Top Banner
MCMC and ABC Methodologies in the context of Controlled Branching Processes M. González, I. del Puerto Department of Mathematics. University of Extremadura Spanish Branching Processes Group Workshop Métodos Bayesianos 11 Madrid, November 2011 M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 1 / 55
108

MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Jul 25, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

MCMC and ABC Methodologies in the context ofControlled Branching Processes

M. González, I. del Puerto

Department of Mathematics. University of ExtremaduraSpanish Branching Processes Group

Workshop Métodos Bayesianos 11Madrid, November 2011

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 1 / 55

Page 2: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Contents

1 Controlled Branching Processes

2 MCMC for CBP with Deterministic Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

3 MCMC for CBP with Random Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

4 ABC for CBP with Deterministic and Random Control FunctionsApproximate Bayesian ComputationSimulated Example

5 Concluding Remarks and ReferencesConcluding RemarksReferences

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 2 / 55

Page 3: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Contents

1 Controlled Branching Processes

2 MCMC for CBP with Deterministic Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

3 MCMC for CBP with Random Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

4 ABC for CBP with Deterministic and Random Control FunctionsApproximate Bayesian ComputationSimulated Example

5 Concluding Remarks and ReferencesConcluding RemarksReferences

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 2 / 55

Page 4: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Contents

1 Controlled Branching Processes

2 MCMC for CBP with Deterministic Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

3 MCMC for CBP with Random Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

4 ABC for CBP with Deterministic and Random Control FunctionsApproximate Bayesian ComputationSimulated Example

5 Concluding Remarks and ReferencesConcluding RemarksReferences

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 2 / 55

Page 5: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Contents

1 Controlled Branching Processes

2 MCMC for CBP with Deterministic Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

3 MCMC for CBP with Random Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

4 ABC for CBP with Deterministic and Random Control FunctionsApproximate Bayesian ComputationSimulated Example

5 Concluding Remarks and ReferencesConcluding RemarksReferences

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 2 / 55

Page 6: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Contents

1 Controlled Branching Processes

2 MCMC for CBP with Deterministic Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

3 MCMC for CBP with Random Control FunctionBayesian Inference for Controlled Branching ProcessesA Simulation-Based Method using Gibbs Sampler

4 ABC for CBP with Deterministic and Random Control FunctionsApproximate Bayesian ComputationSimulated Example

5 Concluding Remarks and ReferencesConcluding RemarksReferences

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 2 / 55

Page 7: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Inside the general context concerning Stochastic Models, BranchingProcesses Theory provides appropriate mathematical models for descriptionof the probabilistic evolution of systems whose components (cell, particles,individuals in general), after certain life period, reproduce and die. Therefore,it can be applied in several fields (Biology, Demography, Ecology,Epidemiology, Genetics, Algorithms,...).

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 3 / 55

Page 8: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1

Z1 = 2Z2 = 7Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 9: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1

Z1 = 2Z2 = 7Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 10: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1Z1 = 2

Z2 = 7Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 11: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1Z1 = 2

Z2 = 7Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 12: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1Z1 = 2Z2 = 7

Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 13: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1Z1 = 2Z2 = 7

Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 14: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1Z1 = 2Z2 = 7Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 15: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1Z1 = 2Z2 = 7Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 16: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

ExampleZ0 = 1Z1 = 2Z2 = 7Z3 = 10

...

Zn+1 =Zn∑

j=1

Xnj

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 4 / 55

Page 17: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Main Results for Galton–Watson Branching Processes

Let m = E[X01] and σ2 = Var[X01]

Extinction Problem

If m ≤ 1⇒ the process dies out with probability 1

If m > 1⇒ there exists a positive probability of non-extinction

Asymptotic behaviour

Statistical Inference

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 5 / 55

Page 18: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Main Results for Galton–Watson Branching Processes

Let m = E[X01] and σ2 = Var[X01]

Extinction Problem

If m ≤ 1⇒ the process dies out with probability 1

If m > 1⇒ there exists a positive probability of non-extinction

Asymptotic behaviour

Statistical Inference

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 5 / 55

Page 19: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Main Results for Galton–Watson Branching Processes

Let m = E[X01] and σ2 = Var[X01]

Extinction Problem

If m ≤ 1⇒ the process dies out with probability 1

If m > 1⇒ there exists a positive probability of non-extinction

Asymptotic behaviour

Statistical Inference

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 5 / 55

Page 20: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Main Results for Galton–Watson Branching Processes

Let m = E[X01] and σ2 = Var[X01]

Extinction Problem

If m ≤ 1⇒ the process dies out with probability 1

If m > 1⇒ there exists a positive probability of non-extinction

Asymptotic behaviour

Statistical Inference

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 5 / 55

Page 21: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Many monographs about the theory and applications about the branching processes have beenpublished:

Harris, T. (1963). The Theory of branching processes. Springer-Verlag.

Jagers, P. (1975). Branching processes with Biological Applications, John Wiley andSons, Inc.

Asmussen, S. and Hering, H. (1983). Branching processes. Birkhäuser. Boston.

Athreya, K.B. and Jagers, P. (1997). Classical and modern branching processes.Springer-Verlag.

Kimmel, M. and Axelrod, D.E. (2002). Branching processes in Biology, Springer-VerlagNew York, Inc.

Haccou, P., Jagers, P., and Vatutin, V. (2005). Branching Processes: Variation, Growth,and Extinction of Populations. Cambridge University Press.

González, M., del Puerto, I., Martínez, R., Molina, M., Mota, M., Ramos, A. (Editors)(2010). Workshop on Branching Processes and their Applications. Lecture Notes inStatistics, 197. Springer.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 6 / 55

Page 22: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

A Controlled Branching Process is a discrete-time stochastic growthpopulation model in which the individuals with reproductive capacity in eachgeneration are controlled by some function φ. This branching model iswell-suited for describing the probabilistic evolution of populations in which,for various reasons of an environmental, social or other nature, there is amechanism that establishes the number of progenitors who take part in eachgeneration.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 7 / 55

Page 23: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Mathematically: Controlled Branching Process {Zn}n≥0

Z0 = N, Zn+1 =φn(Zn)∑

i=1

Xni, n = 0, 1, . . .

