Top Banner
PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively November 13 th , 2015
16

Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Mar 17, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic

WavesJ. B. Snively

November 13th, 2015

Page 2: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Today’s Class

Maxwell’s EquationsIntro to WavesSummary

Page 3: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Maxwell’s EquationsI

⇥E · d ⇥A =Q

encl

�o

Gauss’s Law:(E Field)

I�B · d �A = 0

Gauss’s Law:(B Field)

I⇥B · d⇥l = µ

o

✓iC

+ �o

d�E

dt

encl

Ampere’s Law:(B Field)

I�E · d�l = �d�B

dt

Faraday’s Law:(E Field)

Page 4: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Together with the Lorentz Force (F=qE+qvxB), these equations describe classical electromagnetic interactions.

With some math, can be expressed in “point form” or “differential form”, which allows convenient calculation of the electromagnetic wave equations.

Maxwell’s Equations

Page 5: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Maxwell’s EquationsGauss’s Law:

(E Field)

Gauss’s Law:(B Field)

Ampere’s Law:(B Field)

Faraday’s Law:(E Field)

r⇥ ⇤B = µo

⇤J + �

o

⇥ ⇤E

⇥t

!

r⇥ ⇥E = �� ⇥B

�t

� · �B = 0

� · ⇤E =⇥

�o

Page 6: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Radiation (i.e., Radiation of Waves)

Acceleration of Charge

Changing Currentor

Occurs as a result of:

Page 7: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Today’s Class

Maxwell’s EquationsIntro to WavesSummary

Page 8: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves

Transverse – E and B fields are perpendicular to the direction of propagation. Propagates in direction of ExB.

In a vacuum (Free Space), the wave propagates at the speed of light “c”.

Magnitudes of E and B are related by

Page 9: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Wavelength and Frequency

Propagate at the speed of light:

c =1

p�o

µo

k= c

k=wavenumber, where wavelength: � =2⇥

k

and frequency (Hertz) is given by:

We can thus write: � =c

f

f =⇥

2�

Page 10: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves The Spectrum

Page 11: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Plane Waves

Page 12: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Sinusoidal Solutions...

E = Emax

cos(kx� �t)

B = Bmax

cos(kx� �t)

Emax

= cBmax

Field amplitudes determined by speed of light:

c =1

p�o

µo

For a plane wave traveling in the x-direction:

Page 13: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Sinusoidal Solutions...

⇥E =

ˆjEmax

cos(kx� �t)⇥B =

ˆkBmax

cos(kx� �t)

⇥B = �ˆkBmax

cos(kx+ �t)

⇥E =

ˆjEmax

cos(kx+ �t)

Page 14: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves Materials other than “Free Space”

Define wave speed v, where v≤c:

v =1

p�µ

� = K�o

µ = Km

µo

Recall that: ,

v =1

p�µ

=1p

KKm

1p�o

µo

=cp

KKm

Page 15: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Electromagnetic Waves “Index of Refraction”

Can define index of refraction, relating the wave speed v in a material with speed of light c:

n =c

v=

pKKm

Keep in mind, however, that dielectric “constant” K varies with frequency.

(Also note that Km = 1 for many materials.)

Page 16: Maxwell’s Equations and Electromagnetic Wavespages.erau.edu/~snivelyj/ps250/PS250-Lecture27.pdf · PS 250: Lecture 27 Maxwell’s Equations and Electromagnetic Waves J. B. Snively

Summary / Next Class:

Mastering Physics for Monday.

Homework for next-next Wednesday