Top Banner

of 23

mechanical Magnetic Work and Thermodynamics

Apr 03, 2018

Download

Documents

Mani Pillai
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    1/23

    C H A P T E R 4

    M agnetic W ork andThermodynamics

    W e re ma rk e d in th e p r e v io u s c h a p te r t h a t o n e i s a b le t o e v a lu a t e t h e wo rkn e c e s s a ry t o b u i ld u p a c e r t a in c u r r e n t d i s t r i b u t io n in t h e p r e s e n c e o fma g n e t i c me d ia i f o n e k n o ws th e c o n s t i t u t i v e l a w , B(H) o r M (H) , o f t h eme d iu m. S e v e ra l me c h a n i s ms ma y a f f e c t t h e fo rm o f t h i s l a w , b u t t h e r ea r e t h r e e ma in t y p e s o f c o n t r ib u t io n s t h a t we c a n id e n t i f y : magne tos ta t i cef fects; v a r i a t i o n s o f f re e e n e rg y d u e to v a r io u s a to mic s c a le me c h a n i s m s ,like e x c hange or an i so t ropy ; an d e ne rgy d i s s ipa t ion beca use o f hys te res i s . Inth is chap te r we d iscuss the ro le o f magne tos ta t ic e f fec ts . They a re a lwaysp r e s e n t t o s o m e e x t e n t a n d r e p r e s e n t t h e s u b s t r a t e o n w h i c h w e c a nd e v e lo p a s e n sib l e d e s c r ip t io n o f a ll o th e r r e l e v a n t me c h a n i s m s . M a g n e -tos ta tic en e rgy i s, in an idea l ized sense m ad e p rec ise in Sec t ion 4 .1 .1 , them e c h a n i c a l w o r k s p e n t i n b u i l d i n g u p t h e f in a l m a g n e t i z a t i o n c o n f ig u r a -t i o n p i e ce a f t e r p i ec e , i n a w a y s imi l a r t o w h a t we d o w h e n w e c a l c u la t et h e e le c tr o st at ic e n e r g y o f a b o d y b y s u m m i n g u p t h e w o r k s p e n t t o b r i n gcharge a f te r cha rge f rom in f in i ty to the i r f ina l pos i t ion . The magne t icw o r k p e r f o r m e d o n a m a g n e t i c s y s t e m c a n b e e x p r e ss e d i n a n a t u r a l w a yin t e rms o f t h e v a r i a t i o n o f ma g n e to s t a t i c e n e rg y a n d o f a n o th e r t e rmtha t desc r ibes hys te res i s e f fec ts an d o the r in te rn a l p rocesses charac te r i s t ico f t h e me d iu m . I t i s o n th i s b a s i s th a t a p p ro p r i a t e t h e r m o d y n a m ic r e l a t io n sfo r magne t ic bod ies can be de r ived . Th is a spec t i s d i scussed in Sec t ion4 . 2 . Be c a u s e h y s t e r e s i s i s a n i n h e re n t ly o u t -o f - e q u i l i b r iu m p h e n o me n o n ,s o m e a t t e n t i o n t o n o n e q u i l i b r i u m t h e r m o d y n a m i c r e la t io n s s h a ll b e p a id .

    4 .1 M A G N E T I C W O R K A N D C O N S T I T U T I V E L A W SS e v e ral m e c h a n i s m s a r e e x p e c t e d to c o n t r ib u t e t o th e e n e rg y t r a n s fo rm a -t io n s t a k in g p l a ce i n a ma g n e t i c b o d y. I n t h is s e c tio n , w e s h o w h o w th e s e

    103

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    2/23

    104 CHAPTER 4. Magnetic W ork and Thermod ynamicsva r i ous con t r i bu t i ons can be l og ica l ly sepa ra t ed . Three m a i n s t eps w i l lbe t aken .

    ( i ) The body i s t r ea t ed a s an uns t ruc t u red a s sem bl y o f e l em en t a rym agne t i c m om en t s . A t t h i s s t age , one i s no t i n t e re s t ed i n t hed e t a i l s o f t h e m o m e n t a r r a n g e m e n t i n s i d e t h e b o d y o r i n a n ykind of in t e rac t ion tha t i s no t of m agn etos ta t i c or ig in . Two asp ec t scha rac t e r i ze t he sys t em : t he m agne t i za t i on spa t i a l d i s t r i bu t i onM (r ) and t he geom et r i ca l shape o f t he body . The ene rgy i nv o l vedin th i s l eve l of desc r ip t ion i s the m a g n e t o s t a t i c e n e r g y .

    ( i i ) In Sec t ion 3 .2 , the magnet i za t ion M(r) was t rea ted as a g ivenquan t it y , w i t h no a t t en t ion t o t he f ac t tha t i t m i gh t o r m i gh t no trepre sen t a rea li s ti c conf igu ra t ion rea l i zab le in prac ti ce . One goesb e y o n d t hi s d es c r ip t iv e a p p r o a c h , a n d a d d r e s s e s t h e p r o b l e m o fhow a ce r t a i n m agne t i za t i on d i s t r i bu t i on can be i nduced i n t hebody by app rop r i a t e ex t e rna l ac t i ons . By t he ene rgy r e l a t i onsde r i ved i n Sec t i on 3 .3 , one ca l cu l a t e s t he w ork pe r fo rm ed on am agne t i c bod y by ex t e rna l sou rces w he n a fi el d is c r ea ted i n t hereg i on occup i ed by t he body . Th is w o rk t u rns ou t t o be eq ua l t ot h e m a g n e t o s t a ti c e n e r g y w i t h t h e a d d i t i o n o f a n o t h e r c o n t r ib u -t i on , w h i ch desc r i bes t he i n t e rna l f ea t u re s t ha t m ake t he bodyd i f f e r e n t f r o m t h e u n s t r u c t u r e d m o m e n t a s s e m b l y p r e v i o u s l ycons i de red . The e s t i m a t e o f th i s con t r i bu t ion r equ i re s t he k now l -edge o f t he M (H ) r e l a t ionsh i p .( ii i) M (H) p lay s the role of c o n s t i t u t i ve l a w for the m ed ium . A c lassi fi -ca t i on can be m ade , on t he bas i s o f t he qua l i t a t i ve l y d i f f e ren tfea tures of the M(H) l aw observed in d i f fe ren t cases .

    4 . 1 . 1 A m a g n e t i c b o d y a s a n a s s e m b l y o f m a g n e t i c m o m e n t sM a g n e t o s t a t i c e n e r g y , i n t he sense d i scussed in th i s sec t ion , i s a proper tyt ha t can be a t t r i bu t ed t o a m agne t i c body , w hen t he body i s r ep re sen t eda s a n a s s e m b l y o f e l e m e n t a r y m a g n e t i c m o m e n t s , o f t h e t y p e d i s c u s s e din Sec t ion 3 .3 .2 , and i t i s assumed tha t magnetos ta t i c in t e rac t ions a ret he on l y r e l evan t m echan i sm . The m agne t os t a t i c ene rgy r ep re sen t s t hem e c h a n i c a l w o r k s p e n t t o b u i l d u p t h e b o d y b y b r i n g i n g i t s m a g n e t i cmoments , one a f t e r the o ther , f rom inf in i ty to the i r f ina l pos i t ion , asp ic tu red in F ig . 4 .1 . Of course there i s a s t ron g idea l i za t ion behin d th i sde f i n i t i on , and no one w ou l d even i m ag i ne bu i l d i ng up a p i ece o f i ron

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    3/23

    4.1 MAGNETIC WO RK AN D CONSTITUTWE LAWS 105

    Illl0FIGURE 4.1 . Bringing elemen tary mo m en t into place in a macroscopic body.

    i n t h i s w a y . Y e t , t h e i m p o r t a n c e o f t h i s a p p r o a c h w i l l b e r e c o g n i z e d i nS e c t io n 4.1 .2 , w h e r e i t w i l l b e s h o w n t h a t m a g n e t o s t a t i c e n e r g y n a t u r a l l ye m e r g e s a s o n e o f t h e t e r m s c o n t r i b u t i n g t o t h e to t a l m a g n e t i c e n e r g y o fa b o d y .

