

    49.5 kN

    sin(56.310 ) sin(56.310 )59.492 kN

     y

     AB

     A F 

       

     

    and then compute F  AC  using Eq. (a):

    cos(56.310 )

    ( 59.492 kN)cos(56.3 45.00010 ) ( 12 kN) kN

     AC AB x F F A

     

     Joint C: Next, consider a FBD of joint C . In this instance, the equilibriumequations associated with joint C  seem easier to solve than those that

    would pertain to joint B. As before, tension forces will be assumed in

    each truss member.

    cos(24.444 ) 12 kN 0 x AC BC  F F F    (c)

    sin(24.444 ) 15 kN 0 y BC  F F    (d)

    Solve Eq. (d) for F  BC :

    15 kN

    sin(24.444 )

    36.249 kN BC 

     F  

     

     

    Eq. (c) can be used as a check on our calculations:

    cos(24.444 ) 12 kN 0

    (45.000 kN) ( 36.249 kN)cos(24.444 ) 12 kN 0

     x AC BC  F F F 

      Checks!

    Section properties:For each of the three truss members:

    2 2 260 mm 2(4 mm) 52 mm (60 mm) (52 mm) 703.7168 mm4

    d A   

     

    Normal stress in each truss member:

    2

    ( 59.492 kN)(1,000 N/kN)84.539 MPa

    7084.5 MPa (C)

    3.7168 mm

     AB AB

     AB

     F 

     A 

        Ans. 

    2

    (45.000 kN)(1,000 N/kN)63.946 MPa

    7063.9 MPa

    3.7168)

     mm(T AC 

     AC 

     AC 

     F 

     A      Ans. 

    2

    ( 36.249 kN)(1,000 N/kN)51.511 MPa

    7051.5 MPa (C)

    3.7168 mm

     BC  BC 

     BC 

     F 

     A 

        Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    17/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.11 A simple pin-connected truss is loaded

    and supported as shown in Figure P1.11. Allmembers of the truss are aluminum pipes that

    have an outside diameter of 42 mm and a wall

    thickness of 3.5 mm. Determine the normal

    stress in each truss member.

    FIGURE P1.11

    Solution

    Overall equilibrium:Begin the solution by determining the external

    reaction forces acting on the truss at supports A 

    and B. Write equilibrium equations that include allexternal  forces. Note that only the external forces

    (i.e., loads and reaction forces) are considered at

    this time. The internal forces acting in the truss

    members will be considered after the externalreactions have been computed. The free-body

    diagram (FBD) of the entire truss is shown. The

    following equilibrium equations can be written forthis structure:

    30 kN

    30 kN

    0 y

     y

     y F A

     A

     

    (30 kN)(4.5 m) (15 kN)(1.6 m) (5.6 m)

    19.821 kN

    0

     x

     A x

     B

     M B

     

    15 kN 0

    15 kN 15 kN ( 19.821 kN 34.821) kN

     x x

     x   x

     x

     x

     F A B

     A   A B

       

    Method of joints:Before beginning the process of determining the internal forces in the axial members, the geometry ofthe truss will be used to determine the magnitude of the inclination angles of members AC  and BC . Use

    the definition of the tangent function to determine   AC  and   BC :

    1.6 mtan 0.355556 19.573

    4.5 m

    4 mtan 0.888889 41.634

    4.5 m

     AC AC 

     BC BC 

     

     

     

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    18/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

     Joint A: 

    Begin the solution process by considering a FBD of joint A. Consideronly those forces acting directly on joint A. In this instance, two axial

    members, AB and AC , are connected at joint A. Additionally, two

    reaction forces, A x and A y, act at joint A. Tension forces will be

    assumed in each truss member.

    cos(19.573 ) 0 x x AC  F A F    (a)

    sin(19.573 ) 0 y y AC AB

     F A F F    (b)

    Solve Eq. (a) for F  AC :

    34.821 kN

    cos(19.573 ) cos(19.573 )36.957 kN x

     AC 

     A F   

     

    and then compute F  AB using Eq. (b):

    sin(19.573 )

    (30.000 kN) (36.957 kN)sin(19. 17.619573 ) kN

     AB y AC  F A F 

     

     Joint B:

     Next, consider a FBD of joint B. In this instance, the equilibriumequations associated with joint B seem easier to solve than those that

    would pertain to joint C . As before, tension forces will be assumed in

    each truss member.

    cos(41.634 ) 0 x x BC  F B F    (c)

    sin(41.634 ) 0 y BC AB F F F    (d)

    Solve Eq. (c) for F  BC :

    ( 19.821 kN)

    cos(41.634 ) cos(41.634 )26.520 kN x

     BC 

     B F 

       

     

    Eq. (d) can be used as a check on our calculations:

    sin(41.634 )( 26.520 kN)sin(41.634 ) (17.619 kN) 0

     y BC AB F F F    Checks!

    Section properties:For each of the three truss members:

    2 2 242 mm 2(3.5 mm) 35 mm (42 mm) (35 mm) 423.3296 mm4

    d A   

     

    Normal stress in each truss member:

    2

    (17.619 kN)(1,000 N/kN)41.620 MPa

    42

    41.6 MPa

    3.3296

    )

     mm

    (T AB AB

     AB

     F 

     A

          Ans. 