Two independent sequences of random variables (r.v.):

{Xni : i = 1, 2, . . . , n = 0, 1, . . .} are i.i.d. r.v.p = {pk : k = 0, 1, . . .} Offspring Distributionm = E[X01], σ2 = Var[X01]{φn(k) : n = 0, 1, . . . ; k = 0, 1, . . .}, where {φn(k)}k≥0 are independentstochastic processes with identical one-dimensional probabilitydistributions, n = 0, 1, . . . Random Control Functionsε(k) = E[φn(k)], σ2(k) = Var[φn(k)].φn(k) = φ(k), k = 0, 1, . . . Deterministic Control Function

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 8 / 55

Page 24: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Branching Processes

Mathematically: Controlled Branching Process {Zn}n≥0

Z0 = N, Zn+1 =φn(Zn)∑

i=1

Xni, n = 0, 1, . . .

Two independent sequences of random variables (r.v.):

{Xni : i = 1, 2, . . . , n = 0, 1, . . .} are i.i.d. r.v.p = {pk : k = 0, 1, . . .} Offspring Distributionm = E[X01], σ2 = Var[X01]{φn(k) : n = 0, 1, . . . ; k = 0, 1, . . .}, where {φn(k)}k≥0 are independentstochastic processes with identical one-dimensional probabilitydistributions, n = 0, 1, . . . Random Control Functionsε(k) = E[φn(k)], σ2(k) = Var[φn(k)].φn(k) = φ(k), k = 0, 1, . . . Deterministic Control Function

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 8 / 55

Page 25: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Controlled Branching Processes

Properties{Zn}n≥0 is a Homogeneous Markov Chain

Duality Extinction-Explosion: P(Zn → 0) + P(Zn →∞) = 1

Main Topics InvestigatedExtinction Problem

Sevast’yanov and Zubkov (1974)Zubkov (1974)Molina, González and Mota (1998)

Asymptotic Behaviour: Growth ratesBagley (1986)Molina, González and Mota (1998)González, Molina, del Puerto (2002, 2003, 2004, 2005a,b)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 9 / 55

Page 26: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Controlled Branching Processes

Properties{Zn}n≥0 is a Homogeneous Markov Chain

Duality Extinction-Explosion: P(Zn → 0) + P(Zn →∞) = 1

Main Topics InvestigatedExtinction Problem

Sevast’yanov and Zubkov (1974)Zubkov (1974)Molina, González and Mota (1998)

Asymptotic Behaviour: Growth ratesBagley (1986)Molina, González and Mota (1998)González, Molina, del Puerto (2002, 2003, 2004, 2005a,b)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 9 / 55

Page 27: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Controlled Branching Processes

Main Topics InvestigatedStatistical Inference

Dion, J. P. and Essebbar, B. (1995). On the statistics of controlled branching processes. LectureNotes in Statistics, 99:14-21.

M. González, R. Martínez, I. Del Puerto (2004). Nonparametric estimation of the offspringdistribution and the mean for a controlled branching process. Test, 13(2), 465-479.

M. González, R. Martínez, I. Del Puerto (2005). Estimation of the variance for a controlledbranching process. Test, 14(1), 199-213.

T.N. Sriram, A. Bhattacharya, M. González, R. Martínez, I. Del Puerto (2007). Estimation of theoffspring mean in a controlled branching process with a random control function. StochasticProcesses and their Applications, 117, 928-946.

R. Martínez, I. del Puerto, M. Mota (2009). On asymptotic posterior normality for controlledbranching processes. Statistics, 43, 367-378.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 10 / 55

Page 28: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Non-Parametric FrameworkOffspring Distribution: p = {pk : k ∈ S} S finite.Deterministic Control Function: φ(·)Sample: The entire family tree up to the current generation

{Xki : i = 1, . . . , φ(Zk), k = 0, 1, . . . , n}

or at leastZn = {Zj(k) : k ∈ S, j = 0, . . . , n}

where Zj(k) =∑φ(Zj)

i=1 I{Xji=k} = number of parents in the jth-generationwhich generate exactly k offspringObjective: Make inference on p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 11 / 55

Page 29: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Non-Parametric FrameworkOffspring Distribution: p = {pk : k ∈ S} S finite.Deterministic Control Function: φ(·)Sample: The entire family tree up to the current generation

{Xki : i = 1, . . . , φ(Zk), k = 0, 1, . . . , n}

or at leastZn = {Zj(k) : k ∈ S, j = 0, . . . , n}

where Zj(k) =∑φ(Zj)

i=1 I{Xji=k} = number of parents in the jth-generationwhich generate exactly k offspringObjective: Make inference on p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 11 / 55

Page 30: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Non-Parametric FrameworkOffspring Distribution: p = {pk : k ∈ S} S finite.Deterministic Control Function: φ(·)Sample: The entire family tree up to the current generation

{Xki : i = 1, . . . , φ(Zk), k = 0, 1, . . . , n}

or at leastZn = {Zj(k) : k ∈ S, j = 0, . . . , n}

where Zj(k) =∑φ(Zj)

i=1 I{Xji=k} = number of parents in the jth-generationwhich generate exactly k offspringObjective: Make inference on p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 11 / 55

Page 31: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Non-Parametric FrameworkOffspring Distribution: p = {pk : k ∈ S} S finite.Deterministic Control Function: φ(·)Sample: The entire family tree up to the current generation

{Xki : i = 1, . . . , φ(Zk), k = 0, 1, . . . , n}

or at leastZn = {Zj(k) : k ∈ S, j = 0, . . . , n}

where Zj(k) =∑φ(Zj)

i=1 I{Xji=k} = number of parents in the jth-generationwhich generate exactly k offspringObjective: Make inference on p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 11 / 55