    I n t h e d e s c r i p t i o n o u t l i n e d , t h e m a g n e t i c b o d y c o n s i s ts o f a g re a t n u m -b e r o f e l e m e n t a r y m o m e n t s m i. B i i s t h e f i e ld c r e a t e d b y m i a n d ~ i Bi i s thet o t a l f i e l d c r e a t e d b y a l l m o m e n t s . L e t u s c o n s i d e r a c e r t a i n e l e m e n t a r yv o l um e AV o f t h e b o d y, la r ge e n o u g h t o c o n t a i n m a n y m o m e n t s . W e ar en o t i n t e r e s t e d i n t h e e x a c t d i s p o s i t i o n o f t h e m o m e n t s i n s i d e AV. A c t u a ll y ,w e a i m a t c h a ra c t e r iz i n g t h e s y s t e m s i m p l y i n te r m s o f t h e a v e r a g e m o -m e n t d e n s i t y M . A c c o r d i n g l y , w e c o n s i d e r t h e c a s e w h e r e t h e m o m e n t so c c u p y r a n d o m p o s i t i o n s i n s id e AV. L e t u s c o n s i d e r o n e o f t h e s e m o m e n t s ,s a y m 0. I ts p o t e n t i a l e n e r g y i n t h e f ie l d c r e a t e d b y t h e o t h e r m o m e n t s is ,a c c o r d i n g t o E q . (3 .7 7), - m 0 9~ i Bi. B e c a u s e it o c c u p i e s a r a n d o m p o s i t i o ni n s i d e AV, m 0 w i l l e x p e r i e n c e o n t h e a v e r a g e t h e f i e ld o b t a i n e d b y a v e r a g -i n g ~ i Bi over AV. Th i s &V-average ju s t g ives , in the s ense o f Eq . (3 .1 ) ,the rna~ np tnqta t ic f ip lc l R . , e raa tpcl hxr fha hnrlxr

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    4/23

    106 CHAPTER 4. Magnetic Work and Therm odynam ics

    of the o th e r m om en t s p re sen t in s ide A V. Ac cord ing to Eq . (3.25) , t h i sc o n t r i b u t i o n i s e q u a l t o 1

    2/z0 1 2/z03 AV ~ m i = T M (4.2)i e a VT h e a v e ra g e p o t e n t i a l e n e rg y o f m 0 i s t h u s

    U ~ 1 7 6 B M - s / z ~ (4.3)W h e n w e s u m u p t h e e n e rg i e s o f a ll m o m e n t s i n s id e A V, a n d t h e n w es u m u p t h e e n e r g i e s o f a l l e l e m e n t a r y v o l u m e s i n t h e b o d y , w e o b t a i nt h e f i n a l e n e rg y e x p re s s i o n

    I f ( a/z0 M ) dSr (4.4)U = - ~ M . BM 3V

    w h e r e t h e s u m o v e r t h e A V v o l u m e s h a s b e e n t r a n s f o r m e d i n to a s p a c e1i n t e g ra l o v e r t h e b o d y v o l u m e V, a n d t h e f a c to r 5 i s n e e d e d t o ta k e a c c o u n to f t h e f a c t t h a t e a c h m o m e n t c o n t r i b u t e s t w i c e t o t h e su m , o n c e a s f i e l ds o u r c e a n d o n c e a s t e s t m o m e n t .I t i s conven ien t to express U in t e rms o f H f i e lds ins t ead o f B f i e lds .The genera l re l a t ion BM = / ,60(H M if - M ) sh o w s t h a t BM - 2 / z 0 M / 3 =/z0(H M + M /3 ) . There fo re

    f 11"~ M 2 d 3 r (4.5)--" [do H M 9 M d g r - - - ~2 V VI f t h e s e c o n d t e rm o f E q . (4 .5 ) w e re t h e o n l y i m p o r t a n t o n e , t h o se m a g n e t i -z a t i o n c o n f ig u r a t io n s s h o u l d b e e n e r g y - f a v o r e d , w h e r e M is m a d e a sl a rg e a s p o s s ib l e i n e a ch e l e m e n t a r y v o l u m e , b y a l ig n i n g t h e e l e m e n t a r ym o m e n t s a l o n g a c o m m o n d i r e c t i o n . I n m o s t c a s e s , h o w e v e r , t h i s t e r mp l a y s a m i n o r ro le . I n p a r t ic u l a r , i n f e r ro m a g n e t i c m a t e r i a l s m o m e n t a l i g n -m e n t i s d i c t a t e d b y e x c h a n g e fo rc e s , d i s c u s se d i n C h a p t e r 5 , r a t h e r t h a nb y m a g n e t o s t a t i c i n t e r a c t i o n s . E x c h a n g e fo rc e s g i v e , i n t h e m e a n - f i e l da p p r o x i m a t i o n , a t e r m d e p e n d e n t o n M 2 , jus t as in Eq. (4 .5) , but wi th ap ro p o r t i o n a l i t y c o e f f ic i en t l a rg e r b y m o re t h a n t h r e e o rd e r s o f m a g n i t u d e .The re l evan t t e rm i s t he f i r s t t e rm o f Eq . (4 .5 ) . We sha l l t hus de f ine theb o d y m a g n e t o s t a t i c e n e r g y a s

    1The deriva tion of Eq. (4.2) is equivalent to the introduction of the so-called Lore n t z c av i tyf ield, because Eq. (3.25) requires that the field aroun d the mo me nt location be estimated byintegration over concentric spherical shells (see end of Section 3.1.3).

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    5/23

    4.1 MA GNE TIC WORK AND CONSTITUTWE LAWS 107

    t1"0 f M 2U M = U -}- - ~ d g r ( 4 . 6 )vtha t i s ,

    U M = - t1 "~ f H M 9 M d3r (4.7)2 vT h is e q u a t i o n c a n b e w r i t t e n i n t h e e q u i v a l e n t f o r m

    = /~ 0 f H 2 d 3 r ( 4 . 8 )where the in tegra l i s now ca lcu la ted over a l l space . Equat ion (4 .8 ) i sob ta ined by express ing , in Eq . (4 .7) , M as M = BM / /~ 0 - H M and by ex -p lo i t ing the f ac t tha t the in tegra l over a l l space of HM 9 BM van ishe s , as acons eq uence o f t he f act t ha t V . BM = 0 an d V H M = 0 ( see A p pen d i x C ).

    I n t h e c a s e o f a n e l l i p s o i d a l b o d y u n i f o r m l y m a g n e t i z e d a l o n g o n eof i t s pr incipal axes , Eq. (3 .49) and Eq. (4 .7) show that

    U M - - /1"~N M 2 (4.9)V 2w h e r e V is t h e b o d y v o l u m e . F o r a g i v e n d e m a g n e t i z i n g f ac to r N , th ee n e r g y d e n s i t y U M / V i s i ndependen t o f t he body s i ze , and f o r g i ven Mi t r e a c h e s i t s m a x i m u m v a l u e , ~}1VI2/2 , when N --- 1 (i.e. , a flat diskm agn e t i ze d a l ong i t s r evo l u t i on ax is ). In t he mor e gene r a l ca s e o f a r b i t r a r ymagne t i za t i on o r i en t a t i on , acco r d i ng t o E q . ( 3 . 54 )

    UM_I~Ov 2 ( N aM 2 + N bM ~ + N c M 2 ) (4.10)

    4.1.2 Energy conservation and magnetic workI n t h e s i t u a t i o n j u s t a n a l y z e d , t h e m a g n e t i z a t i o n o f t h e b o d y i s k n o w ni n advance . O n t h i s ba s i s , one t hen s t ud i e s t he p r ope r t i e s o f t he f i e l dgene r a t ed by t he g i ven con f i gu r a t i on . I n r ea l i t y , t he magne t i c s t a t e o ft he body i s no t a p r i o r i know n , bu t i s t he r e s u l t o f s ome ac t i on , l i ket he app l i ca t i on o f an ex t e r na l fi el d . T he cen t r a l p r ob l e m i s t o com pr e hen dt he gene r a l r e l a t i ons ex i s t i ng be t w een t he ex t e r na l f i e l d and t he ens u i ngm a g n e t i z a t i o n .