    2

    (36.957 kN)(1,000 N/kN)87.301 MPa

    4287.3 MPa

    3.3296)

     mm(T AC 

     AC 

     AC 

     F 

     A      Ans. 

    2

    ( 26.520 kN)(1,000 N/kN)62.647 MPa

    4262.6 MPa (C)

    3.3296 mm

     BC  BC 

     BC 

     F 

     A 

        Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    19/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.12 The rigid beam BC  shown in Figure P1.12 is

    supported by rods (1) and (2) that have cross-sectionalareas of 175 mm

    2 and 300 mm

    2, respectively. For a

    uniformly distributed load of w = 15 kN/m, determine

    the normal stress in each rod. Assume L = 3 m and a =

    1.8 m.

    FIGURE P1.12

    Solution

    Equilibrium: Calculate the internal forces in members (1) and (2).

    1

    2

    1

    2

    1.8 m(3 m) (15 kN/m)(1.8 m) 0

    2

    1.8 m(3 m) (15 kN/m)(1.8 m) 3 m 0

    8.100 kN

    18.900

    2

     kN

     B

     M F 

     M 

     F 

     F 

     F 

     

    Stresses:

    211 2

    1

    (8.100 kN)(1,000 N/kN)46.286 N/mm

    175 m46.3 MPa

    m

     F 

     A     Ans.

    22

    2 22

    (18.900 kN)(1,000 N/kN)

    63.000 N/mm300 m 63.0 MPam

     F 

     A  

      Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    20/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.13  Bar (1) in Figure P1.15 has a cross-

    sectional area of 0.75 in.2. If the stress in bar

    (1) must be limited to 30 ksi, determine the

    maximum load  P   that may be supported by

    the structure.

    FIGURE P1.13

    Solution

    Given that the cross-sectional area of bar (1) is 0.75 in.2 and its normal stress must be limited to 30 ksi,

    the maximum force that may be carried by bar (1) is2

    1,max 1 1 (30 ksi)(0.75 in. ) 22.5 kips F A    

    Consider a FBD of ABC . From the moment equilibriumequation about joint A, the relationship between the force in

     bar (1) and the load P  is:

    1

    1

    (6 ft) (10 ft) 0

    6 ft

    10 ft

     A M F P 

     P F 

     

    Substitute the maximum force F 1,max = 22.5 kips into this relationship to obtain the maximum load that

    may be applied to the structure:

    1

    6 ft 6 ft(22.5 kips)

    10 ft 10 ft

    13.50 kips P F    Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    21/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.14  The rectangular bar shown in Figure

    P1.14 is subjected to a uniformly distributedaxial loading of w = 13 kN/m and a

    concentrated force of P  = 9 kN at B.

    Determine the magnitude of the maximum

    normal stress in the bar and its location x.Assume a = 0.5 m, b = 0.7 m, c = 15 mm, and

    d  = 40 mm.

    FIGURE P1.14 

    Solution

    Equilibrium: Draw a FBD for the interval between A and B where

    0   x a . Write the following equilibrium equation:

     (13 kN/m)(1.2 m ) (9 kN) 0

    (13 kN/m)(1.2 m ) (9 kN)

     x F x F 

     F x

     

     

    The largest force in this interval occurs at x = 0 where F  = 6.6

    kN.

    In the interval between B and C  where a x a b , and writethe following equilibrium equation:

    (13 kN/m)(1.2 m ) 0

    (13 kN/m)(1.2 m )

     x F x F 

     F x

     

     

    The largest force in this interval occurs at x = a where F  = 9.1kN.

    Maximum Normal Stress:

    max

    (9.1 kN)(1,000 N/kN)

    (15 mm 15.17 MPa)(40 mm) at 0.5 m x      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    22/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.15  The solid 1.25-in.-diameter rod shown in

    Figure P1.15 is subjected to a uniform axialdistributed loading along its length of w = 750 lb/ft.

    Two concentrated loads also act on the rod:  P  =

    2,000 lb and Q = 1,000 lb. Assume a = 16 in. and b 

    = 32 in. Determine the normal stress in the rod atthe following locations:

    (a)  x = 10 in.

    (b)  x = 30 in.FIGURE P1.15 

    Solution

    (a) x  = 10 in.Equilibrium:  Draw a FBD for the interval between A and B 

    where 0   x a , and write the following equilibrium equation:

     

    (750 lb/ft)(1 ft/12 in.)(48 in. )

    (2,000 lb) (1,000 lb) 0

    (62.5 lb/in.)(48 in. ) 3,000 lb

     x F x

     F 

     F x

     

     

    At x = 10 in., F  = 5,375 lb.

    Stress: The normal stress at this location can be calculated as follows.

    2 2

    2

    (1.25 in.) 1.227185 in.4

    5,375 lb4,379 4,380 p.944 psi

    1si

    .227185 in.

     A   

     

      Ans.

    (b) x  = 30 in.

    Equilibrium:  Draw a FBD for the interval between B and C  where a x a b , and write the following equilibriumequation:

     

    (750 lb/ft)(1 ft/12 in.)(48 in. )

    (1,000 lb) 0

    (62.5 lb/in.)(48 in. ) 1,000 lb

     x F x

     F 

     F x

     

     

    At x = 30 in., F  = 2,125 lb.