Page 32: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Likelihood Function

f (Zn|p) ∝∏k∈S

p∑n

j=0 Zj(k)

k

Conjugate Class of Distributions: Dirichlet FamilyPrior Distribution: p ∼ D(αk : k ∈ S)Posterior Distribution:

p|Zn ∼ D(αk +n∑

j=0

Zj(k) : k ∈ S)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 12 / 55

Page 33: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Likelihood Function

f (Zn|p) ∝∏k∈S

p∑n

j=0 Zj(k)

k

Conjugate Class of Distributions: Dirichlet FamilyPrior Distribution: p ∼ D(αk : k ∈ S)Posterior Distribution:

p|Zn ∼ D(αk +n∑

j=0

Zj(k) : k ∈ S)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 12 / 55

Page 34: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Setting out the ProblemIn real problems it is difficult to observe the entire family tree{Xki : i = 1, 2, . . . , k = 0, 1, . . . , n} or even the random variablesZn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Usual Sample InformationZ∗n = {Zj : j = 0, . . . , n}

SolutionWe introduce an algorithm to approximate the distribution

p|Z∗n

using Markov Chain Monte Carlo Methods

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 13 / 55

Page 35: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Setting out the ProblemIn real problems it is difficult to observe the entire family tree{Xki : i = 1, 2, . . . , k = 0, 1, . . . , n} or even the random variablesZn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Usual Sample InformationZ∗n = {Zj : j = 0, . . . , n}

SolutionWe introduce an algorithm to approximate the distribution

p|Z∗n

using Markov Chain Monte Carlo Methods

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 13 / 55

Page 36: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Setting out the ProblemIn real problems it is difficult to observe the entire family tree{Xki : i = 1, 2, . . . , k = 0, 1, . . . , n} or even the random variablesZn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Usual Sample InformationZ∗n = {Zj : j = 0, . . . , n}

SolutionWe introduce an algorithm to approximate the distribution

p|Z∗n

using Markov Chain Monte Carlo Methods

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 13 / 55

Page 37: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Sample: Z∗n = {Zj : j = 0, . . . , n}

The Problem

p|Z∗n

Latent Variables:

Zn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Gibbs Sampler:p|Zn,Z∗n Zn|Z∗n , p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 14 / 55

Page 38: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Sample: Z∗n = {Zj : j = 0, . . . , n}

The Problem

p|Z∗n

Latent Variables:

Zn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Gibbs Sampler:p|Zn,Z∗n Zn|Z∗n , p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 14 / 55

Page 39: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Sample: Z∗n = {Zj : j = 0, . . . , n}

The Problem

p|Z∗n

Latent Variables:

Zn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Gibbs Sampler:p|Zn,Z∗n Zn|Z∗n , p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 14 / 55

Page 40: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Sample: Z∗n = {Zj : j = 0, . . . , n}

The Problem

p|Z∗n

Latent Variables:

Zn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Gibbs Sampler:p|Zn,Z∗n Zn|Z∗n , p

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 14 / 55

Page 41: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

First Conditional Distribution: p|Zn,Z∗n

p|Zn,Z∗n ≡ p|Zn ∼ D(αk +n∑

j=0

Zj(k) : k ∈ S)

For j = 0, . . . , nφ(Zj) =

∑k∈S

Zj(k)

Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 15 / 55

Page 42: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

First Conditional Distribution: p|Zn,Z∗n

p|Zn,Z∗n ≡ p|Zn ∼ D(αk +n∑

j=0

Zj(k) : k ∈ S)

For j = 0, . . . , nφ(Zj) =

∑k∈S

Zj(k)

Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 15 / 55

Page 43: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

First Conditional Distribution: p|Zn,Z∗n

p|Zn,Z∗n ≡ p|Zn ∼ D(αk +n∑

j=0

Zj(k) : k ∈ S)

For j = 0, . . . , nφ(Zj) =

∑k∈S

Zj(k)

Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 15 / 55

Page 44: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p

f (Zn|Z∗n , p) =n∏

j=0

f (Zj(k) : k ∈ S|Zj,Zj+1, p)

(Zj(k) : k ∈ S)|Zj,Zj+1, p

is obtained from aMultinomial(φ(Zj), p)

normalized by considering the constraint

Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 16 / 55

Page 45: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p

f (Zn|Z∗n , p) =n∏

j=0

f (Zj(k) : k ∈ S|Zj,Zj+1, p)

(Zj(k) : k ∈ S)|Zj,Zj+1, p

is obtained from aMultinomial(φ(Zj), p)

normalized by considering the constraint

Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 16 / 55

Page 46: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , pp

φ(Z0)Z0(k), k ∈ S

Z1 φ(Z1)Z1(k), k ∈ S

Z2 φ(Z2)...

......

Zn φ(Zn)Zn(k), k ∈ S

Zn+1

φ(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 17 / 55

Page 47: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , pp

φ(Z0)Z0(k), k ∈ S

Z1 φ(Z1)Z1(k), k ∈ S

Z2 φ(Z2)...

......

Zn φ(Zn)Zn(k), k ∈ S

Zn+1

φ(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 17 / 55

Page 48: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , pp

φ(Z0)Z0(k), k ∈ S

Z1 φ(Z1)Z1(k), k ∈ S

Z2 φ(Z2)...

......

Zn φ(Zn)Zn(k), k ∈ S

Zn+1

φ(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 17 / 55

Page 49: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , pp

φ(Z0)Z0(k), k ∈ S

Z1 φ(Z1)Z1(k), k ∈ S

Z2 φ(Z2)...

......

Zn φ(Zn)Zn(k), k ∈ S

Zn+1

φ(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 17 / 55

Page 50: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Developing the Method

Algorithm

Fixed p(0)

Do l = 1Generate Z(l)

n ∼ Zn|Z∗n , p(l−1)

Generate p(l) ∼ p|Z(l)n

Do l = l + 1

For a run of the sequence {p(l)}l≥0, we choose Q + 1 vectors in the way{p(N), p(N+G), . . . , p(N+QG)}, where N is the burn-in period and G is a batchsize.

The vectors {p(N), p(N+G), . . . , p(N+QG)} are considered independent samplesfrom p|Z∗n if G and N are large enough (Tierney (1994)).

Since these vectors could be affected by the initial state p(0), we apply thealgorithm T times, obtaining a final sample of length T(Q + 1).