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    6/23

    108 CHAPTER 4 . Magnet ic Work and Therm odynam ics

    I n o r d e r t o d i s c u s s t h is p o i n t , w e s h a l l c o n s i d e r t h e s i t u a t i o n s k e t c h e di n F i g . 4 . 2 . W e h a v e s o m e s e t u p ( e . g . , a s o l e n o i d ) b y w h i c h w e p r o d u c em a g n e t i c f ie ld s . F i rs t, w e c o n s i d e r t h e c a s e w h e r e n o m a g n e t i c b o d i e s a r ep r e s e n t i n t h e r e g i o n a r o u n d t h e s e t u p . C e r t a i n c u r r e n t s j a f l o w i n t h es e t u p a n d c r e a t e i n e m p t y s p a c e t h e m a g n e t i c f i e l d B a = / z 0 H a, w h i c h w ecal l the a p p l i e d fi e l d . H a s a t i s f i e s t h e e q u a t i o n s

    V - H a - 0 (4 .11)V x H a = j a

    N o w w e i n s e r t s o m e w h e r e i n t h e s e t u p a m a g n e t i c b o d y a n d t h e n w es w i t c h o n t h e s a m e c u r r e n t s j a a s b e f o r e . T h e f i e ld c r e a t e d b y t h e c u r r e n t sw i l l i n d u c e a c e r ta i n m a g n e t i z a t i o n M i n t h e b o d y , n o t n e c e s s a r i ly u n i f o r m .L e t u s c o n s i d e r t h e m a g n e t o s t a t i c f ie l d H M c r e a t e d b y M , i n t h e s e n s ed i s c u s s e d i n S e c t i o n 3 .2 . H M o b e y s t h e s e t o f e q u a t i o n s

    V - H M = - V . M (4 .1 2)V X H M = 0

    D u e t o t h e l i n e a r it y o f M a x w e l l ' s e q u a t i o n s , t h e t o t a l H f ie l d e x i s ti n gw h e n t h e c u r r e n t s ja a r e f l o w i n g a n d t h e m a g n e t i c b o d y i s p r e s e n t i s j u s tg iven by the sum o f the so lu t ions o f Eq . (4 .11 ) and Eq . (4 .12 ) :

    H = H a + H M (4.13)a n d t h e c o r r e s p o n d i n g m a g n e t i c i n d u c t i o n i s

    B =/~0( H + M ) = ~0(Ha + HM + M) (4 .14)L e t u s s e e w h a t w e c a n s a y a b o u t t h e e n e r g y o f t h e b od y . W e w o u l d l ik et o d e r i v e s o m e e x p r e s s i o n e x p l ic i tl y d e p e n d i n g o n H a , a s th i s is th e f i e l dt h a t w e k n o w i n a d v a n c e a n d w e c a n c o nt ro l b y a d j u s t i n g th e m a g n e t i z i n g

    FIGURE 4.2 . Le ft : Setup creating ap plied f ield H a in em pty space. Right: Sam esetup in the presence of a magnetic body.

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    7/23

    4.1 MA GN ETIC W OR K AN D CONSTITUTIVE LAWS 109cur ren ts ja . On the o the r hand , Ha + H M , not H a, i s the f ie ld invo lved inth e p ro b le m , a n d th e ro le p o s s ib ly p l a y e d b y H a i s n o t o b v io u s .

    Th e l a w o f c o n s e rv a t io n o f e n e rg y is e x p re s se d b y th e P o y n t in g th e o -r e m (Eq. 3.85). Le t u s c o n s id e r t h e fo rm t a k e n b y th i s e q u a t io n w h e n th ein t e g ra t io n v o lu m e f~ e x t e n d s t o a ll sp a c e a n d th e P o y n t in g v e c to r f l o wc o n s e q u e n t ly g o e s t o z ero . Th e wo rk 8 L p e r fo rm e d b y th e e x t e rn a l e. m .f .sE ' in the shor t t ime in te rva l 8 t is

    8 L - 8 t f j a 9 E ' d gr = ~ H . 6 B d S r + 3 t ~ j 2 d S r (4.15)t rvw h e r e V i s t h e b o d y v o l u m e . L e t u s n o w s u p p o s e w e s w i t c h o n t h ema g n e t i z in g c u r r e n t s j a s o s lo wly th a t t h e e d d y -c u r r e n t d i s s ip a t io n j 2 / o ri n s id e t h e b o d y c a n b e n e g le c te d . 2 Th e w o rk e x p re s s io n th e n r e d u c e s t o

    3 L = f H 9 o13 d3 r (4.16)Eq u a t io n (4.1 6 ) d o e s n o t r e d u c e to z e ro wh e n n o m a g n e t i c b o d y i s p r e s e n t .In fac t , ene rgy i s spen t to c rea te the app l ied f ie ld even in empty space .Th i s e mp ty s p a c e e n e rg y i s a lwa y s t h e s a me fo r a g iv e n s e tu p a n d h a sno re la t ion to the spec i f ic p roper t ie s o f the magne t ic body . There fo re , i ti s a p p ro p r i a t e t o s u b t r a c t i t f r o m 8L, i n o rd e r t o h a v e a wo rk e x p re s s io nd e s c r ib in g th e e n e rg y m o d i f i c a ti o n s b ro u g h t a b o u t b y th e p r e s en c e o f th eb o d y . W e s h a l l t h u s d e f in e t h e r e l e v a n t ma g n e t i c wo rk a s

    8 L = ~ (H . o13 - / _ / , o H a 9 O C ~ a ) d 3 r (4.17)By ma kin g use o f Eq. (4 .13) and Eq . (4.14), th i s in teg ra l c an be expresseda s

    8L = / .to f r a 9 H M ) d 3 F + f l~ 3 f H M " b 'l- IM d 3 r 4 - ,U,of H - b ' l~ d 3 r ( 4 . 1 8 )The in tegra l over a l l space o f H a 9 H M is ze ro , beca use V 9 H a -- 0 an dV x H M = 0 (s ee Ap p e n d ix C) . On th e o th e r h a n d ,

    [.1, f H M 9 o I " IM d 3 r = r M (4.19)w he re UM is the m agn e tos ta t ic ene rgy , de f ined b y Eq . (4 .8) . There fo re wec o n c lu d e th a t

    t~L = t~UM 4 - / , t o ~ H . b 'M d 3 r (4.20)./v

    2The precise condit ions under which this approximation is acceptable wil l be discussedin Chapter 12. In any case, this assumption implies that any eddy-current dissipat ion thatkeeps on giving an appreciable contr ibut ion under arbi t rar i ly slow exci tat ion rate shouldnecessarily be included in the B(H) constitutive law (see also Section 3.3.4).

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    8/23

    110 CHAPTER 4. M agne tic W ork and Thermodynamicswh ere n ow the in tegra l is ca lcula ted over the bod y vo lum e V only , beca useM = 0 in outer space . Equ at ion (4.20) can be expressed in an a l te rna t iveinterest ing form by consider ing that , according to Eq. (4.7) ,

    r = - ~ f H M" 6 M d g r - ~ f M 9 O~ = - r o o f HM " o~(4.21)

    where the las t equal i ty der ives f rom the appl ica t ion of the rec iproc i tytheorem s of App end ix C. By inser t ing Eq. (4 .21) in to Eq. (4 .20) and bytakin g into a ccou nt Eq. (4.13) , w e obtain8L = 1~o [ H a " b'M dSr (4.22)

    dvBo th Eq. (4.20) an d Eq. (4.22) are re m arka ble. Eq. (4.22) satisfies our initialrequi rem ent , to f ind a wo rk express ion co nta in ing the app l ied f ie ld H a,even i f th i s is not the t rue f ie ld involved in the problem. Equ at ion (4.20) ,on the o the r hand , g ives t he decompos i t i on o f t he magne t i c work in tomagn e tos t a ti c ene rgy and an add i t i ona l te rm, dep end en t on the ma te r ia lconst i tut ive law, M(H).

    4 . 1 . 3 C o n s t i t u t i v e l a w sThe v alue of Eq. (4.22) l ies in the fact that i t expresses the w or k 8Lin terms of quant i t ies of direct physical interest : the appl ied f ie ld Ha,which descr ibes the ac t ion of ex terna l sources independent ly of thep rope r t i e s o f t he body , and the magne t i za t ion M, wh ich cha rac t e r i ze sthe m agnet ic s ta te of the body. N ote tha t , i f H a i s uni form in theregion occupied by the body, then i t can be taken out of the in tegra land Eq. (4 .22) becom es

    ~ L = ] z 0 H a 9 8In ( 4 . 2 3 )w h e r e

    m = f M(r) d3r (4.24)v

    i s the to ta l magnet ic moment of the body.O n the oth er ha nd , the interest of Eq. (4.20) l ies in the fact that i t show sthe va r ious fo rms in wh ich ene rgy m ay be s to red in the sys tem. The mag ne -tos ta t ic energ y U M ac ts as a sor t of bac kgr ou nd energy , de te rm ined by thespa t ia l d i s tr ibut ion of m agne t iza t ion an d by the geom etr ica l shape of the

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    9/23

    4.1 MA GN ETIC W OR K AN D CONST1TUTWE LAWS 111b o dy . A d d i t i o n a l p r o c e ss e s o r d e v ia t i o n s f ro m t h e a s s u m p t i o n s m a d e i nthe ca lcu la t ion o f U M c o n t r ib u t e t o t h e e n e rg y b a l a n c e t h ro u g h th e t e rm

    8 L - r M -- [-~0~H " 3 M d 3r (4.25)v

    Ac c o rd in g to Eq. ( 4 .2 5 ), t h e e n e rg y s to r e d th ro u g h th e v a r io u s i n t e rn a lme c h a n i s ms a c t in g in t h e me d iu m i s r e f l e c t e d in t h e c o n s t i t u t i v e l a wM (H) . C o n s e q u e n t ly , q u a l i t a t i v e ly d i f f e re n t M (H ) c u rv e s c a n b e e x p e c t e d ,and the d i f fe rences obse rved may se rve as a bas i s fo r the c lass i f ica t iono f ma g n e t i c me d ia . Th e k e y wo rd s a r e , i n t h i s r e s p e c t , d i a m a g n e t i s m ,p a r a m a g n e t i s m , a n d f e r r o m a g n e t i s m . T h e ma in f e a tu r e s o f t h e s e k in d s o fb e h a v io r a r e s u mma r i z e d in F ig . 4 . 3 .