    Stress: The normal stress at this location can be calculated as follows.

    2 1,730 ps2,125 lb

    1,731.606 psi1.227185 i

    in.

         Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    23/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.16 Two 6 in. wide wooden boards are

    to be joined by splice plates that will befully glued on the contact surfaces. The

    glue to be used can safely provide a shear

    strength of 120 psi. Determine the smallest

    allowable length L that can be used for thesplice plates for an applied load of  P   =

    10,000 lb. Note that a gap of 0.5 in. is

    required between boards (1) and (2). FIGURE P1.16

    Solution

    Consider a FBD of board (2). The glue on the splice plates provides resistance to the 10,000 lb appliedload on both the top and bottom surfaces of board (2). Denoting the shear resistance on a glue surface as

    V , equilibrium in the horizontal direction requires

    0

    10,000 lb5,000 lb

    2

     x F P V V 

     

    In other words, each glue surface must be large enough so that 5,000 lb of shear resistance can be provided to board (2). Since the glue has a shear strength of 120 psi, the area of each glue surface on

     board (2) must be at least

    2

    min

    5,000 lb41.6667 in.

    120 psi A    

    The boards are 6-in. wide; therefore, glue must be spread along board (2) for a length of at least2

    glue joint

    41.6667 in.6.9444 in.

    6 in. L    

    Although we’ve discussed only board (2), the same rationale applies to board (1). For both boards (1)

    and (2), the glue must be applied along a length of at least 6.9444 in. on both the top and bottom of the

     boards in order to resist the 10,000 lb applied load.

    The glue applied to boards (1) and (2) must be matched by glue applied to the splice plates. Therefore,

    the splice plates must be at least 6.9444 in. + 6.9444 in. = 13.8889 in. long. However, we are told that a0.5-in. gap is required between boards (1) and (2); therefore, the splice plates must be 0.5-in. longer.

    Altogether, the length of the splice plates must be at least

    min 6.9444 in. 6.9444 in. 0.5 in 14.39 in.. L     Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    24/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.17  For the clevis connection shown in Figure

    P1.17, determine the maximum applied load  P   thatcan be supported by the 10-mm-diameter pin if the

    average shear stress in the pin must not exceed 95

    MPa.

    FIGURE P1.17

    Solution

    Consider a FBD of the bar that is connected by the clevis,including a portion of the pin. If the shear force acting on each

    exposed surface of the pin is denoted by V , then the shear force

    on each pin surface is related to the load P by:

    0 2 x F P V V P V   

    The area of the pin surface exposed by the FBD is simply the cross-sectional area of the pin:

    2 2 2

     pin pin (10 mm) 78.539816 mm4 4 A d 

     

     

    If the average shear stress in the pin must be limited to 95 MPa, the maximum shear force V  on a single

    cross-sectional surface must be limited to2 2

     bolt (95 N/mm )(78.539816 mm ) 7,461.283 NV A   

    Therefore, the maximum load P  that may be applied to the connection is

    2 2(7,461.283 N) 14,922.565 14.92 kN N P V    Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    25/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.18  For the connection shown in Figure P1.18,

    determine the average shear stress produced in the 3/8-in. diameter bolts if the applied load is P  = 2,500 lb.

    FIGURE P1.18

    Solution

    There are four bolts, and it is assumed that each bolt supports an equal portion of the external load P .

    Therefore, the shear force carried by each bolt is

    2,500 lb625 lb

    4 boltsV    

    The bolts in this connection act in single shear. The cross-sectional area of a single bolt is

    2 2 2 2

     bolt bolt (3 / 8 in.) (0.375 in.) 0.110447 in.4 4 4

     A d   

     

    Therefore, the average shear stress in each bolt is

    2

     bolt

    625 lb5,658.8427 psi

    0.110447 in.5,660 psi

     A     Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    26/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.19  The five-bolt connection shown in Figure P1.19 must

    support an applied load of  P  = 265 kN. If the average shear stressin the bolts must be limited to 120 MPa, determine the minimum

     bolt diameter that may be used for this connection.

    FIGURE P1.19

    Solution

    There are five bolts, and it is assumed that each bolt supports an equal portion of the external load P .Therefore, the shear force carried by each bolt is

    265 kN53 kN 53,000 N

    5 boltsV    

    Since the average shear stress must be limited to 120 MPa, each bolt must provide a shear area of at

    least:

    2

    2

    53,000 N441.6667 mm

    120 N/mmV  A    

    Each bolt in this connection acts in double shear; therefore, two cross-sectional bolt surfaces are

    available to transmit shear stress in each bolt.

    22

     bolt

    441.6667 mm220.8333 mm per surface

    2 surfaces per bolt 2 surfaces

    V  A A    

    The minimum bolt diameter must be

    2 2

     bolt bolt16.77 m220.8333 mm 16.7682 mm m

    4d d 

        Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    27/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.20 A coupling is used to connect a 2 in. diameter

     plastic pipe (1) to a 1.5 in. diameter pipe (2), asshown in Figure P1.20. If the average shear stress in

    the adhesive must be limited to 400 psi, determine

    the minimum lengths L1 and L2 required for the joint

    if the applied load P  is 5,000 lb.