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 18 / 55

Page 51: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Developing the Method

Algorithm

Fixed p(0)

Do l = 1Generate Z(l)

n ∼ Zn|Z∗n , p(l−1)

Generate p(l) ∼ p|Z(l)n

Do l = l + 1

For a run of the sequence {p(l)}l≥0, we choose Q + 1 vectors in the way{p(N), p(N+G), . . . , p(N+QG)}, where N is the burn-in period and G is a batchsize.

The vectors {p(N), p(N+G), . . . , p(N+QG)} are considered independent samplesfrom p|Z∗n if G and N are large enough (Tierney (1994)).

Since these vectors could be affected by the initial state p(0), we apply thealgorithm T times, obtaining a final sample of length T(Q + 1).

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 18 / 55

Page 52: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Developing the Method

Algorithm

Fixed p(0)

Do l = 1Generate Z(l)

n ∼ Zn|Z∗n , p(l−1)

Generate p(l) ∼ p|Z(l)n

Do l = l + 1

For a run of the sequence {p(l)}l≥0, we choose Q + 1 vectors in the way{p(N), p(N+G), . . . , p(N+QG)}, where N is the burn-in period and G is a batchsize.

The vectors {p(N), p(N+G), . . . , p(N+QG)} are considered independent samplesfrom p|Z∗n if G and N are large enough (Tierney (1994)).

Since these vectors could be affected by the initial state p(0), we apply thealgorithm T times, obtaining a final sample of length T(Q + 1).

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 18 / 55

Page 53: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Developing the Method

Algorithm

Fixed p(0)

Do l = 1Generate Z(l)

n ∼ Zn|Z∗n , p(l−1)

Generate p(l) ∼ p|Z(l)n

Do l = l + 1

For a run of the sequence {p(l)}l≥0, we choose Q + 1 vectors in the way{p(N), p(N+G), . . . , p(N+QG)}, where N is the burn-in period and G is a batchsize.

The vectors {p(N), p(N+G), . . . , p(N+QG)} are considered independent samplesfrom p|Z∗n if G and N are large enough (Tierney (1994)).

Since these vectors could be affected by the initial state p(0), we apply thealgorithm T times, obtaining a final sample of length T(Q + 1).

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 18 / 55

Page 54: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Offspring Distribution: k 0 1 2 3 4pk 0.28398 0.42014 0.233090 0.05747 0.00531

Parameters: m = 1.08, σ2 = 0.7884

Control function: φ(x) = 7 if x ≤ 7; x if 7 < x ≤ 20; 20 if x > 20

Simulated Data

0 20 40 60 80 100

510

1520

25

Controlled Branching Process

0 20 40 60 80 100

020

040

060

0

Galton−Watson Branching Process

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 19 / 55

Page 55: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Observed Data: n = 40

0 10 20 30 405

1015

2025

Generations

Indi

vidu

als

p ∼ D(1/2, . . . , 1/2)

Selection of N, G, Q and TGelman-Rubin-Brooks diagnostic plots.

Estimated potential scale reduction factor.

Autocorrelation values.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 20 / 55

Page 56: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Gelman-Rubin-Brooks diagnostic plots (CODA package for R)

0 2000 4000 6000 8000 10000

1.0

1.5

2.0

2.5

3.0

last iteration in chain

shrin

k fa

ctor

median97.5%

0 2000 4000 6000 8000 10000

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

last iteration in chain

shrin

k fa

ctor

median97.5%

0 2000 4000 6000 8000 10000

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

last iteration in chain

shrin

k fa

ctor

median97.5%

0 2000 4000 6000 8000 10000

1.0

1.5

2.0

2.5

3.0

3.5

last iteration in chain

shrin

k fa

ctor

median97.5%

0 2000 4000 6000 8000 10000

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

last iteration in chain

shrin

k fa

ctor

median97.5%

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 21 / 55

Page 57: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Examples

p ∼ D(1/2, . . . , 1/2)

Selection of N, G, Q and TN = 1000, G = 350, Q = 25 and T = 200

Gelman-Rubin-Brooks diagnostic plots.

Estimated potential scale reduction factor.

Autocorrelation values.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 22 / 55

Page 58: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Sample Information: Z∗nN = 1000, G = 350, Q = 25 and T = 200 (Sample Size: 5200)

p0

Den

sity

0.1 0.2 0.3 0.4 0.5 0.6

01

23

4

hpd 95% hpd 95%p0 p̂0

p1

Den

sity

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

hpd 95% hpd 95%p1p̂1

p2

Den

sity

0.0 0.1 0.2 0.3 0.4 0.5

01

23

45

6

hpd 95% hpd 95%p2p̂2

p3

Den

sity

0.00 0.05 0.10 0.15 0.20 0.25 0.30

05

1015

20

hpd 95% hpd 95%p3p̂3

p4

Den

sity

0.00 0.05 0.10 0.15

010

2030

4050

60

hpd 95% hpd 95%p4 p̂4

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 23 / 55

Page 59: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Sample Information: Z∗nN = 1000, G = 350, Q = 25 and T = 200 (Sample Size: 5200)

Offspring Mean

Den

sity

0.90 0.95 1.00 1.05 1.10 1.15 1.20

02

46

810

hpd 95% hpd 95%mm̂

Offspring Variance

Den

sity

0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

hpd 95% hpd 95%σ2σ̂2

Algorithm’s EfficiencyMEAN SD MCSE TSSE

m 1.051518 0.042049 0.000583 0.000551σ2 0.965560 0.219196 0.003040 0.002793

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 24 / 55

Page 60: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Sample Information: Z∗nN = 1000, G = 350, Q = 25 and T = 200 (Sample Size: 5200)

0 10 20 30 40

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Generations

Est

imat

es

0 10 20 30 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Generations

Est

imat

es

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 25 / 55

Page 61: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Non-Parametric/Parametric FrameworkOffspring Distribution: p = {pk : k ∈ S} S finite.Random Control Function: Power series family distributions, i.e.

P(φn(k) = j) = ak(j)θj/Ak(θ), j = 0, 1, . . . , θ ∈ Θ, k = 1, 2, . . .

ak(j) ≥ 0 known values, Ak(θ) =∑∞

j=0 ak(j)θj, Θ = {θ > 0 : Ak(θ) <∞}open subset of R.• Regularity assumption:∏

k∈B

Ak(θ) = A∑k∈B k(θ), for every B ⊆ N, θ ∈ Θ.