    FIGURE 4.3 . Co nstitutive law s for different kin ds of m agne tic behavior.

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    10/23

    1 1 2 CHAPTER 4. Magnetic Work and Therm odyna micsD i a m a g n e t i s m . I n a d i amagne t i c s ubs t ance , t he l i nea r l aw M = xH ho l ds ,w i t h a nega t i ve s u s cep t ib i li ty . T he e f f ec t is ex t r eme l y s m a l l and l eads t ovalues of I ;~ of the order of 10 -6 to 10-5. S t r ic t ly s p eak i ng , d i a m ag ne t i s md o e s n o t f al l w i t h i n t h e f r a m e w o r k o f o u r d e s c r i p t io n o f m a g n e t i c m e d i aa s a s s e m b l ie s o f p e r m a n e n t m a g n e t i c m o m e n t s . D i a m a g n e t i s m a r i se s fr o mthe fac t tha t , in the presen ce of an ex te rn a l f i eld , o rb i t a l e lec t rons in a to m smod i f y t he i r mo t i on i n a w ay t o s h i e l d t he ex t e r na l f i e l d . I n a s ens e ,d i a m a g n e t i s m i s a m i c r o s c o p i c m a n i f e s t a t i o n o f L e n z ' s l a w , a l t h o u g h aq u a n t u m m e c h a n i c a l t r e a t m e n t i s n e c e s s a r y i n o r d e r t o c a r ry o u t a s a t is fa c -t o r y a na l y s i s o f the p r o b l em. T he f ac t t ha t X i s nega t i ve i m p l i e s t ha t t heco r r e s pon d i ng ene r g y i n t eg r a l i n E q . (4 .25) is a ls o nega t i ve . H ow eve r , t h i sd o e s n o t m e a n t h a t e n e r g y i s r e l e a s e d b y t h e s y s t e m . A c c o r d i n g t o E q .(4.17), 8 L r e p r e s e n t s t h e w o r k d o n e i n a d d i t i o n t o t h e w o r k n e c e s s a r y t oc r ea t e t he app l i ed f i e l d i n emp t y s pace . I n a d i amagne t i c s ubs t ance , t het o t a l w o r k p e r f o r m e d i s l e s s t h a n t h e w o r k p e r t a i n i n g t o e m p t y - s p a c e ,bu t i t i s s ti ll pos i ti ve . S t a r t i ng f r om t he f ac t t ha t m agne t i c w o r k i s g i ve ni n gene r a l by H 9 313 (Eq . (4 .16)) , th er m od yn am ic s tab i l i ty on ly r equ i restha t , in a l inear m e d iu m w he re B = ~ H an d M = ,u ]z >-- 0 , tha t i s,,~' >-- - 1 (se e E q. (4.37)).P a r a m a g n e t i s m . P a r a m a g n e t i c s u b s t a n c e s a r e c h a r a c t e r i z e d b y a l a w t h a ti s l inear a t low f ie lds, M = xH , wi th p os i t ive susce pt ib i l i ti es o f the o rde rof 10 -3 to 10 -5 De via t ion s f rom the l inear l aw take p lace a t ver y h igh f i e ldsw h er e t he e f fec t s a t u r a t e s. A t yp i ca l o r de r o f m ag n i t u de m ay be 10 s A m -1a t r o o m t e m p e r a t u r e . P a r a m a g n e t i s m is t h e m a n i f e s t a t io n o f t h e e x is te n c eo f p e r m a n e n t m a g n e t i c m o m e n t s i n m a t t e r . P a r a m a g n e t i c s u s c e p t i b i l i t yi s t he r e s u l t o f t he compe t i t i on be t w een t he ac t i on o f t he ex t e r na l f i e l d ,w h i ch t r i e s t o a l i gn al l m om en t s a l on g i ts d ir ec t ion , and t he r m a l ag i t a t i on ,w h i c h t e n d s t o d e s t r o y a n y a l i g m n e n t p o s s i b l y p re s e n t. S o m e c o n s i d e ra -t i o n s o n p a r a m a g n e t i s m a r e m a d e a t t h e b e g i n n i n g o f C h a p t e r 5 , w h e r eW ei s s mean f i e l d t heo r y o f f e r r omagne t i s m i s d i s cus s ed .F e r r o m a g n e t i sm . T h e bas i c fi nge r p r i n t s o f f e r r om agn e t i s m a r e t he ex i s tenceo f a s p o n t a n e o u s m a g n e t i z a t i o n a n d h y s te r e si s. A f e r r o m a g n e t i c s u b s t a n c ecanno t be cha r ac t e r i zed by any s i mp l e , s i ng l e - va l ued cons t i t u t i ve l aw ,and an i n f i n i t e s e t o f d i f f e r en t magne t i za t i on cu r ves can be obs e r ved ,d e p e n d i n g o n p a s t f i e l d h i s t o r y . T h e s e a s p e c t s h a v e a l r e a d y b e e n a d -d r e s s ed i n chap t e r s I an d 2 , and w i l l be t he s ub j ec t o f de t a i l ed d i s cus s i oni n s ubs equen t chap t e r s . I n f e r r omagne t i c ma t e r i a l s , t he p r i nc i pa l mecha -n i s m s d e t e r m i n i n g t h e m a t e r ia l c o n s t it u t iv e l a w a r e e x c h a n g e a n d a n i so t -r opy , t o be d i s cu s s ed i n C h ap t e r 5 . T hes e m ech an i s m s a r e r e s pons i b l e f o rt h e f o r m a t i o n o f m a g n e t i c d o m a i n s . T h e c o n s t it u t iv e l a w M ( H ) d e s c r ib e st he ma t e r i a l on a g r os s s ca l e , l a r ge r t han t ha t o f doma i ns . O n t h i s s ca l e ,t h e d o m a i n s t r u c t u r e i s n o l o n g e r a p p r e c i a t e d a n d t h e m a t e r i a l a p p e a r s

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    11/23

    4.1 MA GNE TIC WORK AND CONSTITUTWE LAWS 113t o b e h o m o g e n e o u s . 3 W e s t re s s o n c e m o r e t h a t t h e e n e r g y c a l c u la t e df r om E q . ( 4 . 25 ) i s no t neces s a r i l y s t o r ed i n t he med i um by r eve r s i b l em echa n i s m s . I n gene r a l, pa r t o f i t w i l l be t r ans f o r m ed i n t o t he r m a l ene r gybecause of hys te res i s e f fec t s , a f ac t tha t i s r e f l ec ted in the h i s to ry-depen-d e n t , m u l t i b r a n c h n a t u r e o f M ( H ) .

    I t i s w or t h po i n t i ng ou t t ha t i n th i s boo k w e a r e u s i ng t he exp r e s s i onf e r r o m a g n e t i c m a t e r i a l or m a g n e t ic m a t e r ia l t o r ef e r gene r i ca l l y to a ny m a t e -r i a l w h e r e s p o n t a n e o u s m a g n e t i z a t i o n a n d h y s t e r e s i s a r e o b s e r v e d . W ei gno r e t he f ac t t ha t t he s pon t aneous magne t i za t i on a r i s e s f r om l o n g - r a n g eo r d e r i n g o f t h e m a g n e t i c m o m e n t s a n d t h a t t h i s l o n g - r a n g e o r d e r c a n b echa r ac t e r i zed by d i f f e r en t s pa t i a l s ynm~ e t r i e s . T hus w e w i l l encompas su n d e r t h e s a m e t e r m o r d i n a r y f e r r o m a g n e t s , w h e r e i d e n t i c a l m o m e n t soccupy a s i ng l e l a t t i c e and a r e a l l a l i gned a l ong t he s ame d i r ec t i on , a sw e l l a s f e r r i m a g n e t s , w h e r e m o m e n t s p o i n t a l o n g d i f fe r en t d i re c ti o n s, d e -p e n d i n g o n w h i c h s u b la t ti c e t h e y b e l o n g t o , a n d t h e t ot a l s p o n t a n e o u sm a g n e t i z a t i o n i s t h e r e s u lt o f c o m p e t i n g c o n t r ib u t i o n s c o m i n g f r o m v a r i -ous s ub l a t t i c e s . I n add i t i on , no t h i ng w i l l be s a i d abou t a n t i f e r r o m a g n e t s ,w h er e t he s ub l a t ti c e con t r i bu t i ons exac t l y cance l ou t , s o tha t t he me d i u m ,i n s p i t e o f l ong - r ange o r de r i ng , exh i b i t s no s pon t aneous magne t i za t i onat al l .A f t e r t he s e cons i de r a t i ons , i t i s app r op r i a t e t o recons i de r t he exam pl e ,p r e s e n t ed i n Fig . 1.5 , o f t he dep end enc e o f m agn e t i za t i on cu r ves on geom -e tr y. F i gu r e 4.4 r ep r e s en t s t he ex pec t ed o u t com e o f an exp e r i m en t w h e r e ,s t a r t i ng f r om t he demagne t i zed s t a t e , w e app l y a ce r t a i n f i e l d H a t o t her i n g s p e c i m e n a n d t o t h e h o r s e s h o e s p e c i m e n , m a d e u p o f t h e s a m emagne t i c ma t e r i a l . T he f i e l d and t he magne t i za t i on bo t h l i e a l ong t hes pec i m en ax i s i n bo t h ca se s . T hus , t he mag ne t i z a t i on cu r ve a nd a ll ene r g yr e l a t i ons can be exp r e s s ed i n t e r ms o f t he app l i ed f i e l d i n t ens i t y H a a n dt h e a v e r a g e m a g n e t i z a t i o n i n t e n s i t y i n t h e s a m p l e v o l u m e ,