    FIGURE P1.24

    Solution

    To resist a shear force of 5,000 lb, the area of adhesive required on each pipe is

    2

    adhesive

    5,000 lb12.5 in.

    400 psiV 

    V  A

       

    Consider the coupling on pipe (1). The adhesive is applied to the circumference of the pipe, and thecircumference C 1 of pipe (1) is

    1 1(2.0 in.) 6.2832 in.C D    

    The minimum length L1 is therefore2

    1

    1

    12.5 in.1.9894 in.

    6.2832 i1.989 i

    n  n.

    .

    V  A

     LC 

      Ans.

    Consider the coupling on pipe (2). The circumference C 2 of pipe (2) is

    2 2 (1.5 in.) 4.7124 in.C D    

    The minimum length L2 is therefore2

    2

    2

    12.5 in.2.6526 in.

    4.71242.65 in.

    in.

    V  A

     LC 

      Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    28/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    1.21  A hydraulic punch press is used to

     punch a slot in a 0.50-in. thick plate, asillustrated in Fig. P1.21. If the plate shears

    at a stress of 30 ksi, determine the

    minimum force  P   required to punch the

    slot.

    FIGURE P1.21

    Solution

    The shear stress associated with removal of the slug exists on its perimeter. The perimeter of the slug isgiven by

     perimeter 2(3.00 in.) + (0.75 in.) 8.35619 in.   

    Thus, the area subjected to shear stress is2 perimeter plate thickness (8.35619 in.)(0.50 in.) 4.17810 in.

    V  A    

    Given that the plate shears at   = 30 ksi, the force required to remove the slug is therefore2

    min(30 ksi)(4.17810 in. ) 125.343 kips 125.3 kips

    V  P A    Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    29/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.22  The handle shown in Figure P1.22 is

    attached to a 40-mm-diameter shaft with asquare shear key. The forces applied to the

    lever are  P   = 1,300 N. If the average shear

    stress in the key must not exceed 150 MPa,

    determine the minimum dimension a that must be used if the key is 25 mm long. The overall

    length of the handle is L = 0.70 m.

    FIGURE P1.22

    Solution

    To determine the shear force V  that must be resisted by the shear key, sum moments about the center ofthe shaft (which will be denoted O):

    700 mm 700 mm 40 mm(1,300 N) (1,300 N) 0

    2 2 2

    45,500 N

    O M V 

     

    Since the average shear stress in the key must not exceed 150 MPa, the shear area required is

    2

    2

    45,500 N

    303.3333 mm150 N/mmV 

     A  

     The shear area in the key is given by the product of its length L (i.e., 25 mm) and its width a. Therefore,

    the minimum key width a is2303.3333 mm

    12.1333 mm25 m

    12.1m

    3 mmV  A

    a L

      Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    30/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.23 An axial load P  is supported by the short steel

    column shown in Figure P1.23. The column has a cross-sectional area of 14,500 mm

    2. If the average normal stress

    in the steel column must not exceed 75 MPa, determine the

    minimum required dimension a so that the bearing stress

     between the base plate and the concrete slab does notexceed 8 MPa. Assume b = 420 mm.

    FIGURE P1.23 

    Solution

    Since the normal stress in the steel column must not exceed 75 MPa, the maximum column load is2 2

    max(75 N/mm )(14,500 mm ) 1,087,500 N P A   

    The maximum column load must be distributed over a large enough area so that the bearing stress

     between the base plate and the concrete slab does not exceed 8 MPa; therefore, the minimum plate areais

    2

    min 2

    1,087,500 N135,937.5 mm

    8 N/mmb

     P  A

       

    The area of the plate is a ×b. Since b = 420, the minimum length of a must be2

    min

    2

    135,937.5 mm

    135,937.5 mm

    420 mm324 mm

     A a b

    a

      Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    31/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.24  The two wooden boards shown in Figure P1.24 are

    connected by a 0.5-in.-diameter bolt. Washers are installedunder the head of the bolt and under the nut. The washer

    dimensions are D = 2 in. and d  = 5/8 in. The nut is tightened

    to cause a tensile stress of 9,000 psi in the bolt. Determine

    the bearing stress between the washer and the wood.

    FIGURE P1.24 

    Solution

    The tensile stress in the bolt is 9,000 psi; therefore, the tension force that acts in the bolt is

    2 2

     bolt bolt bolt (9,000 psi) (0.5 in.) (9,000 psi)(0.196350 in. ) 1,767.146 lb4

     F A   

       

    The contact area between the washer and the wood is

    2 2 2

    washer  (2 in.) (0.625 in.) 2.834796 in.4

     A   

     

    Thus, the bearing stress between the washer and the wood is

    2

    1,767.146 lb

    2.834796 in.623 psi

    b      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    32/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.25 For the beam shown in Figure P1.25, the

    allowable bearing stress for the material under

    the supports at A and B is  b = 800 psi.Assume w = 2,100 lb/ft, P  = 4,600 lb, a = 20 ft,

    and b = 8 ft. Determine the size of square 

     bearing plates required to support the loadingshown. Dimension the plates to the nearest ½

    in.

    FIGURE P1.25 

    Solution

    Equilibrium: Using the FBD shown,

    calculate the beam reaction forces.