Sample: The entire family tree up to the current generation, Zn.Objective: Make inference on (p, θ)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 26 / 55

Page 62: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Non-Parametric/Parametric FrameworkOffspring Distribution: p = {pk : k ∈ S} S finite.Random Control Function: Power series family distributions, i.e.

P(φn(k) = j) = ak(j)θj/Ak(θ), j = 0, 1, . . . , θ ∈ Θ, k = 1, 2, . . .

ak(j) ≥ 0 known values, Ak(θ) =∑∞

j=0 ak(j)θj, Θ = {θ > 0 : Ak(θ) <∞}open subset of R.• Regularity assumption:∏

k∈B

Ak(θ) = A∑k∈B k(θ), for every B ⊆ N, θ ∈ Θ.

Sample: The entire family tree up to the current generation, Zn.Objective: Make inference on (p, θ)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 26 / 55

Page 63: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Likelihood Function

f (Zn|p, θ) ∝∏k∈S

pZ∗n,kk θY∗n /AYn(θ)

with Z∗n,k =∑n−1

l=0 Zl(k), k ∈ S; Yn =∑n−1

j=0 Zj and Y∗n =∑n−1

j=0 φj(Zj).

Conjugate Class of DistributionsPrior Distribution: (p, θ) ∼ p⊗ θ with p ∼ D(αk : k ∈ S) and

π(θ) = ϕ(a, b)−1θa/Ab(θ), where ϕ(a, b) =∫

Θθa/Ab(θ)dθ.

Posterior Distribution: (p, θ)|Zn ∼ p|Zn ⊗ θ|Zn withp|Zn ∼ D(αk + Z∗n,k : k ∈ S) and

π(θ|Zn) = ϕ(a + Y∗n , b + Yn)−1θa+Y∗n /Ab+Yn(θ)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 27 / 55

Page 64: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Bayesian Inference for Controlled Branching Processes

Likelihood Function

f (Zn|p, θ) ∝∏k∈S

pZ∗n,kk θY∗n /AYn(θ)

with Z∗n,k =∑n−1

l=0 Zl(k), k ∈ S; Yn =∑n−1

j=0 Zj and Y∗n =∑n−1

j=0 φj(Zj).

Conjugate Class of DistributionsPrior Distribution: (p, θ) ∼ p⊗ θ with p ∼ D(αk : k ∈ S) and

π(θ) = ϕ(a, b)−1θa/Ab(θ), where ϕ(a, b) =∫

Θθa/Ab(θ)dθ.

Posterior Distribution: (p, θ)|Zn ∼ p|Zn ⊗ θ|Zn withp|Zn ∼ D(αk + Z∗n,k : k ∈ S) and

π(θ|Zn) = ϕ(a + Y∗n , b + Yn)−1θa+Y∗n /Ab+Yn(θ)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 27 / 55

Page 65: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Usual Sample Information: Z∗n = {Zj : j = 0, . . . , n}

The Problem

(p, θ)|Z∗n

Latent Variables:

Zn = {Zj(k) : k ∈ S, j = 0, . . . , n}

Gibbs Sampler:

(p, θ)|Zn,Z∗n Zn|Z∗n , p, θ

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 28 / 55

Page 66: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

First Conditional Distribution: (p, θ)|Zn,Z∗n(p, θ)|Zn,Z∗n ≡ (p, θ)|Zn ≡ p|Zn ⊗ θ|Zn

p|Zn ∼ D(αk + Z∗n,k : k ∈ S)

π(θ|Zn) = ϕ(a + Y∗n , b + Yn)−1θa+Y∗n /Ab+Yn(θ)

For j = 0, . . . , n

φj(Zj) =∑k∈S

Zj(k) Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 29 / 55

Page 67: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

First Conditional Distribution: (p, θ)|Zn,Z∗n(p, θ)|Zn,Z∗n ≡ (p, θ)|Zn ≡ p|Zn ⊗ θ|Zn

p|Zn ∼ D(αk + Z∗n,k : k ∈ S)

π(θ|Zn) = ϕ(a + Y∗n , b + Yn)−1θa+Y∗n /Ab+Yn(θ)

For j = 0, . . . , n

φj(Zj) =∑k∈S

Zj(k) Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 29 / 55

Page 68: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ

f (Zn|Z∗n , p, θ) =n∏

j=0

f (Zj(k) : k ∈ S|Zj,Zj+1, p, θ)

P(Zl(k) = zl(k), k ∈ S | Zl = zl,Zl+1 = zl+1, p, θ)

=1

pzl,zl+1

φ∗l !∏k∈S zl(k)!

∏k∈S

pzl(k)k al (φ∗l ) θφ

∗l /Al(θ)

zl =∑

k∈S zl(k), zl+1 =∑

k∈S kzl(k), φ∗l =∑

k∈S zl(k) andpzl,zl+1 = P(Zl+1 = zl+1 | Zl = zl, p, θ)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 30 / 55

Page 69: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ

f (Zn|Z∗n , p, θ) =n∏

j=0

f (Zj(k) : k ∈ S|Zj,Zj+1, p, θ)

P(Zl(k) = zl(k), k ∈ S | Zl = zl,Zl+1 = zl+1, p, θ)

=1

pzl,zl+1

φ∗l !∏k∈S zl(k)!

∏k∈S

pzl(k)k al (φ∗l ) θφ

∗l /Al(θ)

zl =∑

k∈S zl(k), zl+1 =∑

k∈S kzl(k), φ∗l =∑

k∈S zl(k) andpzl,zl+1 = P(Zl+1 = zl+1 | Zl = zl, p, θ)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 30 / 55

Page 70: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 71: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 72: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 73: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 74: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 75: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 76: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 77: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Introducing the Method

Second Conditional Distribution: Zn|Z∗n , p, θ(p, θ)

Z0 φ0(Z0)Z0(k), k ∈ S

Z1 φ1(Z1)Z1(k), k ∈ S

Z2 φ2(Z2)...

......