    1(M) = ~ f ]M(r)l d 3r (4.26)v

    T he t w o magne t i za t i on cu r ves exh i b i t ev i den t d i f f e r ences . T he r ea s onbecomes c l ea r w hen w e cons i de r t he s haded a r ea s o f F i g . 4 . 4 , w h i ch ,acco r d i ng t o E q . ( 4 . 22 ) , a r e p r opo r t i ona l t o t he magne t i c w or k pe r -f o r med on t he s y s t em. I n t he ca s e o f t he r i ng s pec i men , M f l ow s a l ongt he r i ng by a p r ac t i ca l l y d i ve r gence - f r ee pa t h , s o t ha t , w i t h V - M ~ 0 ,H M ~ 0 , an d H a ~ H . Th ro ug h Eq. (4 .25), the w or k p er f or m ed i s d i r ec t lyr e l a t ed t o t he p r ope r t i e s o f t he M ( H ) cons t i t u t i ve l aw , becaus e U M ~ 0 .

    3This poin t was already considered in Section 1.1.3 and Section 3.3.4.

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    12/23

    114 CHAPTER 4. Magnetic Work and Therm odynam ics

    FIGURE 4.4. Influence of geom etry on magn etization curves and on wo rk per-formed on the system (shaded areas) .I n t he ca s e o f t he ho r s e s hoe s pec i men , on t he con t r a r y , magne t i c cha r gesa r e fo r m e d a t th e s p e c i m e n e d g e s , w h i c h e n t a il s ig n i fi c a n t d e m a g n e t i z i n ge ff ec ts a n d t h e p r e s e n c e o f a n i m p o r t a n t m a g n e t o s t a t i c e n e r g y c o n t r ib u -t i on . A cco r d i ng t o E q . ( 4 . 20 ) , t he g r ea t e r w or k needed t o magne t i ze t hes p e c i m e n is a d ir e c t m e a s u r e o f t h e e n e r g y s t o r e d a s m a g n e t o s t a t ic e n e r g y .T h i s a n a ly s i s s u g g e s t s th a t o n e m i g h t t r y s o m e c o r r e c ti o n to t h e m a g n e -t i za t i on cu r ve o f t he ho r s e s ho e s pe c i men , i n o r de r t o ex tr ac t t he M ( H ) cons t i -t u t iv e la w . T o t h is e n d , a n i n d e p e n d e n t e s t i m a t e o f d e m a g n e t i z i n g e ff ec tsi s necessary . This i s in p r inc ip le poss ib le i f the spec imen i s o f e l l ipso ida ls hap e a nd i f i t is un i f o r m l y m agn e t i zed . I n t h i s ca s e, in fac t, w e kn ow f r omS ec t ion 3 .2 .3 t ha t t he d em ag ne t i z i ng f ie l d is a ls o un i f o r m i n s i de t he s pec i -m e n a n d is e q u a l t o - N M , w h e r e N i s a k n o w n f u n c t io n o f t he s p e c i m e ng e o m e t r y . T he r e fo r e, g i v e n t h e m e a s u r e d c u r v e M (H ~ ) , w e o b t a i n t h e m a t e -r ia l c o n st i tu t i v e l a w s i m p l y b y p l o t t in g M ( H a - N M ) . T h e s h o r t c o m i n g o ft h i s a p p r o a c h i s t h a t t h e t w o m e n t i o n e d r e q u i r e m e n t s - - e l l i p s o i d a l s h a p ea n d u n i f o r m m a g n e t i z a t i o n ~ a r e q u i t e i d e a l i z e d a n d u s u a l l y d i f f i c u l t t om ee t i n p r ac ti ce . A s a cons equenc e , co r r ec t ions f o r dem agn e t i z i n g e f fec tsm ay l ead t o un r e l i ab l e r e s u l ts , if no t t r ea t ed w i t h a t t en t ion .

    T h e s i m p l e s t c o n s t i t u t i v e l a w t h a t o n e m a y i m a g i n e i s p r o b a b l y t h eo n e w h e r e H = 0 e v e r y w h e r e i n s i d e t h e b o d y . T h e m a t e r i a l i s n o t a b l e

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    13/23

    4.2 THERM ODY NAM IC RELATIONS 115to sus ta in any in te rna l p ressure exer ted by H and acqu i res a ma gne t iza t ionun de r w ha tev er smal l value of H (Fig . 4 .5) . This ideal ized case is them agn etosta t ic equ ivalen t of a perfect conductor , wh ere the externa l e lec t ricf ie ld is fu l ly shie lded by an appropr ia te d is t r ibut ion of e lec t r ic chargesa t the body sur face . Under these c i rcumstances , a l l the work pe r fo rmedon the system is s tored as magnetosta t ic energy. Descr ipt ions of th is k indm ay be use fu l a s a s impl i f ied appro ach to so f t mag ne t ic m ate r ia l s , wh ichare eas i ly magnet ized under smal l f ie lds . In par t icular , they wil l be em-p loyed in Chap te r 12 , to s tudy ce r ta in aspec t s o f magne t ic losses . Note ,how ever , tha t the cond i t ion H = 0 m us t necessa r i ly fa il w he n the m ate r ia lapproaches sa tu ra t ion .

    4 .2 T H E R M O D Y N A M I C R E L A T IO N SThe der iva t ion o f a su i tab le express ion fo r the ma gne t ic wo rk , d i scussed inthe prev ious sect ion, i s the s tar t ing poin t for the analysis of the ther m od y-namic p roper t i e s o f magne t ic media . Th is ana lys i s i s compl ica ted by thepresence o f hys te resi s , which can on ly be t r ea ted in the f rame of nonequi l ib -r ium the rmodynamics . We sha l l f i r s t a ssume tha t hys te res i s phenomena

    FIGURE 4.5 . Ideal step like con stitutive law a nd corresponding magn etizationcurve in the presence of demagnetizing effects.

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    14/23

    116 CHAPTER 4. Magnetic Work and Thermodyn amicsa re absen t and w e sha ll de r ive t he rm odyn am i c r e la t ions t ha t w o u l d app l yi f the sy s tem were a lway s in equi l ib r ium, tha t i s, i f i t had as cons t i tu t ive l awthe anhys te re t i c magnet i za t ion curve . Then we wi l l comple te the p ic tureby ad d i ng f ea tu re s typ ica l of noneq u i l i b r i um t he rm odyn am i cs . A c ruc ia laspec t in th i s respec t is , how ever , t ha t non equ i l ibr ium therm ody nam ics i scom m only base d on the so-ca ll ed pr inc ip le of loca l equi l ib r ium, s t a t ing tha tt he rm odynam i c equ i l i b r i um re l a t i ons can be app l i ed t o each e l em en t a ryvolum e, ev en tho ug h the sys tem i s no t g loba l ly in equi l ib r ium. Thi s hyp oth-es is has to be a ban do ned i f hys te res i s i s a l ready rooted in the cons t i tu t ivel aw d esc r i b ing t he behav i o r o f each e l em en t a ry vo l um e .