    20 ft(20 ft) (2,100 lb/ft)(20 ft) (4,600 lb)(28 ft) 0

    2

    27,440 lb

     A y

     y

     M B

     B

     

    20 ft(20 ft) (2,100 lb/ft)(20 ft) (4,600 lb)(8 ft) 0

    2

    19,160 lb

     B y

     y

     M A

     A

     

    Bearing plate at A: The area of the bearing plate required for support A is

    219,160 lb 23.950 in.800 psi

     A A    

    Since the plate is to be square, its dimensions must be2 use 5 in.23.95  5 in. bearing plate at0 in. 4.894 in  .   Awidth     Ans. 

    Bearing plate at B : The area of the bearing plate required for support B is

    227,440 lb 34.300 in.800 psi

     B A    

    Since the plate is to be square, its dimensions must be2 use 6 in.34.30  6 in. bearing plate at0 in. 5.857 in  .   Bwidth     Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    33/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.26 The d  = 15-mm-diameter solid rod shown in

    Figure P1.26 passes through a D = 20-mm-diameterhole in the support plate. When a load P  is applied

    to the rod, the rod head rests on the support plate.

    The support plate has a thickness of b = 12 mm.

    The rod head has a diameter of a = 30 mm and thehead has a thickness of t  = 10 mm. If the normal

    stress produced in the rod by load P  is 225 MPa,

    determine:(a) the bearing stress acting between the support

     plate and the rod head.

    (b) the average shear stress produced in the rodhead.

    (c) the punching shear stress produced in the

    support plate by the rod head.

    FIGURE P1.26 

    Solution

    The cross-sectional area of the rod is:

    2 2

    rod (15 mm) 176.715 mm4

     A     

    The tensile stress in the rod is 225 MPa; therefore, the tension force in the rod is2 2

    rod rod rod (225 N/mm )(176.715 mm ) 39,760.782 N F A   

    (a) The contact area between the support plate and the rod head is

    2 2 2

    contact (30 mm) (20 mm) 392.699 mm

    4

     A   

     

    Thus, the bearing stress between the support plate and the rod head is

    2

    39,760.782 N

    392.699 mm101.3 MPa

    b      Ans. 

    (b) In the rod head, the area subjected to shear stress is equal to the perimeter of the rod times the

    thickness of the head.2(15 mm)(10 mm) 471.239 mm

    V  A    

     and therefore, the average shear stress in the rod head is

    2

    39,760.782 N

    471.

    84.4 MP

    m

    a

    239 m

         Ans. 

    (c) In the support plate, the area subjected to shear stress is equal to the product of the rod head

     perimeter and the thickness of the plate.2(30 mm)(12 mm) 1,130.973 mmV  A    

     and therefore, the average punching shear stress in the support plate is

    2

    39,760.782 N

    1,13035.2 MPa

    .973 mm     Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    34/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.27  The rectangular bar is connected to the support bracket with

    a circular pin, as shown in Figure P1.27. The bar width is w = 1.75in. and the bar thickness is 0.375 in. For an applied load of P  =

    5,600 lb, determine the average bearing stress produced in the bar

     by the 0.625-in.-diameter pin.

    FIGURE P1.27 

    SolutionThe average bearing stress produced in the bar by the pin is based on the projected area of the pin. The projected area is equal to the pin diameter times the bar thickness. Therefore, the average bearing stress

    in the bar is

    5,600 lb23,893.33 psi

    (0.625 in.)(0.375 i23,

    n.900

    ) psi

    b      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    35/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.28  The steel pipe column shown in Figure P1.28 has an

    outside diameter of 8.625 in. and a wall thickness of 0.25 in.The timber beam is 10.75 in wide, and the upper plate has the

    same width. The load imposed on the column by the timber

     beam is 80 kips. Determine

    (a) The average bearing stress at the surfaces between the pipecolumn and the upper and lower steel bearing plates.

    (b) The length  L  of the rectangular upper bearing plate if its

    width is 10.75 in. and the average bearing stress between thesteel plate and the wood beam is not to exceed 500 psi.

    (c) The dimension “a” of the square lower bearing plate if the

    average bearing stress between the lower bearing plate andthe concrete slab is not to exceed 900 psi.

    Figure P1.28

    Solution

    (a) The area of contact between the pipe column and one of the bearing plates is simply the cross-sectional area of the pipe. To calculate the pipe area, we must first calculate the pipe inside diameter d :

    2 2 8.625 in. 2(0.25 in.) 8.125 in. D d t d D t   

    The pipe cross-sectional area is

    2 2 2 2 2

     pipe (8.625 in.) (8.125 in.) 6.5777 in.4 4

     A D d   

     

    Therefore, the bearing stress between the pipe and one of the bearing plates is

    2

    80 kips12.1623 ksi

    6.5777 in.

    12.16 ksib

    b

     P 

     A

          Ans.

    (b) The bearing stress between the timber beam and the upper bearing plate must not exceed 500 psi

    (i.e., 0.5 ksi). To support a load of 80 kips, the contact area must be at least

    280 kips 160 in.0.5 ksi

    b

    b

     P  A

       

    If the width of the timber beam is 10.75 in., then the length L of the upper bearing plate must be2160 in.

    14.8837 in. beam width 10.75

    14.88 in 

    .in.

    b A L   Ans.

