Top Banner
ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction to medical robotics Allison Okamura Stanford University
31

ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Jun 16, 2018

Download

Documents

hoangdang
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

ME 328: Medical RoboticsAutumn 2016

Lecture 1:Introduction to medical robotics

Allison OkamuraStanford University

Page 2: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

About this class

• Teaching staff

• Who are you?

• Review course logistics

Instructor: Allison OkamuraCo-instructor for ME/CS 571: Federico Barbagli

CAs: Robert Carrera, Margaret Koehler

Web pageSyllabus

Page 3: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

To do by Wednesday

• Fill out the survey (handout)

• Sign up on piazza:

https://piazza.com/stanford/fall2016/me328

• Enter your availability on this when2meet poll:

http://www.when2meet.com/?5587086-8EXrd

Page 4: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Robots are...• Accurate and precise; Untiring

• Smaller or larger than people(as needed)

• Remotely operated (as needed)

• Connected to computers, which gives them access to information

• Not always able to operate autonomously in highly complex, uncertain environments

~10 cm

~1 cm

Need for human interaction

Page 5: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

number of patients treated

TODAY:Treatments are

both qualitatively andquantitatively limited

by human abilitieslevel ofchallenge

WITH ROBOTICS:More clinicians can perform

more difficult (and even new) procedures; more

patients can be rehabilitated

Potential Impact ofMedical Robotics

Page 6: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Preoperative Intraoperative

Postoperative

computer-assistedplanning

patient-specificmodeling

update model update plan

real-timecomputer assistance

computer- assisted

assessmentdatabasepatient

atlas

CAD

TQM

CAM

Page 7: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Surgical robotics:

Giving the surgeon superhuman capabilities

Page 8: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Level of Human Input VariesOral Manual Cooperative

manipulation

Teleoperation Autonomous

CyberKnifeda Vinci

JHUAESOP

JHU

Dario et al.

Sensei

Page 9: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Surgeon

PatientImage source: www.physicianphotos.com

Open Surgery

Page 10: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Surgeon

Instrument/Camera

PatientImage source: www.womenssurgerygroup.com

Minimally Invasive Surgery

Page 11: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

© 2012 Intuitive Surgical, Inc.

Surgeon

Master Console

Teleoperated Robot-Assisted Minimally Invasive Surgery

Information-EnhancedRMIS

Patient-Side Robot

Patient

Instrument/Camera

Page 12: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

© 2008 Intuitive Surgical, Inc.

Page 13: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Integrating Images

Laparoscopic ultrasound integrated

with the da Vinci surgical

system

Russell Taylor and Gregory Hager (JHU)

Page 14: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Force Feedback for Manipulation

no overlay dot overlay

In collaboration with D. D. Yuh of JHMI Cardiac Surgery

Graphical force feedback results in lower peak forces, lower variability of forces, and fewer broken sutures for

untrained robot-assisted surgeons

Page 15: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Force Feedback for Explorationno overlay

In collaboration with D. D. Yuh of JHMI Cardiac Surgery and Li-Ming Su of JHMI Urology

Page 16: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

The Sensing Challenge

stiffness graphical

overlay

stiffness differencesare difficult to feel through a rigid contact

In collaboration with D. Yuh (JHMI Cardiac Surgery) and Li-Ming Su (JHMI Urology)

Page 17: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Preoperative Intraoperative

Postoperative

computer-assistedplanning

patient-specificmodeling

update model update plan

real-timecomputer assistance

computer- assisted

assessmentdatabasepatient

atlas

... alsofor

training

Page 18: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Modeling:

Improving training and planning (and paving the

way for autonomous robotic procedures)

Page 19: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

From Modeling to Simulation

S. DiMaio and S. E. Salcudean (University of British Columbia)

Page 20: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Example Commercial Simulators

Immersion Corp.

Laparoscopy Endovascular Endoscopy

Page 21: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Modeling Factors

Developing mechanical models from images Effects of material properties, boundary

constraints, and geometry

real tissuehaptic/visual

display human

datarecorded

simplifying algorithm Rendering

Force/Position

tool-tissue modelcomplex tool-tissue model

In collaboration with K. Macura(JHMI Radiology and Radiological Sciences)

Page 22: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Modeling enables needle steering

symmetric bevel

use tip asymmetry

pre-bentinsertionBicycle

Unicycle

Bicycle

Unicycle

rotation

Page 23: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Steering Performancedeformation

tele-operation

In collaboration with N. Cowan and G. Chirikjian (JHU ME), D. Song (JHMI Radiation Oncology), M.

Choti (JHMI Surgery), and K. Goldberg (UC Berkeley)

1 cm

Page 24: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Rehabilitation Robotics:

Replacing, training, or assisting to improve

quality of life

Page 25: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Growing Healthcare Challenges

Maja Mataric (USC)

Page 26: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Socially Assistive Robotics

• Monitoring

• Coaching/training

• Motivation

• Companionship/socialization

Problem: cost/population size and growth trendsNeed: personalized medium to long-term carePart of the solution: human-centered robotics to improve health outcomes

Robots can be a “force multiplier” for caregivers, reducing health care costs and improving quality of life Maja Mataric (USC)

Page 27: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Movement Therapy and Assistance

• Over 25% of U.S. population has some functional physical limitation that affects normal living

• 6.5M people in the US have had a stroke (by 2050, cost projected to be $2.2 Trillion)

Page 28: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Optimizing Movement Therapy

τ1

τ2

⎣ ⎢ ⎤

⎦ ⎥ =

0I '1, 33+0I '2, 33 +m2L1(L1 + L2 cosθ 2 ) 0I '2, 33 + 1

2 m2L1L2 cosθ 20I '1, 33 + 1

2 m2L1L2 cosθ 20I '2, 33

⎣ ⎢

⎦ ⎥

˙ ̇ θ 1˙ ̇ θ 2

⎣ ⎢ ⎤

⎦ ⎥

+0 −m2L1L2 sinθ 2

12 m2L1L2 sinθ 2

12 m2L1L2 sin(θ 2 ) 0 0⎡

⎣ ⎢

⎦ ⎥

˙ θ 12

˙ θ 1 ˙ θ 2˙ θ 2

2

⎢ ⎢ ⎢

⎥ ⎥ ⎥

In collaboration with A. Bastian (KKI and JHU Neuroscience)

Page 29: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

Neurally Controlled Prostheses

JHU Applied Physics Laboratory

K. J. Kuchenbecker

Page 30: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

SafetySafety of industrial robotsis ensured by keeping humansout of the workspace.

Medical robots come incontact with both patientsand clinicians/caregivers.

PUMA Industrial Robot

Approaches include:- Low force and speed- Risk analysis (eliminate single points of failure)- Fault tolerance (hardware and software)- Fail safe design (system fails to a safe state)- Redundant sensing

Page 31: ME 328: Medical Robotics Autumn 2016 - Stanford Universityweb.stanford.edu/class/me328/lectures/lecture1-intro.pdf · ME 328: Medical Robotics Autumn 2016 Lecture 1: Introduction

In an ideal world, medical robotics includes:

• Quantitive descriptions of patient state

• Use of models to plan intervention

• Design of devices, systems, and processes to connect information to action ( = robotics )

• Incorporating human input in a natural way

• Goal: improve health and quality of life

But these are only the technical challenges...