    4.2.1 Thermodynamic potentialsW e beg i n w i t h a b r ie f sum m ary o f t he p r inc i pa l t he rm odyn am i c r e la t ionsva l id for a gener i c sys tem wi th homogenous proper t i es . La te r , we wi l lspecial ize this descript ion to the magnet ic case.F i r s t la w o f t h e r m o d y n a m i c s . This l aw expresses the conserva t ion of energyand s t a t e s t ha t , unde r a gene r i c t r ans fo rm a t i on w here w ork 8 L i s per-fo rm ed on t he sys t em and hea t 8 Q i s abso rbed by i t ,

    d U = 8 L + 8 Q (4.27)where U, the i n t e r n a l e n e r g y , i s a s t a t e func t ion . We assume tha t the work8 L can be exp res sed i n t e rm s o f t w o approp r i a t e c o n j u g a t e w o r k v a r i a b l e s ,H and X, accord ing to the express ion

    8 L = H d X (4.28)X i s a s t a t e var i ab le , descr ib ing some proper ty of the sys tem, and Hcharac te r i zes the ex te rna l ac t ion exer t ed on the sys tem.S e c o n d la w o f t h e r m o d y n a m i c s . This l aw in t rod uces a second s t a t e func tion ,the e n t r o p y S , which , g iven any revers ib le or i r revers ib le t ransformat ion ,always sat i sf ies the inequal i ty

    >_ - ~ (4.29)S 1The equa l s ign appl i es to revers ib le t ransform at ions . In tha t case one has

    8 Q = T d S (4.30)There i s a nice symmetry between Eq. (4.28) and Eq. (4.30) . T and Sare conjuga te var i ab les wi th respec t to thermal energy in the same way

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    15/23

    4.2 THE RM OD YNA MIC RELATIONS 117a s H a n d X a r e c o n ju g a t e v a r i a b l e s w i th r e s p e c t t o t h e e n e rg y c o min gf ro m e x te rn a l wo rk . T a n d H a r e i n t e n s i v e v a r i ab l e s , w h e re a s S a n d X ar ee x t e n s i v e ones .T h e r m o d y n a m i c p o t e n t i a l s . T h e r m o d y n a m i c t r a n s f o r m a t i o n s c a n t a k e p l ac eu n d e r v a r io u s c o n s t r a in t s , l i k e c o n s t a n t t e mp e ra tu r e , c o n s t a n t e n t ro p y ,a n d s o o n . Th e c o n s t r a in t w i l l i n g e n e ra l c o n c e rn b o th e x t e rn a l wo rka s p e c t s a n d th e rma l e n e rg y a s p e c t s , a n d w i l l c o r r e s p o n d to f i x in g o n evar iab le in each o f the (T ,S) an d (H,X) se ts . Give n a con s t ra in t , one cani n t r o d u c e a c o r r e s p o n d i n g t h e r m o d y n a m i c p o t e n t i a l , tha t i s, a s ta te fun c t ionc o n t ro l l i n g h o w th e t r a n s fo rma t io n w i l l e v o lv e . Th e re a r e f o u r p o s s ib l ec h o ic e s for t h e c o n s t r a in t v a ri a b le s , s o fo u r t h e rm o d y n a m ic p o te n t i a ls c a nb e d e f in e d . Th e y a r e t h e i n t e r n a l e n e r g y U ( X , S ) , th e e n t h a l p y E ( H , S ) , t h e

    f r e e e n e r g y F ( X ,T ), a n d t h e G ib b s f u n c t i o n G ( H ,T ). Ea c h o f t h e m h a s t h ep ro p e r ty t h a t it n e v e r i n c re a s e s i n a n y t r a n s fo rm a t io n wh e re i t s a rg u m e n t sa re k e p t f ix ed . T h e r m o d y n a m i c e q u i l ib r i u m i s r e a c h ed w h e n t h e a p p ro -p r i a t e t h e r m o d y n a m ic p o te n t i a l a t ta in s it s g lo b a l m in im u m . W e a r e i n t er -es ted , in pa r t icu la r , in the p rope r t ie s o f the po ten t ia l s fo r t rans f o rm at ion su n d e r c o n s t a n t t e m p e r a t u r e .F r e e e n e r g y F ( X , T ) . This func t ion i s a l so ca l led the H e lm h o l t z f u n c t i o n orH e l m h o l t z f r e e e n e r g y . I t i s de f ined as

    F = U - TS (4.31)Eq u a t io n (4. 27 ) t h ro u g h Eq . ( 4.2 9 ) s h o w th a t

    d F

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    16/23

    118 CHAPTER 4. Magnetic W ork and ThermodynamicsThus , d G < - 0 under cons tant H and T. At equi l ibr ium

    [O~H = - X [O~T = - S (4.36)T H

    A spontaneous t ransformat ion can only take p lace when the sys temis in i tia lly not in equi l ibr ium. The none qui l ibr ium condi t ion i s descr ibedby o ther in te rna l var iab les , in addi t ion to the cons t ra ined ones , whichmay be space -dependen t and which evo lve in t ime un t i l t hey r each theva lue for wh ich the therm ody nam ic potent ia l a t ta ins it s g loba lly m in im umvalue . Once the sys tem is in equi l ibr ium, any sp ontane ous f luc tua t ion inthe sys tem proper t ies necessar i ly leads to a nonnegat ive var ia t ion of thepotent ia l . For example , any spo ntaneo us f luc tua t ion 8 X or 8S un der con-stant H an d T m us t be such th at 8(3 ~ 0. This s tabi l i ty req uirem ent lea dsto useful inequal i t ies . In par t icular , i t can be shown that , a t equi l ibr ium,

    [ 0 ~ ] ~ 0 (4.37)T

    By derivin g Eq. (4.33) w ith respect to X an d Eq. (4.36) w ith respect to Hand by m ak ing use of Eq. (4.37) , one also f inds that , a t equi l ibr ium ,[ 0 2 G ][ 0 2 F 1 > 0 l _ - ~ _ ] < 0 (4.38)

    [ c ~ X a ] T - - T - -which shows tha t F i s a lways a convex func t ion of X and G a concavefunct ion of H.

    4 .2 .2 Thermodynamic potent ia l s for magnet ic mediaLet us now cons ider a mag net ic sys tem subject to transforma t ions du r ingwhich the body vo lume r ema ins unchanged . Th i s means tha t we ignorea ll t hose phen om ena where the vo lum e m ay change a s a consequence o fchanges in tempera ture ( thermal expans ion) or magnet ic f ie ld (magneto-s tr ic t ion) . Therm ody nam ic re la t ions can be wr i t ten once we have a su i tab leexpression for the magnet ic work. This is given in general by Eq. (4.16) ,wh ich involves as conjugate var iab les B and H. Yet , we prefer to baseou r ana lysis on Eq. (4.23) , wh ich is par t icu lar ly sui ted to descr ibe typicals i tuat ions en cou ntere d in m agne t ic experim ents . We recal l that this expres-s ion holds w hen the appl ied f ie ld H a i s uni form over the bod y v olum eand when la rge-sca le eddy-cur rent d i ss ipa t ion i s neglec ted . In addi t ion ,i t does not inc lude the energy tha t would be spent to c rea te the appl ied

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    17/23

    4.2 THERM ODY NAM IC RELATIONS 119

    f ie ld i n e m p t y s p a ce . T h e m a g n e t i c m o m e n t / . t o m a n d t h e f ie ld H a ar e th ev e c t o r a n a l o g u e o f t h e q u a n t i f i e s X a n d H i n t r o d u c e d i n t h e p r e c e d i n gs e c ti o n , a n d p l a y t h e r o le o f s t a te v a r i a b l e a n d e x t e r n a l p a r a m e t e r .W e a r e m a i n l y i n t e r e s t e d i n m a g n e t i c t r a n s f o r m a t i o n s w h e r e t h e s y s -t e m i s i n c o n t a c t w i t h a t h e r m a l b a t h a t c o n s t a n t t e m p e r a t u r e , a n d w es h a l l t h e n c o n c e n t r a t e o n H e l m h o l t z a n d G i b b s f r e e e n e r g y , F ( m , T ) a n dG(H,T) . For F , we have

    d E ~ - / . t 0 H 9 d m - S d T (4.39)T h e e x p e r i m e n t e r , h o w e v e r , u s u a l l y p r e f e r s to d e a l w i t h s i tu a t io n s w h e r et h e a p p l i e d f i e l d , r a t h e r t h a n t h e m a g n e t i z a t i o n , i s u n d e r c o n t r o l . T h eG i b b s f r e e e n e r g y

    G = F - ~0H a . m (4.40)i s t hen t he po t en t i a l o f i n t e re s t . G sa t i s f i e s t he i nequa l i t y

    d G

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    18/23

    120 CHAPTE R 4. Magnetic W ork and Thermody namicsTh i s s h o ws th a t we c a n e s t ima te t h e two p o te n t i a l s f r o m a p lo t o f t h ema te r i a l c o n s t i t u t iv e l a w . I n Fig . 4 .6 , w e h a v e r e p re s e n te d a ma g n e t i z a t i o nc u rv e w h e r e b o th H a a n d m p o in t a lo n g th e s a m e d i r e ct io n . Th e v a r i a t i o n so f F a n d G a r e r e p re s e n te d b y th e a r e a s d e l im i t e d b y th e ma g n e t i z a t i o nc u rv e a n d th e m o r H a a x es . Re m e m b e r t h a t t h i s c o r r e s p o n d e n c e h o ld so n l y i f t h e s y s t e m i s i n t h e r m o d y n a m i c e q u i l i b r i u m a t e a c h p o i n t o ft h e t r a n s f o r m a t i o n , w h i c h m e a n s t h a t t h e m a g n e t i z a t i o n c u r v e m u s t b er e v e rs ib le , a n d d i s s ip a t io n d u e to h y s te r e s i s mu s t b e a b s e n t o r n e g l ig ib le .