    (c) The bearing stress between the concrete slab and the lower bearing plate must not exceed 900 psi(i.e., 0.9 ksi). To support the 80-kip pipe load, the contact area must be at least

    280 kips 88.8889 in.0.9 ksi

    b

    b

     P  A

       

    Since the lower bearing plate is square, its dimension a must be288.8889 in. 9.4 9.43 in281 n. .ib A a a a   Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    36/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.29  A clevis-type pipe hanger supports an 8-in-

    diameter pipe as shown in Figure P1.29. The hangerrod has a diameter of 1/2 in. The bolt connecting the

    top yoke and the bottom strap has a diameter of 5/8 in.

    The bottom strap is 3/16-in.-thick by 1.75-in.-wide by

    36-in.-long. The weight of the pipe is 2,000 lb.Determine the following:

    (a) the normal stress in the hanger rod

    (b) the shear stress in the bolt(c) the bearing stress in the bottom strap

    FIGURE P1.29 

    Solution

    (a) The normal stress in the hanger rod is

    2 2

    rod

    rod 2

    (0.5 in.) 0.196350 in.4

    2,000 lb10,185.917 psi

    0.196350 in.10,190 psi

     A   

     

      Ans.

    (b) The cross-sectional area of the bolt is:

    2 2

     bolt (0.625 in.) 0.306796 in.4

     A     

    The bolt acts in double shear; therefore, its average shear stress is

     bolt 2

    2,000 lb3,259.493 psi

    2(0.306796 in.3,260 i

    ) ps      Ans.

    (c) The bearing stress in the bottom strap is based on the projected area of the bolt in contact with thestrap. Also, keep in mind that there are two ends of the strap that contact the bolt. The bearing stress isthus

    2,000 lb8,533.334 psi

    2(0.625 in.)(3/168,530 psi

    in.)b

          Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    37/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.30  Rigid bar ABC  shown in Figure P1.30 is

    supported by a pin at bracket A and by tie rod (1).Tie rod (1) has a diameter of 5 mm, and it is

    supported by double-shear pin connections at B and

     D. The pin at bracket A is a single-shear

    connection. All pins are 7 mm in diameter.Assume a = 600 mm, b = 300 mm, h = 450 mm, P  

    = 900 N, and   = 55°. Determine the following:

    (a) the normal stress in rod (1)(b) the shear stress in pin B (c) the shear stress in pin A 

    FIGURE P1.30

    Solution

    Equilibrium: Using the FBD shown, calculatethe reaction forces that act on rigid bar ABC .

    1

    1

    sin(36.87 )(600 mm)

    (900 N)sin(55 )(900 mm) 0

    1,843.092 N

     A M F 

     F 

     

    (1,843.092 N)cos(36.87 ) (900 N)cos(55 ) 0

    958.255 N

     x x

     x

     F A

     A

     

    (1,843.092 N)sin(36.87 ) (900 N)sin(55 ) 0

    368.618 N

     y y

     y

     F A

     A

     

    The resultant force at A is

    2 2(958.255 N) ( 368.618 N) 1,026.709 N A    

    (a) Normal stress in rod (1).

    2 2

    rod

    rod 2

    (5 mm) 19.635 mm4

    1,843.092 N

    19.635 mm93.9 MPa

     A   

     

      Ans.

    (b) Shear stress in pin B . The cross-sectional area of a 7-mm-diameter pin is:

    2 2

     pin (7 mm) 38.485 mm4

     A     

    Pin B is a double shear connection; therefore, its average shear stress is

     pin 2

    1,843.092 N

    2(38.485 m23.9 M a

    )P

    m B      Ans.

    (c) Shear stress in pin A.

    Pin A is a single shear connection; therefore, its average shear stress is

     pin 2

    1,026.709 N

    38.485 m26.7 MPa

    m A      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    38/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.31  The bell crank shown in Figure P1.31 is in

    equilibrium for the forces acting in rods (1) and (2).The bell crank is supported by a 10-mm-diameter

     pin at B that acts in single shear. The thickness of

    the bell crank is 5 mm. Assume a = 65 mm, b =

    150 mm, F 1 = 1,100 N, and   = 50°. Determine thefollowing:

    (a) the shear stress in pin B 

    (b) the bearing stress in the bell crank at B 

    FIGURE P1.31 

    Solution

    Equilibrium: Using the FBD shown, calculate the

    reaction forces that act on the bell crank.

    2

    2

    (1,100 N)sin(50 )(65 mm)

    (150 mm) 0

    365.148 N

     B M 

     F 

     F 

     

    (1,100 N)cos(50 )

    365.148 N 0

    341.919 N

     x x

     x

     F B

     B

     

    (1,100 N)sin(50 ) 0

    842.649 N

     y y

     y

     F B

     B

     

    The resultant force at B is2 2(341.919 N) ( 842.649 N) 909.376 N B  

     

    (a) Shear stress in pin B .  The cross-sectional area of the 10-mm-diameter pin is:

    2 2

     pin (10 mm) 78.540 mm4

     A     

    Pin B is a single shear connection; therefore, its average shear stress is

     pin 2

    909.376 N

    78.540 mm11.58 MPa B      Ans.