Zn φn(Zn)Zn(k), k ∈ S

Zn+1

φj(Zj) =∑k∈S

Zj(k), Zj+1 =∑k∈S

kZj(k)

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 31 / 55

Page 78: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Developing the Method

AlgorithmInitialize l = 0Generate p(0) ∼ Dirichlet(α)Generate θ(0) from π(θ) = ϕ(a, b)−1θa/Ab(θ)Iterate

l = l + 1Generate Z(l)

n ∼ f (Zn | Z∗n , p(l−1), θ(l−1))Generate (p(l), θ(l)) ∼ π(p, θ | Z(l)

n )

For a run of the sequence {(θ, p)(l)}l≥0, we choose Q + 1 vectors in the way{(θ, p)(N), (θ, p)(N+G)), . . . , (θ, p)(N+QG)}, where N is a burning period and Gis a batch size.

The vectors {(θ, p)(N), (θ, p)(N+G), . . . , (θ, p)(N+QG)} are consideredindependent samples from (θ, p)|Z∗n if G and N are large enough.

Since these vectors could be affected by the initial state (θ, p)(0), we apply thealgorithm T times, obtaining a final sample of length T(Q + 1).

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 32 / 55

Page 79: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Developing the Method

AlgorithmInitialize l = 0Generate p(0) ∼ Dirichlet(α)Generate θ(0) from π(θ) = ϕ(a, b)−1θa/Ab(θ)Iterate

l = l + 1Generate Z(l)

n ∼ f (Zn | Z∗n , p(l−1), θ(l−1))Generate (p(l), θ(l)) ∼ π(p, θ | Z(l)

n )

For a run of the sequence {(θ, p)(l)}l≥0, we choose Q + 1 vectors in the way{(θ, p)(N), (θ, p)(N+G)), . . . , (θ, p)(N+QG)}, where N is a burning period and Gis a batch size.

The vectors {(θ, p)(N), (θ, p)(N+G), . . . , (θ, p)(N+QG)} are consideredindependent samples from (θ, p)|Z∗n if G and N are large enough.

Since these vectors could be affected by the initial state (θ, p)(0), we apply thealgorithm T times, obtaining a final sample of length T(Q + 1).

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 32 / 55

Page 80: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Offspring Distribution: k 0 1 2 3 4pk 0.0081 0.0756 0.2646 0.4116 0.2401

Parameters: m = 2.8, σ2 = 0.84

Random Control function: φn(k) ∼ Binom(k, θ), k = 0, 1, . . .; θ = 0.35

Simulated Data

0 20 40 60 80 100

2040

6080

100

120

CBP with Binomial Control

generations

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 33 / 55

Page 81: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Observed Data: n = 40

0 10 20 30 4010

2030

4050

60

CBP with Binomial Control

generations

p ∼ D(1/2, . . . , 1/2)

Selection of N, G, Q and TGelman-Rubin-Brooks diagnostic plots.

Estimated potential scale reduction factor.

Autocorrelation values.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 34 / 55

Page 82: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Gelman-Rubin-Brooks diagnostic plots (CODA package for R)

0 10000 20000 30000 40000

12

34

5

last iteration in chain

shrin

k fa

ctor

median97.5%

0 10000 20000 30000 40000

12

34

5

p0

last iteration in chain

shrin

k fa

ctor

median97.5%

0 10000 20000 30000 40000

24

68

p1

last iteration in chain

shrin

k fa

ctor

median97.5%

0 10000 20000 30000 40000

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

p2

last iteration in chain

shrin

k fa

ctor

median97.5%

0 10000 20000 30000 40000

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p3

last iteration in chain

shrin

k fa

ctor

median97.5%

0 10000 20000 30000 40000

12

34

p4

last iteration in chain

shrin

k fa

ctor

median97.5%

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 35 / 55

Page 83: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Examples

p ∼ D(1/2, . . . , 1/2)

Selection of N, G, Q and TN = 10000, G = 1000, Q = 30 and T = 59

Gelman-Rubin-Brooks diagnostic plots.

Estimated potential scale reduction factor.

Autocorrelation values.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 36 / 55

Page 84: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Gibbs Sampler: Simulated Example

Sample Information: Z∗nN = 10000, G = 1000, Q = 30 and T = 59 (Sample Size: 1770)

Den

sity

1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

mm̂

Den

sity

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

θ̂θ

Den

sity

0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

mθ mθ̂

Algorithm’s EfficiencyMEAN SD MCSE TSSE

m 1.4021 0.3100 0.0073 0.0077θ 0.7518 0.1492 0.0035 0.0036

mθ 1.0551 0.3203 0.0075 0.0074

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 37 / 55

Page 85: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Approximate Bayesian Computation

Marin, J.M., Pudlo,P., Robert,C.P., Ryder,R.J. (2011). Approximate Bayesiancomputational methods. Statistics and Computing.DOI 10.1007/s11222-011-9288-2

Likelihood-free rejection sampler: πε(p, θ|Z∗n )

for i = 1 to N dorepeat

Generate p′ ∼ Dirichlet(α)Generate θ′ from π(θ) = ϕ(a, b)−1θa/Ab(θ)Generate Z ′n from the likelihood f (Zn|p′, θ′)

until ρ(S(Z ′n),S(Zn)) ≤ εset (pi, θi) = (p′, θ′)

end for

S(·) a function on Zn defining a summary statistic: S(Zn) = Z∗n .ρ is a metric on S(Zn).ε a tolerance level.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 38 / 55

Page 86: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Approximate Bayesian Computation

Marin, J.M., Pudlo,P., Robert,C.P., Ryder,R.J. (2011). Approximate Bayesiancomputational methods. Statistics and Computing.DOI 10.1007/s11222-011-9288-2

Likelihood-free rejection sampler: πε(p, θ|Z∗n )

for i = 1 to N dorepeat

Generate p′ ∼ Dirichlet(α)Generate θ′ from π(θ) = ϕ(a, b)−1θa/Ab(θ)Generate Z ′n from the likelihood f (Zn|p′, θ′)

until ρ(S(Z ′n),S(Zn)) ≤ εset (pi, θi) = (p′, θ′)

end for

S(·) a function on Zn defining a summary statistic: S(Zn) = Z∗n .ρ is a metric on S(Zn).ε a tolerance level.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 38 / 55