    4.2.3 Nonequilibrium thermodynamicsTh e id e a o f i r re v e r s ib i l it y is r o o t e d in e q u i l i b r iu m th e rm o d y n a m ic s i t se lf .I n f a c t , t h e s e c o n d l a w o f t h e rmo d y n a mic s , s t a t i n g th a t t h e e n t ro p y o f ath e rm a l ly i s o l a te d s y s t e m n e v e r d e c r ea s e s , id e n t i fi e s t h e d i re c t io n in w h ic ha s y s t e m n o t i n e q u i l i b ri u m w i l l s p o n t a n e o u s l y e v o lv e . In n o n e q u i l i b r i u mt h e r m o d y n a m i c s , e n t r o p y i s a q u a n t i t y t h a t m a y f l o w i n s p a c e a n d m a yb e c r e a t e d , a n d th e s e c o n d l a w o f t h e rmo d y n a mic s i s r e in t e rp r e t e d a s a ne n t ro py b a l anc e e qua t ion . Eq u a t io n (4.2 9 ) b e c o m e s

    - - " r S i f- r S - - - - ~ - J r - r S (4.46)Sw h e r e 8eS r e p re s e n t s t h e e n t ro p y f lo win g in to t h e s y s te m, wh i l e 8iS is thee n t ro p y p ro d u c e d in s id e th e s y s t e m b y i r re v e r s ib l e p ro ce s s es . I n th i sf r a m e w o r k t h e s e c o n d l a w o f t h e r m o d y n a m i c s i s e q u i v a l e n t to t h e s ta t e-m e n t t h a t t h e e n t r o p y p r o d u c ti o n i s a lways pos i t ive :

    r S ~ 0 (4.47)

    FIGURE 4.6 . Helm holtz and G ibbs free energy estimated from reversible magn eti-zation curve.

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    19/23

    4.2 THERMO DYNAM IC RELATIONS 121

    where the equal s ign holds in the l imi t ing case of a pure ly revers ib lep rocess. The cen tr a l p rob l em o f noneq u i l i b r i um t he rm odyn am i cs is t hep red i c t i on o f t he dependence o f 8iS on the var ious i r revers ib le processesposs ib ly t ak ing p lace in the sys tem.

    Equat ion (4 .46) i s an in tegra l re l a t ion apply ing to the sys tem as awhole . Yet, w he n the sys tem i s no t in equi l ib r ium , one expec t s in genera li t s p roper t i es to be space- t ime dependent , and var ious re l axa t ion anddi f fus ion processes to t ake p lace whi l e equi l ib r ium i s approached . Thi si s t rea ted by in t roducing loca l dens i t i es of the var ious thermodynamicquant i t i es of in t e res t , and by wr i t ing loca l ba lance equat ions for thesedens i ti es . The descr ip t ion can become fa i rly compl ica ted , because in gen-era l there a re severa l ba lance equat ions to be s imul t aneous ly fu l f i l l ed ,re l a t ed to conse rva t ion of mass , energy , m om en tum , and so on . We arenot go ing to d i scuss the problem in such genera l i ty . We sha l l on ly g ivean exam pl e va l i d for a m agne t i c sys t em w he re no t r an spor t o f m a t t e r o rchange in mass dens i ty t akes p lace . To each e l ementary volume AV, weassociate a local value of magnet ic induct ion B, magnet ic f ie ld H, e lect r icf i e ld E , cur ren t dens i ty j , i n t e rna l energy dens i ty u , en t ropy dens i ty s ,and en t ro py pro duc t ion or. The en t ro py b a lance equat ion , Eq . (4 .46), w he nwri t t en in loca l form, becomes

    c98- - = - V . J s + cr (4 .48)3 twh ere the vec tor Js i s the en t r o p y f lo w , and cr m easu res the ra t e a t wh ichent ropy i s loca l ly produced . The next re l a t ion of impor tance i s the loca lform of the Po yn t ing theor em , 4 Eq. (3.82):

    0 BH - a-- t-= - V . (E H) - j . E (4 .49)A cont inui ty re l a t ion can be wr i t t en for the in t e rna l energy dens i ty u .Energy can f low in the form of hea t f low, descr ibed by an appropr i a t ecurren t Jq, o r of e l ec tromagn et i c f low, descr ibed by the Po ynt ing vec tor:

    a u = - V . J q - V - ( E H ) (4.50)3 tThe f inal re lat ion to consider i s the local form of the f i rs t law of thermo-dynam i cs . The a s sum pt i on m ade i n noneq u i l i b r i um t he rm odynam i cs ,k n o w n a s t h e hypo thes i s o f loca l equi l ibr ium, s t a t es tha t , even though thesys tem as a wh ole i s no t in equi lib r ium, equi l ib r ium holds in each e lemen-

    4F or t he s a ke o f s i m p l i c i t y , w e i gno r e t he t e r m E 9 aD /Ot of Eq . (3.82) .

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    20/23

    1 2 2 CHAPTER 4. Magnetic Work and Thermodynam icsta ry volume, in the sense tha t the en t ropy dens i ty s i s loca l ly the samefunc t ion o f t he o the r t he rm o dyna m i c va r i ab l e s a s i n t he rm ody nam i c equ i -l ibr ium. According to the resul t s of Sect ion 4.1.2 and Sect ion 4.2.1, thismeans tha t loca l ly d u = H 9 o"B + T d s , that i s ,

    T 3__z_~ 0u H . ~0B (4.51)3t 3t 3tThe hy pothe s i s of loca l equi l ib r ium plays a c rucia l ro le, as it perm i t s oneto l ink the en t ropy product ion to the o ther sys tem var i ab les . In fac t , byinsert ing Eq. (4.49) and Eq. (4.50) into Eq. (4.51), we obtain

    3sT = - V . J q + j . E (4.52)3 tw hi ch can be w r i t t en i n t he equ i va l en t fo rm

    O s - V . ( ~ ) J q. V T j -E (4 .53)3--t = -- T 2 T

    By comparing Eq. (4.53) wi th Eq. (4.48) , we see that the ent ropy f low andt he en t ropy p roduc t i on a re g i ven byJs = J_a ( 4 . 5 4 )T

    To-= - Jq" ~7T + j - E (4.55)TEquat ion (4 .55) has the typ ica l s t ruc ture exhib i t ed by en t ropy product ioni n noneq u i l i b r i um t he rm ody nam i cs . I t is a sum o f t e rm s , each desc r i b inga di fferent i r reversible process, heat f low and elect r ic current f low in thispar t i cu la r case . Each t e rm i s the product of the re l evant thermodynamicf low (Jq , j ) and the cor resp ond ing ther mo dy nam ic force ( - ~7T/T ,E) dr iv in gthe process . Because the en t ropy product ion must be pos i t ive , these prod-uc t s mu st a l so be pos i tive . In addi t ion , one kn ow s tha t bo th the force andt he fl ux shou l d v an i sh w h en t he sys tem i s i n t he rm ody nam i c equ i li b r ium .The s imp les t l aw cons i s t en t wi th these req ui rem ent s i s a linear re la t ionshipbe tween the f low and the force :

    Jq = - K V T (4.56)j = e E

    w ith K > 0 an d cr > 0. We recognize F o u r i e r ' s l a w of hea t conduc t i on andO h m ' s l a w . T h e existence of these li n e a r p h e n o m e n o l o g i c a l l a w s is the secon dbas ic a s sum p t i on o f nonequ i l ib r i um t he rm od ynam i cs , w h i ch , t oge t he r

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    21/23

    4.2 THERM ODYNA MIC RELATIONS 123wi th the hyp othes i s of loca l equi l ib r ium, pe rmi t s one to deve lo p a quant i -t a t ive descr ip t ion of the processes under cons idera t ion .