    (b) Bearing stress in the bell crank at B .  The average bearing stress produced in the bell crank by the

     pin is based on the projected area of the pin. The projected area is equal to the pin diameter times the bell crank thickness. Therefore, the average bearing stress in the bell crank is

    909.376 N

    (10 mm)(5 mm)18.19 MPa

    b      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    39/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.32  The beam shown in Figure P1.32 is

    supported by a pin at C  and by a short link AB. If w = 30 kN/m, determine the average

    shear stress in the pins at A and C . Each

     pin has a diameter of 25 mm. Assume L =

    1.8 m and   = 35°.

    FIGURE P1.32 

    Solution

    Equilibrium: Using the FBD shown,

    calculate the reaction forces that act on the

     beam.

    1

    1

    1.8 msin(35 )(1.8 m) (30 kN/m)(1.8 m) 0

    247.0731 kN

    C  M F 

     F 

     

    (47.0731 kN)cos(35 ) 0

    38.5600 kN

     x x

     x

     F C 

     

    1.8 m(1.8 m) (30 kN/m)(1.8 m) 0

    2

    27.0000 kN

     B y

     y

     M C 

     

    The resultant force at C  is2 2(38.5600 kN) (27.0000 kN) 47.0731 kNC  

     

    Shear stress in pin A.  The cross-sectional area of a 25-mm-diameter pin is:

    2 2

     pin (25 mm) 490.8739 mm4

     A     

    Pin A is a single shear connection; therefore, its average shear stress is

     pin 2

    47,073.1 N

    490.8739 m95.9 MPa

    m A      Ans.

    Shear stress in pin C .Pin C  is a double shear connection; therefore, its average shear stress is

     pin 2

    47,073.1 N

    2(490.8739 m47.9 M a

    )P

    mC 

          Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    40/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.33  The bell-crank mechanism shown

    in Figure P1.33 is in equilibrium for anapplied load of P  = 7 kN applied at A.

    Assume a = 200 mm, b = 150 mm, and   =65°. Determine the minimum diameter d  

    required for pin B for each of the followingconditions:

    (a) The average shear stress in the pin may

    not exceed 40 MPa.(b) The bearing stress in the bell crank

    may not exceed 100 MPa.

    (c) The bearing stress in the support

     bracket may not exceed 165 MPa.FIGURE P1.33 

    Solution

    Equilibrium: Using the FBD shown, calculate

    the reaction forces that act on the bell crank.

    2

    2

    (7,000 N)sin(65 )(200 mm)

    (150 mm) 0

    8,458.873 N

     B M 

     F 

     F 

     

    (7,000 N)cos(65 )

    8,458.873 N 0

    11,417.201 N

     x x

     x

     F B

     B

     

    (7,000 N)sin(65 ) 0

    6,344.155 N

     y y

     y

     F B

     B

     

    The resultant force at B is2 2( 11,417.201 N) (6,344.155 N) 13,061.423 N B  

     

    (a) The average shear stress in the pin may not exceed 40 MPa. The shear area required for the pinat B is

    2

    2

    13,061.423 N326.536 mm

    40 N/mmV  A    

    Since the pin at B is supported in a double shear connection, the required cross-sectional area for the pin

    is2

     pin163.268 mm

    2

    V  A A    

    and therefore, the pin must have a diameter of

    24 (163.268 m 14.m 4) 2 mmd  

      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    41/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    (b) The bearing stress in the bell crank may not exceed 100 MPa.  The projected area of pin B on the

     bell crank must equal or exceed

    2

    2

    13,061.423 N130.614 mm

    100 N/mmb A    

    The bell crank thickness is 8 mm; therefore, the projected area of the pin is Ab = (8 mm)d . Calculate the

    required pin diameter d :2130.614 mm

    8

    16.

     

    3

    mm

    3 mmd     Ans. 

    (c) The bearing stress in the support bracket may not exceed 165 MPa. The pin at B bears on two 6-

    mm-thick support brackets. Thus, the minimum pin diameter required to satisfy the bearing stress limit

    on the support bracket is

    2

    2

    13,061.423 N79.160 mm

    165 N/mmb

     A    

    279.160 mm

    2(6 mm)6.60 mmd     Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    42/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.34 A structural steel bar with a 25 mm × 75 mm rectangular cross section is subjected to an axial

    load of 150 kN. Determine the maximum normal and shear stresses in the bar.

    Solution

    The maximum normal stress in the steel bar is

    max

    (150 kN)(1,000 N/kN)

    (25 mm)(75 mm)80 MPa

     F 

     A      Ans.

    The maximum shear stress is one-half of the maximum normal stressmax

    max2

    40 MPa 

          Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    43/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.35 A steel rod of circular cross section will be used to carry an axial load of 92 kips. The

    maximum stresses in the rod must be limited to 30 ksi in tension and 12 ksi in shear. Determine therequired diameter for the rod.

    Solution

    Based on the allowable 30 ksi tension stress limit, the minimum cross-sectional area of the rod is

    2

    min

    max

    92 kips3.0667 in.

    30 ksi

     F  A

       

    For the 12-ksi shear stress limit, the minimum cross-sectional area of the rod must be

    2

    min

    max

    92 kips3.8333 in.