Page 87: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Approximate Bayesian Computation

Marin, J.M., Pudlo,P., Robert,C.P., Ryder,R.J. (2011). Approximate Bayesiancomputational methods. Statistics and Computing.DOI 10.1007/s11222-011-9288-2

Likelihood-free rejection sampler: πε(p, θ|Z∗n )

for i = 1 to N dorepeat

Generate p′ ∼ Dirichlet(α)Generate θ′ from π(θ) = ϕ(a, b)−1θa/Ab(θ)Generate Z ′n from the likelihood f (Zn|p′, θ′)

until ρ(S(Z ′n),S(Zn)) ≤ εset (pi, θi) = (p′, θ′)

end for

S(·) a function on Zn defining a summary statistic: S(Zn) = Z∗n .ρ is a metric on S(Zn).ε a tolerance level.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 38 / 55

Page 88: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Approximate Bayesian Computation

Likelihood-free rejection sampler: πε(p, θ|Z∗n )

for i = 1 to N dorepeat

Generate p′ ∼ Dirichlet(α)Generate θ′ from π(θ) = ϕ(a, b)−1θa/Ab(θ)Generate Z ′n from the likelihood f (Zn|p′, θ′)

until ρ(S(Z ′n),S(Zn)) ≤ εset (pi, θi) = (p′, θ′)

end for

ρ is a metric on S(Zn). Wilkinson (2008)

ρ(Z∗n ,Z ′∗n) =

∣∣∣∣∑ni=1 Z′i∑ni=1 Zi

− 1∣∣∣∣+

12

n∑j=1

∣∣∣∣ Zj∑ni=1 Zi

−Z′j∑ni=1 Z′i

∣∣∣∣M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 39 / 55

Page 89: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Offspring Distribution: k 0 1 2 3 4pk 0.28398 0.42014 0.233090 0.05747 0.00531

Parameters: m = 1.08, σ2 = 0.7884

Control function: φ(x) = 7 if x ≤ 7; x if 7 < x ≤ 20; 20 if x > 20

Observed Data: n = 40

0 10 20 30 40

510

1520

25

Generations

Indi

vidu

als

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 40 / 55

Page 90: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 10

0.10 0.12 0.14 0.16 0.18 0.20

5000

1000

015

000

2000

025

000

3000

0

Tolerance

effe

ctiv

e sa

mpl

e si

ze o

ver

5 m

illio

ns o

f sim

ulat

ions

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 41 / 55

Page 91: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 10

0.8 1.0 1.2 1.4

01

23

45

Tolerance: 0.11

Den

sity

0.6 0.8 1.0 1.2 1.4

01

23

45

Tolerance: 0.12

Den

sity

0.6 0.8 1.0 1.2 1.40

12

34

5

Tolerance: 0.13

Den

sity

0.6 0.8 1.0 1.2 1.4

01

23

45

Tolerance: 0.14

Den

sity

0.6 0.8 1.0 1.2 1.4

01

23

45

Tolerance: 0.15

Den

sity

0.6 0.8 1.0 1.2 1.4 1.6

01

23

45

Tolerance: 0.16

Den

sity

0.6 0.8 1.0 1.2 1.4 1.6

01

23

45

Tolerance: 0.17

Den

sity

0.6 0.8 1.0 1.2 1.4 1.6

01

23

45

Tolerance: 0.18

Den

sity

0.6 0.8 1.0 1.2 1.4 1.6

01

23

45

Tolerance: 0.19

Den

sity

0.6 0.8 1.0 1.2 1.4 1.6

01

23

45

Tolerance: 0.2

Den

sity

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 42 / 55

Page 92: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information: Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 10

● ●

0.12 0.14 0.16 0.18 0.20

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Tolerance

ISE

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 43 / 55

Page 93: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 20

0.10 0.12 0.14 0.16 0.18 0.20

2000

040

000

6000

080

000

Tolerance

effe

ctiv

e sa

mpl

e si

ze o

ver

10 m

illio

ns o

f sim

ulat

ions

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 44 / 55

Page 94: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 20

0.9 1.0 1.1 1.2 1.3 1.4

02

46

8

Tolerance: 0.11

Den

sity

0.9 1.0 1.1 1.2 1.3 1.4

02

46

8

Tolerance: 0.12

Den

sity

0.9 1.0 1.1 1.2 1.3 1.40

24

68

Tolerance: 0.13

Den

sity

0.9 1.0 1.1 1.2 1.3 1.4 1.5

02

46

8

Tolerance: 0.14

Den

sity

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

02

46

8

Tolerance: 0.15

Den

sity

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

02

46

8

Tolerance: 0.16

Den

sity

0.8 1.0 1.2 1.4

02

46

8

Tolerance: 0.17

Den

sity

0.8 1.0 1.2 1.4

02

46

8

Tolerance: 0.18

Den

sity

0.8 1.0 1.2 1.4

02

46

8

Tolerance: 0.19

Den

sity

0.8 1.0 1.2 1.4

02

46

8

Tolerance: 0.2

Den

sity

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 45 / 55

Page 95: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information: Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 20

●●

0.12 0.14 0.16 0.18 0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tolerance

ISE

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 46 / 55

Page 96: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 30

● ● ●●

0.10 0.12 0.14 0.16 0.18 0.20

010

000

2000

030

000

4000

050

000

6000

0

Tolerance

effe

ctiv

e sa

mpl

e si

ze o

ver

20 m

illio

ns o

f sim

ulat

ions

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 47 / 55

Page 97: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 30

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.11

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.12

Den

sity

0.9 1.0 1.1 1.20

24

68

Tolerance: 0.13

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.14

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.15

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.16

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.17

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.18

Den

sity

0.8 0.9 1.0 1.1 1.2 1.3 1.4

02

46

8

Tolerance: 0.19

Den

sity

0.8 0.9 1.0 1.1 1.2 1.3 1.4

02

46

8

Tolerance: 0.2

Den

sity

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 48 / 55

Page 98: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information: Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 30

