Top Banner
G. Leng, MDTS, NUS MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight
38

MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

Jul 20, 2018

Download

Documents

NguyễnThúy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight

Page 2: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

References

• Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress in Astronautics and Aeronautics, v104, 1986

• Michael J. Hemsch (ed), “Tactical Missile Aerodynamics : General Topics”, AIAA Progress in Astronautics and Aeronautics, v141, 1992

• Michael R. Mendenhall (ed), “Tactical Missile Aerodynamics : Predicition Methodology”, AIAA Progress in Astronautics and Aeronautics, v142, 1992

• Gordon E. Jensen, David W. Netzer, “Tactical Missile Propulsion”, AIAA Progress in Astronuatics and Aeronautics, v 170, 1996

Page 3: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Training Programme

1. Characteristics of supersonic flight

or the aerodynamic forces on the missile

2. Missile propulsion for high speeds

or rockets, ramjets and scamjets

Page 4: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Question : Is the Earth’s atmosphere uniform ?

0 km 20 km

Air pressure (N/m2) 101 325 6000

Air density (kg/m3) 1.225 0.1

Air temperature (oC ) 30 -60

Question :Any implications for missiles ?

1.1 The Earth’s Atmosphere

Page 5: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

1.2 Aerodynamic forces

Aerodynamic forces on a flight vehicle scale as :

Aerodynamic force V2

Air speed

Air density

Note the dependence on V2

Page 6: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

For missiles, there are two important aerodynamic forces

Axial force A = ½ V2 S CA

Normal force N = ½ V2 S CN

N

A

These forces are aligned with the missile body and not the velocity

V

Page 7: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

The symbols are :

S : reference area (m2) e.g. missile cross section area

CA : axial force coefficient (non dimensional)

CN : normal force coefficient (non dimensional)

½ V2 : dynamic pressure ( N/m2)

Page 8: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

L

D

V

Equivalently we can represent the aerodynamics forces as

lift and drag forces aligned with the velocity

Lift force L = ½ V2 S CL

Drag force D = ½ V2 S CD

Page 9: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Example : Estimate CL for the AGM 65

Flight conditions

mass : 300 kg speed : 320 m/s

altitude : S.L diameter : 0.3048 m

For level flight,

CL =

=

=

S.L.

S =

Page 10: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

1.3 Aerodynamic flow parameters

Missile airspeeds can range from 100 – 103 m/s

Aerodynamic properties are determined by the Mach number M

Page 11: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Question : Why does the speed of sound come in ?

1. Air is compressible.

2. A moving missile disturbs the surrounding air

3.These disturbances e.g. pressure variations, take a finite time

to propagate at the speed of sound through the surrounding air

4. The Mach number measures the importance of this

compressibility effect .

Page 12: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

1.3.1 Classification of flow regimes via Mach number

• M < 0.8 subsonic incompressible aerodynamics

• 0.8 < M < 1.2 transonic localized compressibility effects

• 1.2 < M < 5 supersonic compressible aerodynamics

• M > 5 hypersonic aerodynamic heating

Page 13: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Example : Disturbance propagation M < 1

distrubance

missile

Consider the distances travelled by the disturbance and the missile in 1s

a

V 0

What about the

disturbance created

mid way ?

Page 14: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Example : Disturbance propagation M > 1

distrubance

missile

Consider the distances travelled by the disturbance and the missile in 1s

a

V 0

sin = a/V

= 1/M

Page 15: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

So for M > 1, there is a discontinuity in the flow field “seen”

by the missile

Air properties like pressure, temperature and density changes

sharply across the discontinuity or shock

Schlieren photo of shock

waves

Question : Can you

estimate the Mach number ?

Light is refracted

differently because of

changes in air density

Page 16: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

The shape of the shock wave depends on the shape of the object

blunt nosed

object

detached

shock

Shocks created by high speed flight can be annoying ....

Page 17: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

1.3.2 Effects of a shock (sonic boom)

On the ground

On humans

Page 18: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Condensation due to sudden changes in air temperature and pressure

Page 19: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

1.4 The placement of lift surfaces

Question : Can this missile fly at Mach 3 ?

= 25o

Page 20: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

The angle of the attached shock is related to the Mach number by :

sin = 1/M

At Mach 3, = sin-1 (1/3)

= 19.5o

= 19.5o

Is this a good design ? What is the max speed of this missile ?

Page 21: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Now can you comment on the design of this configuration ?

Page 22: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

2.1. The design of supersonic airfoils

For efficient lift generation at subsonic speeds, airfoils look like :

Page 23: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

So why can’t a similar airfoil work at transonic/supersonic speeds ?

subsonic region shock

Page 24: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

A supersonic airfoil looks like this ...

Page 25: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

or like this ...

Page 26: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

2.2 Drag variation with speed

1. As a missile approaches M = 1, drag increases significantly

2. This is known as the transonic drag rise

Page 27: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

3. Missiles have to pass through this transonic drag rise to get

to supersonic speeds

Page 28: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

4. At supersonic speeds drag tends to level off

Page 29: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

1. Critical aerodynamic surfaces are swept back to reduce this

transonic drag rise

2.3 Drag reduction using sweepback

Page 30: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

2. This works because ...

wing

M

velocity vector

Mn

normal component

... the wing “sees” a

lower effective airspeed

Mn = M cos

Page 31: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Example : WWII German missiles

V1 – straight wings V2 – swept back fins

Page 32: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

An “interesting” example of the use of sweepback

Me 262 – first operational jet fighter

What is the moral of the story ?

Page 33: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

Example : So what can you deduce from the

sweep back angle ?

Maverick AGM = 80 o

Bloodhound SAM = 26 o

Page 34: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

= 26o

M

Mn

It would seem that the sweep angle doesn’t provide much info ...

Page 35: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

= 16o

Page 36: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

2.4 Drag reduction using the Area-Rule

Near Mach 1,

the drag of a slender wing-body combination

is equal to

that of a body of revolution having the same

cross-sectional area distribution

What does this mean ?

Page 37: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

A : slender body

B : Wing-body combination

with higher drag

C : Equivalent body of

revolution for wing-body B

D : “Pinched” body

A, i.e. lower drag c/o B

Page 38: MDTS 5734 : Aerodynamics & Propulsiondynlab.mpe.nus.edu.sg/mpelsb/mdts/Aero n1 v3.pdf · G. Leng, MDTS, NUS References • Jack N. Nielsen, “Missile Aerodynamics”, AIAA Progress

G. Leng, MDTS, NUS

This concept was first applied to the F102 to achieve supersonic flight

But is it commonly used in missiles now ?

“pinched” waist