    2 2(12 ksi)

     F  A

       

    Therefore, the rod must have a cross-sectional area of at least 3.8333 in.2 in order to satisfy both the

    normal and shear stress limits.

    The minimum rod diameter D is therefore

    2 2

    min min3.8333 in. 2.2092 in. 2.21 in.4

    d d  

      Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    44/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.36 An axial load  P   is applied to the

    rectangular bar shown in Figure P1.36. Thecross-sectional area of the bar is 400 mm

    2.

    Determine the normal stress perpendicular to

     plane  AB  and the shear stress parallel to

     plane  AB  if the bar is subjected to an axialload of P  = 70 kN.

    FIGURE P1.36

    Solution

    The angle    for the inclined plane is 35°. The

    normal force N  perpendicular to plane AB isfound from

    cos (40 kN) cos 35 57.3406 kN N P       

    and the shear force V  parallel to plane AB is

    sin (70 kN)sin 35 40.1504 kNV P       

    The cross-sectional area of the bar is 400 mm2, but the area along inclined plane AB is

    22400 mm

    488.3098 mmcos cos35

    n

     A A

     

     

    The normal stress  n perpendicular to plane AB is

    2

    (57.3406 kN)(1,000 N/kN)117.4268 MPa

    488117.4 MP

    .3098 mma

    n

    n

     N 

     A      Ans. 

    The shear stress  nt  parallel to plane AB is

    2

    (40.1504 kN)(1,000 N/kN)82.2231 MPa

    482.2 MP

    88.309a

    8 mmnt 

    n

     A      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    45/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.37 An axial load P  is applied to the 1.75 in.

     by 0.75 in. rectangular bar shown in FigureP1.37. Determine the normal stress

     perpendicular to plane AB and the shear stress

     parallel to plane  AB  if the bar is subjected to

    an axial load of P  = 18 kips.

    FIGURE P1.37

    Solution

    The angle    for the inclined plane is 60°. Thenormal force N  perpendicular to plane AB is

    found from

    cos (18 kips) cos 60 9.0 kips N P       

    and the shear force V  parallel to plane AB is

    sin (18 kips)sin60 15.5885 kipsV P       

    The cross-sectional area of the bar is (1.75 in.)(0.75 in.) = 1.3125 in.2, but the area along inclined plane

     AB is2

    21.3125 in./ cos 2.6250 in.cos60

    n A A    

     

    The normal stress  n perpendicular to plane AB is

    2

    9.0 kips3.4286 ksi

    2.6250 in3.43 ks

    .i

    n

    n

     N 

     A      Ans. 

    The shear stress  nt  parallel to plane AB is

    2

    15.5885 kips5.9385 ksi

    2.62505.94 ks

     ii

    n.nt 

    n

     A      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    46/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.38 A compression load of P  = 80 kips is applied to a 4 in. by 4

    in. square post, as shown in Figure P1.38/39. Determine the normalstress perpendicular to plane  AB  and the shear stress parallel to

     plane AB.

    FIGURE P1.38/39

    Solution

    The angle    for the inclined plane is 55°. The normal force N  

     perpendicular to plane AB is found fromcos (80 kips)cos55 45.8861 kips N P       

    and the shear force V  parallel to plane AB is

    sin (80 kips)sin55 65.5322 kipsV P       

    The cross-sectional area of the post is (4 in.)(4 in.) = 16 in.2, but the area

    along inclined plane AB is2

    216 in./ cos 27.8951 in.

    cos55n A A    

     

    The normal stress  n perpendicular to plane AB is

    2

    45.8861 kips1.6449 ksi

    27.89511.645 ksi

    in.n

    n

     N 

     A      Ans. 

    The shear stress  nt  parallel to plane AB is

    2

    65.5322 kips2.3492 ksi

    27.89512.35 ks

     ii

    n.nt 

    n

     A      Ans. 

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    47/53

    Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only

    to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

    P1.39 Specifications for the 50 mm × 50 mm square bar

    shown in Figure P1.38/39 require that the normal and shearstresses on plane  AB  not exceed 120 MPa and 90 MPa,

    respectively. Determine the maximum load  P   that can be

    applied without exceeding the specifications.

    FIGURE P1.38/39

    Solution

    The general equations for normal and shear stresses on an inclined plane in terms of the angle    are

    (1 cos2 )2

    n P  A

        (a)

    and

    sin22

    nt 

     P 

     A     (b)

    The cross-sectional area of the square bar is A = (50 mm)2 = 2,500 mm

    2, and the angle   for plane AB is

    55°.

    The normal stress on plane AB is limited to 120 MPa; therefore, the maximum load  P  that can besupported by the square bar is found from Eq. (a):

    2 2

    2 2(2,500 mm )(120 N/mm ) 911,882 N1 cos2 1 cos2(55 )

    n A P      

     

    The shear stress on plane AB is limited to 90 MPa. From Eq. (b), the maximum load P  based the shear

    stress limit is2 22 2(2,500 mm )(90 N/mm )

    478,880 Nsin 2 sin 2(55 )

    nt  A P    

     

     

    Thus, the maximum load that can be supported by the bar is

    max 479 kN P      Ans.

  • 8/20/2019 Mechanics of Materials Philpot 3rd Edition Solutions Manual

    48/53

    Excerpts from this work may be reproduced b