0.12 0.14 0.16 0.18 0.20

0.05

0.10

0.15

0.20

0.25

0.30

Tolerance

ISE

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 49 / 55

Page 99: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 40

● ● ● ●●

0.10 0.12 0.14 0.16 0.18 0.20

050

0010

000

1500

0

Tolerance

effe

ctiv

e sa

mpl

e si

ze o

ver

20 m

illio

ns o

f sim

ulat

ions

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 50 / 55

Page 100: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 40

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

02

46

8

Tolerance: 0.13

Den

sity

0.9 1.0 1.1 1.2

02

46

8

Tolerance: 0.14

Den

sity

0.9 1.0 1.1 1.2

02

46

8

Tolerance: 0.15

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.16

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.17

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.18

Den

sity

0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.19

Den

sity

0.8 0.9 1.0 1.1 1.2 1.3

02

46

8

Tolerance: 0.2

Den

sity

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 51 / 55

Page 101: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

ABC: Simulated Example

Sample Information: Z∗n , p ∼ D(1/2, . . . , 1/2), N = 20 millionsGeneration 40

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Tolerance

ISE

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 52 / 55

Page 102: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Concluding Remarks

In a non-parametric Bayesian framework we can make inference on theoffspring distribution of CBP, and consequently on the rest of offspringparameters, without observing the entire family tree, but onlyconsidering the total number of individuals in each generation.

We use a MCMC method (Gibbs sampler) in order to give a "likely"approach to family trees, for both CBP with deterministic and withrandom control function.

We take advantage of the ABC methodology to make inference on themain parameters of the model by simulating.

The ABC approach shows a quite good behaviour, being a goodalternative to the MCMC approach.

We have developed the above methodologies using statistical softwareand programming environment R.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 53 / 55

Page 103: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Concluding Remarks

In a non-parametric Bayesian framework we can make inference on theoffspring distribution of CBP, and consequently on the rest of offspringparameters, without observing the entire family tree, but onlyconsidering the total number of individuals in each generation.

We use a MCMC method (Gibbs sampler) in order to give a "likely"approach to family trees, for both CBP with deterministic and withrandom control function.

We take advantage of the ABC methodology to make inference on themain parameters of the model by simulating.

The ABC approach shows a quite good behaviour, being a goodalternative to the MCMC approach.

We have developed the above methodologies using statistical softwareand programming environment R.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 53 / 55

Page 104: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Concluding Remarks

In a non-parametric Bayesian framework we can make inference on theoffspring distribution of CBP, and consequently on the rest of offspringparameters, without observing the entire family tree, but onlyconsidering the total number of individuals in each generation.

We use a MCMC method (Gibbs sampler) in order to give a "likely"approach to family trees, for both CBP with deterministic and withrandom control function.

We take advantage of the ABC methodology to make inference on themain parameters of the model by simulating.

The ABC approach shows a quite good behaviour, being a goodalternative to the MCMC approach.

We have developed the above methodologies using statistical softwareand programming environment R.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 53 / 55

Page 105: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Concluding Remarks

In a non-parametric Bayesian framework we can make inference on theoffspring distribution of CBP, and consequently on the rest of offspringparameters, without observing the entire family tree, but onlyconsidering the total number of individuals in each generation.

We use a MCMC method (Gibbs sampler) in order to give a "likely"approach to family trees, for both CBP with deterministic and withrandom control function.

We take advantage of the ABC methodology to make inference on themain parameters of the model by simulating.

The ABC approach shows a quite good behaviour, being a goodalternative to the MCMC approach.

We have developed the above methodologies using statistical softwareand programming environment R.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 53 / 55

Page 106: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Concluding Remarks

In a non-parametric Bayesian framework we can make inference on theoffspring distribution of CBP, and consequently on the rest of offspringparameters, without observing the entire family tree, but onlyconsidering the total number of individuals in each generation.

We use a MCMC method (Gibbs sampler) in order to give a "likely"approach to family trees, for both CBP with deterministic and withrandom control function.

We take advantage of the ABC methodology to make inference on themain parameters of the model by simulating.

The ABC approach shows a quite good behaviour, being a goodalternative to the MCMC approach.

We have developed the above methodologies using statistical softwareand programming environment R.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 53 / 55

Page 107: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

References

Bagley, J. H. (1986). On the almost sure convergence of controlled branching processes. Journal of Applied Probability, 23:827-831.

M. González, M. Molina, I. del Puerto (2002). On the class of controlled branching process with random control functions. Journal ofApplied Probability, 39 (4), 804-815.

M. González, M. Molina, I. del Puerto (2003). On the geometric growth in controlled branching processes with random controlfunction. Journal of Applied Probability, 40(4), 995-1006.

M. González, M. Molina, I. del Puerto (2004). Limiting distribution for subcritical controlled branching processes with randomcontrol function. Statistics and Probability Letters, 67(3), 277-284.

M. González, M. Molina, I. del Puerto (2005a). Asymptotic behaviour of critical controlled branching process with random controlfunction. Journal of Applied Probability, 42(2), 463-477.

M. González, M. Molina, I. del Puerto (2005b). On the L2-convergence of controlled branching processes with random controlfunction. Bernoulli, 11(1), 37-46.

M. Molina, M. González, M. Mota (1998). Some theoretical results about superadditive controlled Galton-Watson branchingprocesses. Proceedings of the International Conference Prague Stochastics98, 2, 413-418.

Sevast’yanov, B. A. and Zubkov, A. (1974). Controlled branching processes. Theory of Probability and its Applications, 19:14-24.

Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics, 22, 1701-1762.

Wilkinson, R.D. (2008). Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.Technical Report. arXiv:0811.3355.

Zubkov, A. M. (1974). Analogies between Galton-Watson processes and φ-branching processes. Theory of Probability and itsApplications,19:309-331.

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 54 / 55

Page 108: MCMC and ABC Methodologies in the context of Controlled ...villegas/PDF/GonzalezPuerto.pdf · Contents 1 Controlled Branching Processes 2 MCMC for CBP with Deterministic Control Function

Thank you very much!

M. González (Universidad de Extremadura) Bayesian Inference for CBP Workshop Métodos Bayesianos 11 55 / 55