    O ne m i gh t w onde r w he re i n t h i s con t ex t hys t e re s i s m ay com e i n t oplay . One might have not i ced tha t the t e rm H 9 3B/Ot, ch arac ter izing them agne t i c p rope r t i e s o f t he m ed i um , is no t i nvo l ved i n en t ropy p roduc t i on(Eq. (4.55)) . This i s the di rect consequence of assuming that Eq. (4.51)descr ibes a s i tua t ion of loca l equi l ib r ium. W he n the co ns t i tu t ive l aw B(H)exhib it s hys te res is , t h is i s no long er t rue . Energy d i ss ipa t ion a nd en t rop yproduc t i on a re a l so b rough t abou t by t he m agne t i c w ork H 9 813 a n d Eq.(4 .51) no lo nger h o lds as an equali ty . Thi s compl ica tes the ap proa ch verym uch , because one needs new p r i nc i p l e s p red i c t i ng i n w h i ch p ropor t i ont he m agne t i c w ork H 9 813 i s reversibly s tored or i r revers ibly t ran sfo rm edin to hea t . Choos ing to work wi th f iner or coarser sca les a l so p lays a ro lein this respect . As we discussed in Sect ion 3.3.4, const i tut ive laws wi thhys t e re s i s m ay be j u s t t he sho r tcu t by w h i ch w e sum m a r i ze com pl i ca tedprocesses t ak ing p lace on a f iner sca le . Note tha t , i n the approximat ionwhere ra t e - independent hys te res i s ho lds , t hese compl ica t ions a re encoun-te red no mat t e r how s low i s the appl i ca t ion of the ex te rna l f i e ld .

    Tem pera t u re g rad i en t s and hea t f l ow can i n p r i nc i p l e be expec t edw h en one dea ls w i t h none qu i l i b r i um s i tua t ions i nvo l v i ng spa t ia l inhom o -gen eous s t ruc tures , li ke ma gnet i c d om ain s t ruc tures . The jo in t descr ip t ionof loca l d i ss ipa t ion coup led to hea t f low leads to fa i r ly com pl ica ted t rea t -ment s and wi l l no t be pursued any fur ther . In the fo l lowing chapters , wesha l l usua l ly l imi t our cons idera t ions to the t rea tme nt of a mag net i c bod yas a who le , ass um ed to be a t a cer t a in t em pera ture T, wi th ou t g o ing in tothe de ta i ls o f the sp ace- t im e d i s t r ibu t ion of i ts therma l energy . Thi s m ayof t en be a good app rox i m a t i on , because unde r l ow m agne t i za t i on r a t e slosses t end to be homogeneous ly d i s t r ibu ted and , on a sca le l a rger thant ha t o f dom a i ns , t hey l ead t o f a i r l y un i fo rm en t ropy p roduc t i on . U nde rthese condit ions, Eq. (4.46) can be used to rewrite Eq. (4.39) and Eq. (4.41)as equal i t i es involv ing the overa l l en t ropy product ion in the body. Inpart icular, Eq. (4.39) becomes

    d E - - [d, H a 9 T S ~ S - S d T (4.57)In a t r ans fo rm a t i on unde r cons t an t t em pera t u re ,

    [d , f H a . d m - - A F -}- f z r (4.58)w h i ch show s t ha t t he w ork pe r fo rm ed on t he body pa r t l y con t r i bu t e s t ot he f r ee ene rgy and pa r t l y goes i n t o en t ropy p roduc t i on . A s m en t i oned ,the problem i s to kn ow the genera l p r inc ip les cont ro l l ing th i s subdiv i s ionin a mag net i c sys tem w i th hys te res is . W he n the sys tem i s cyc li ca lly dr iven

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    22/23

    1 2 4 CHAPTER 4. M agn etic W ork and Thermodynamicsth rough the same sequence o f s ta tes , the f ree energy and the en t ropy a reper iod ic in t ime , and one immedia te ly conc ludes tha t

    /z0 ~ H a ' d m = ~ TSiS ( 4 . 5 9 )cycle cycle

    This re sult is identica l to Eq. (2.13). In fact , the h ea t relea sed in a cycle isexac tly equa l to the hea t in te rna l ly p rod uced , fo r the en t ropy m us t r e tu rnto the sam e valu e a t the en d of the cycle . In a gener ic noncyclic t ransfo rm a-t ion, how ever , Eq. (4 .59) can no lon ger be appl ied an d so me g enera l iza t ioni s r equ i red . In Cha p te r 13, we wi l l show the fo rm taken by th i s genera l i za -t ion in Pre isach systems.As a final r em ar k i t m ay be no ted tha t the evo lu t ion equ a t ion cons id -ered in Sect ion 2 .3 , Eq. (2 .33), can be d er ive d in the f ra m ew ork of no neq ui-l ib r ium the rmo dynam ics . In fact , fo r a sys tem desc r ibed by the con juga tevar iables H and X, Eq. (4 .58) becom es

    f H a X AF + f T iS (4.60)The ra te o f en t rop y p ro duc t ion cr in a t r ans form at ion wh ere the s ys tempasses th rough a sequence o f the rmodynamic s ta tes charac te r ized bydif ferent values of X is then

    H d X d F _ H d X OF d X _ d X cOGLTc r (4.61)d t d t d t 3 X d t d t 3 Xw h e r e G L ( X ; H , T i s the Landau f ree energy in t roduced in Sect ion 2 .1 .4 .Equ a t ion (4 .61) has the sam e s t ruc tu re as Eq . (4 .55) , wi th the en t ropyp r o d u c t i o n e x p r e s se d i n t e rm s o f t h e p r o d u c t b e t w e e n t h e fl ux d X / d t a n dt h e th e r m o d y n a m ic f or ce - 3 G L / 3 X . Eq uat ion (2 .33) represe nts the l inearpheno m enolog ica l l aw, ana logous to Eq . (4.56) and cons i s ten t w i th ther e q u i r e m e n t o f p o s it iv e e n t r o p y p r o d u c t i o n , t h a t m a y b e a s s u m e d t odesc r ibe re laxa t ion toward equ i l ib r ium.

    4 . 3 B I B L I O G R A P H I C A L N O T E SM agn etosta t ic ene rgy is d iscusse d in deta i l in [B.55, B.63]. The t re a tm entof mag ne t ic w ork in the rm ody nam ics i s a lway s a de lica te po in t. Pa r t i cu la refforts a t c lar i ty and logical r igor are m ad e in [B.6, B.39]. The discu ss iong iven in Sec t ion 4 .1 .2 emphas izes the ro le o f magne t iz ing cur ren t s anddoes no t d i scuss the fo rm taken by energy re la t ions when work i s a l so

  • 7/28/2019 mechanical Magnetic Work and Thermodynamics

    23/23

    4.3 BIBLIOGRAPHICALNOTES 1 2 5done to move pe rmanen t magne ts wi th respec t to each o the r . Th is a spec tis d iscusse d in [B.9 , Ch apt er 2] and in Ref. 4 .1 .

    Classical the rm ody nam ics i s d i scussed in m any tex ts . See fo r exam ple[B.35, B.36, B.39, B.51]. For the in terpre ta t ion of ther m od yn am ic re la t ionsin stat ist ical m ech anics , see [B.32, B.40, B.42, B.43, B.46 , B.53, B.54]. A ninsp i r ing shor t p resen ta t ion o f s ta t i s t i ca l the rmodynamics can be foundin [B.124]. An e legan t d i scuss ion o f the rm ody nam ic re la tions and the rmo-dyn am ic po ten t ia l s wi th e mp has i s on the sym m et ry (H,X) - (T,S) men-tioned in Section 4.2 is given in [B.51].No neq ui l ib r ium the rm ody nam ics i s d i scussed in [B.38 , B .41 , B .45] . InRef . 4 .2 , the subject i s ad dre sse d w ith pa r t icular a t tent io n to the form at ionof d iss ipat ive s t ructures in sys tems that are kept far f rom equi l ibr ium.Some aspec t s o f none qui l ib r ium the rm ody nam ics in the p resence o f hys -teres is are c onsid ered in Ref. 4 .3 . In [B.29], ent rop y pro du ct io n in hystere t icsys tems i s ana lyzed in the f ramework o f the Pre i sach hys te res i s mode l .4.1 H. Zijlstra , "P erm ane nt Mag nets: The ory," in [B.98, Vol. 3], 37-105.4.2 G. Nicolis, "Irreversible Th erm odyn am ics," Rep . Progr. Phy s. 42 (1979), 225-268.4.3 Y. Hu o and I. Muller, "No nequilibrium Therm odynam ics of Pseudoelasticity,"C o n t i n u u m M e c h . T h e r m o d y n . 5 (1993), 163-204.