Top Banner
Prof. Nico Hotz ME 150 – Heat and Mass Transfer 1 Principles of Convection Convective heat transfer = Heat transfer between a fluid and a surface in contact with the fluid flow General case: arbitrary body, 3-dimensional Simple case: flat plate, 1-dimensional Chap. 12: Introduction to Convection
26
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

1

Principles of Convection

Convective heat transfer = Heat transfer between a fluid and a surface in contact with the fluid flow

General case: arbitrary body, 3-dimensional

Simple case: flat plate,

1-dimensional

Chap. 12: Introduction to Convection

Page 2: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

2

)( 0 ∞−⋅=ʹ′ʹ′ TThq

∫∫ ⋅⋅−=⋅ʹ′ʹ′= ∞

00

000 )(AA

dAhTTdAqq

)( 00 ∞−⋅⋅= TTAhq

∫ ⋅⋅=L

dxxhL

h0

)(1

General description of convection:

Velocity and temperature of the fluid depend on the position:

∫ ⋅=0

00

1

A

dAhA

h

Goal: Calculation of convective heat transfer

coefficient h [W/m2.K]

Practical assumption for some problems: local can be replaced by average :

General body:

Flat plate (1D):

Chap. 12: Introduction to Convection

hh

Page 3: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

3

Conservation Equations for flowing fluid:

Fluid motion is descriped by 5 variables:

5 equations necessary: Continuity (mass conservation) = 1 equation Momentum conservation = 3 equations Energy conservation = 1 equation

We will consider 2-dimensional problems, therefore 4 equations necessary.

Chap. 12.1: Conservation Equations

T

wvuUUUU zyx

ρ

),,(),,( ==

Page 4: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

4

Continuity Equation – Steady-state

Considering an infinitesimal volume element

Chap. 12.1.1: Mass Conservation

AreaVelocityDensitym ⋅⋅=

Page 5: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

5

dzdxvdzdyumin ⋅⋅⋅+⋅⋅⋅= ρρEntering mass flows: (in the following: dz = 1)

dxdyvy

vdydxux

umout ⎥⎦

⎤⎢⎣

⎡⋅⋅

∂+⋅+⎥⎦

⎤⎢⎣

⎡ ⋅⋅∂

∂+⋅= )()( ρρρρLeaving mass

flows:

( ) ( ) 0)()(0 =∂

⋅∂+

⋅∂→=⋅⋅⋅

∂+⋅⋅⋅

yv

xudydxv

ydydxu

xρρ

ρρ

Mass conservation: Difference between in and out = 0:

0=∂

∂+

yv

xu0)( =⋅udiv

ρ

Simplification for incom-pressible liquid (ρ = const.)

General form in vector notation:

Chap. 12.1.1: Mass Conservation

Page 6: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

6

Momentum Conservation (steady-state)

Consider momentum fluxes through stationary control volume

Example: x-direction, 2-D (dz = 1)

x-momentum flux in x-direction

x-momentum flux in y-direction

VelocityflowMass

udzdyu ⋅⋅⋅⋅ ρ

udzdxv ⋅⋅⋅⋅ )(ρ

Chap. 12.1.2: Momentum Conservation

Page 7: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

7

( ) ( ) dxvudyuu ⋅⋅⋅+⋅⋅⋅ ρρ

( ) ( )( ) ( ) ( )( ) dydxvuy

dxvudxdyuux

dyuu ⋅⋅⋅⋅∂

∂+⋅⋅⋅+⋅⋅⋅⋅

∂+⋅⋅⋅ ρρρρ

Entering momentum fluxes:

Leaving momentum fluxes:

( )[ ] ( )[ ]

dydxyv

xuu

yuv

xuu

dydxyuv

yvu

xuu

xuu

dydxvuy

uux

dydxvuy

dxdyuux

equationContinuity

⋅⋅

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎥⎦

⎤⎢⎣

⋅∂+

⋅∂⋅+

∂⋅+

∂⋅=

⋅⋅⎥⎦

⎤⎢⎣

∂⋅+

⋅∂+

∂⋅+

⋅∂=

⋅⋅⎥⎦

⎤⎢⎣

⎡⋅⋅

∂+⋅⋅

∂=⋅⋅⋅⋅

∂+⋅⋅⋅⋅

=

0

)()(

)()(

)()(

ρρρρ

ρρ

ρρ

ρρρρ

Difference between in and out = Change in momentum

Chap. 12.1.2: Momentum Conservation

Page 8: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

8

dydxyuv

xuu ⋅⋅⎟⎟

⎞⎜⎜⎝

∂+

∂⋅ρ

Rate of change in momentum in the control volume:

Newton‘s Second Law: Rate of change in momentum = Force

Surface forces: •  Viscous normal stress •  Normal stress from pressure •  Shear stress

Possible forces:

Volume forces (e.g. gravitation)

Chap. 12.1.2: Momentum Conservation

Page 9: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

9

Net force = Difference between opposing areas

Terminology: First index: Area (perpendicular to direction) Second index: Direction of force

pxx

pxy pyx

dy

dx

y

x

Oberflächenkräfte

dyxxp

dyxyp

dxyxp dxyyp

1dxdyxgρ

dy]dx)xxp(xxxp[ ∂

∂+

dy]dx)xyp(xxyp[ ∂

∂+

dx]dy)yxp(yyxp[ ∂

∂+dx]dy)yyp(yyyp[ ∂

∂+

Chap. 12.1.2: Momentum Conservation

Page 10: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

10

dydxyp

dydxxp

dxpdypdxdypy

pdydxpx

p

yxxx

yxxxyxyxxxxx

⋅⋅∂

∂+⋅⋅

∂=

⋅−⋅−⋅⎥⎦

⎤⎢⎣

∂++⋅⎥

⎤⎢⎣

∂+ )()(

xu

yv

xuPPp xxx ∂

∂⋅⋅+⎟⎟

⎞⎜⎜⎝

∂+

∂⋅⋅−−=+−= µµσ 2

32

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂===

yu

xvp xyyxyx µττ

Net force in x - direction:

From Fluid Dynamics (without derivation):

normal: external pressure + viscous

tangential: viscous

Chap. 12.1.2: Momentum Conservation

Page 11: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

11

dydxyu

xv

yxu

yv

xu

xxP

⋅⋅⎪⎭

⎪⎬⎫⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

∂+

∂⋅

∂+

⎪⎩

⎪⎨⎧

⎥⎦

⎤⎢⎣

∂⋅+⎟⎟

⎞⎜⎜⎝

∂+

∂⋅−

∂+

∂− µµµ 2

32

dydxgx ⋅⋅⋅ρ

Sum of surface forces (x - direction):

Volume force: gravity

xgyu

xv

yxu

yv

xu

xxP

yuv

xuu ⋅+

⎥⎥⎦

⎭⎬⎫

⎩⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂⋅

∂+

⎢⎢⎣

⎭⎬⎫

⎩⎨⎧

∂⋅+⎟⎟

⎞⎜⎜⎝

∂+

∂⋅−

∂+

∂−=⎥

⎤⎢⎣

∂+

∂⋅ ρµµµρ 2

32

Momentum Conservation (x-direction): Navier Stokes

Momentum change Normal viscous stress

Pressure

Shear stress

Gravity

Chap. 12.1.2: Momentum Conservation

Page 12: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

12

0=∂

∂+

yv

xu

equationContinuity

yv

xu

0

32

=

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂⋅− µfor incompres-

sible fluids:

x

equationContinuity

x

x

gyu

yv

xu

xxu

xP

gyu

yxv

xu

xu

xP

gyu

xv

yxu

xP

⋅+∂

∂⋅+⎟⎟

⎞⎜⎜⎝

∂+

∂⋅+

∂⋅+

∂−=

⋅+∂

∂⋅+

∂⋅∂

∂⋅+

∂⋅+

∂⋅+

∂−=

⋅+⎟⎟⎠

⎞⎜⎜⎝

∂+

∂⋅+

∂⋅⋅+

∂−

=

ρµµµ

ρµµµµ

ρµµ

2

2

0

2

2

2

22

2

2

2

2

2

2

2

Rearranging the right-hand side of Navier Stokes:

Chap. 12.1.2: Momentum Conservation

Page 13: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

13

xgyu

xu

xP

yuv

xuu ⋅+⎟

⎟⎠

⎞⎜⎜⎝

∂+

∂⋅+

∂−=⎟⎟

⎞⎜⎜⎝

∂+

∂⋅ ρµρ 2

2

2

2

ygyv

xv

yP

yvv

xvu ⋅+⎟

⎟⎠

⎞⎜⎜⎝

∂+

∂⋅+

∂−=⎟⎟

⎞⎜⎜⎝

∂+

∂⋅ ρµρ 2

2

2

2

( ) gUPUU ⋅+∇⋅+∇−=∇•⋅ ρµρ 2

2

2

2

22

yxyj

xivjuiU

∂+

∂=∇

∂⋅+

∂⋅=∇⋅+⋅=

Navier Stokes in x - direction (incompressible fluid):

and in y - direction, respectively:

In vector notation:

2-D vector operators:

Chap. 12.1.2: Momentum Conservation

Page 14: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

14

Energy Conservation (steady-state)

We have to condsider:

•  Convective heat transfer

•  Thermal conduction

•  Internal heat sources

•  Work due to friction and volume forces

We can neglect:

•  Kinetic energy

•  Potential energy

Applicable for problems with: low Mach numbers, Δh < 1000 m

Chap. 12.1.3: Energy Conservation

Page 15: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

15

Components of Heat Transfer:

D = Conduction V = Convection

Chap. 12.1.3: Energy Conservation

Page 16: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

16

Balance for convection:

e = specific internal energy (J/kg)

Chap. 12.1.3: Energy Conservation

( ) ( )

( ) ( )

( ) ( )

⎥⎦

⎤⎢⎣

⎡⋅⋅⋅⋅

∂+⋅⋅⋅⋅

∂−=

=⎥⎦

⎤⎢⎣

⎡⋅⋅⋅⋅

∂+⋅⋅⋅−⋅⋅⋅+

+⎥⎦

⎤⎢⎣

⎡⋅⋅⋅⋅

∂+⋅⋅⋅−⋅⋅⋅=

=−+−= ++

dydxvey

dydxuex

dydxvey

dxvedxve

dxdyuex

dyuedyue

EEEEE dyyVyVdxxVxVtotV

)()(

)(

)(

,,,,,

ρρ

ρρρ

ρρρ

Page 17: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

17

dydxyTk

yxTk

x

dyyTdxk

ydx

xTdyk

xE totD

⋅⋅⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

∂⋅

∂+⎟⎠

⎞⎜⎝

⎛∂

∂⋅

∂=

=⋅⎭⎬⎫

⎩⎨⎧

∂⋅⋅−

∂−⋅

⎭⎬⎫

⎩⎨⎧

∂⋅⋅−

∂−=,

Balance for conduction:

Using Fourier‘s Law:

( ) ( )

⎥⎦

⎤⎢⎣

⎡⋅

∂+⋅

∂−=

=⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

∂+−+⎟⎟

⎞⎜⎜⎝

⎛⋅

∂+−=

=−+−= ++

dyEy

dxEx

dyEy

EEdxEx

EE

EEEEE

yDxD

yDyDyDxDxDxD

dyyDyDdxxDxDtotD

,,

,,,,,,

,,,,,

Chap. 12.1.3: Energy Conservation

Page 18: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

18

Rate of work due to friction (surface forces) and volume forces:

Rate of work = Power = Force ● Velocity

total of 10 force components for a 2D-volume element

Chap. 12.1.3: Energy Conservation

Page 19: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

19

dydxgvdydxgu

fasdxdypvx

dydxpuy

dydxpvy

dxdypux

W

yx

xyyx

yyxxtot

⋅⋅⋅⋅+⋅⋅⋅⋅+

+⋅⋅⋅∂

∂+⋅⋅⋅

∂+

+⋅⋅⋅∂

∂+⋅⋅⋅

∂=

ρρ

)()(

)()(

Rate of work of these 10 force components:

yxxyyxxy

yyy

xxx

ppPpPp

ττ

σ

σ

===

+−=

+−=Substitute for the surface forces pressure and viscous components:

Chap. 12.1.3: Energy Conservation

Page 20: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

20

dydxgvvx

Pvy

vy

dydxguuy

Pux

ux

W

yxyy

xxyxtot

⋅⋅⎭⎬⎫

⎩⎨⎧

⋅⋅+⋅∂

∂+⋅

∂−⋅

∂+

+⋅⋅⎭⎬⎫

⎩⎨⎧

⋅⋅+⋅∂

∂+⋅

∂−⋅

∂=

ρτσ

ρτσ

)()()(

)()()(

Using this substitution:

dVqWEE stottotVtotD ⋅+++= ,,0

Condition for steady-state energy balance:

Chap. 12.1.3: Energy Conservation

Page 21: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

21

Using the individual components:

Convection

Conduction

Work due to forces

Sources

Chap. 12.1.3: Energy Conservation

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

s

yxyy

xxyx

q

gvvx

Pvy

vy

guux

Pux

ux

yTk

yxTk

x

vey

uex

+

+⎥⎦

⎤⎢⎣

⎡⋅⋅+⋅

∂+⋅

∂−⋅

∂+

+⎥⎦

⎤⎢⎣

⎡ ⋅⋅+⋅∂

∂+⋅

∂−⋅

∂+

+⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

∂⋅

∂+⎟⎠

⎞⎜⎝

⎛∂

∂⋅

∂+

+⎥⎦

⎤⎢⎣

⎡⋅⋅

∂+⋅⋅

∂−=

ρτσ

ρτσ

ρρ0

Page 22: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

22

Next steps:

- Use explicit expressions for σ und τ

- Neglect volume force

- Combine friction term to Φ

sqyv

xuP

yTk

yxTk

xyev

xeu +Φ⋅+⎟⎟

⎞⎜⎜⎝

∂+

∂⋅−⎟⎟

⎞⎜⎜⎝

∂⋅

∂+⎟⎠

⎞⎜⎝

⎛∂

∂⋅

∂=

∂⋅⋅+

∂⋅⋅ µρρ

2222

322 ⎟⎟

⎞⎜⎜⎝

∂+

∂⋅−

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

∂+⎟

⎞⎜⎝

⎛∂

∂⋅+⎟⎟

⎞⎜⎜⎝

∂+

∂=Φ

yv

xu

yv

xu

xv

yu

Φ = Effect of viscous friction

Convection Conduction Pressure Sources

Chap. 12.1.3: Energy Conservation

Page 23: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

23

0=∂

∂+

yv

xu

dTcdTcdTcde vp ⋅=⋅=⋅=

sqyTk

yxTk

xyTv

xTuc +Φ⋅+⎟⎟

⎞⎜⎜⎝

∂+⎟⎠

⎞⎜⎝

⎛∂

∂=⎟⎟⎠

⎞⎜⎜⎝

∂+

∂⋅⋅ µρ

⎟⎟⎠

⎞⎜⎜⎝

∂⋅

∂⋅−⎟⎟

⎞⎜⎜⎝

∂+

∂=Φ

yv

xu

xv

yu 4

2

More simplifications: Fluid is incompressible

constant=ρ Continuity Pressure term = 0

Energy purely thermal: KE = PE = 0

Energy conservation in terms of temperature:

with simplified Φ

Chap. 12.1.3: Energy Conservation

Page 24: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

24

⎟⎟⎠

⎞⎜⎜⎝

∂+

∂⋅=⎟⎟

⎞⎜⎜⎝

∂⋅+

∂⋅ 2

2

2

2

yT

xT

yTv

xTu α

TTU 2∇⋅=∇•

α

yTj

xTiTjviuU

∂+

∂=∇⋅+⋅=

Neglecting friction (Φ = 0) and taking k = constant:

pck⋅

α

Heat Transfer Equation for laminar, incompressible flows without friction and with constant thermal conductivity:

Using vector operators:

Chap. 12.1.3: Energy Conservation

Page 25: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

25

dtTc p ∂⋅⋅ρ

Remark on transient problems:

For transient problems, an additional term is needed

Transient change of energy content of a control volume:

Chap. 12.1.3: Energy Conservation

Page 26: ME 150 intro convection

Prof. Nico Hotz

ME 150 – Heat and Mass Transfer

26