Top Banner
Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Isenburg Stefan Gumhold Ioannis Ivrissimtzis Hans-Peter INFORMATIK INFORMATIK
57

Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Max-Plank Institut für Informatik

systematic error

parallelogram rule

polygonal rules

exact prediction

Geometry Prediction

forHigh Degree

Polygons

Martin Isenburg Stefan Gumhold

Ioannis Ivrissimtzis Hans-Peter Seidel

INFORMATIKINFORMATIK

Page 2: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Compression

• real stuff– sleeping bags

– compressed air

• polygon meshes– faster downloads / less storage

– collaborative CAD

– distribution of simulation results

– archival of spare parts / history

Page 3: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Movies

“Rustboy” animated short by Brian Taylor

Page 4: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Engineering

“Audi A8” created by Roland Wolf

Page 5: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Architectural Visualization

“Atrium” created by Karol Myszkowski and Frederic Drago

Page 6: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Product Catalogues

“Bedroom set-model Assisi” created by Stolid

Page 7: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Historical Study

scanning of “Michelangelo’s David” courtesy of Marc Levoy

Page 8: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Computer Games

screen shot of “The village of Gnisis”, The Elder Scrolls III

Page 9: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

– Efficient Rendering

– Progressive Transmission

– Maximum Compression

• Connectivity

• Geometry

• Properties

Mesh Compression

Geometry Compression [Deering, 95]

storage / network

main memory

Maximum Compression

Page 10: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Most Popular Coder

Triangle Mesh Compression[Touma & Gotsman, 98]

. . . . . .64 4 4 M 5 4S6 6 6

• connectivity with vertex degrees

( )-3-21

( )74-3

( )20-2

. . . . . .( )1-1-1

( )-200

( )-47-2

( )1-21

( )24-1

• geometry with corrective vectors

Page 11: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Coding Connectivity

Page 12: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Predicting Geometry

Page 13: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Not Triangles … Polygons!

Face Fixer [Isenburg & Snoeyink, 00]

Page 14: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Coding Polygon Connectivity

Compressing Polygon Mesh Connectivity with Degree Duality … [Isenburg, 02]

same compression in primal and dual !!

Page 15: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Predicting Polygon Geometry

Compressing Polygon Mesh Geometry with Parallelogram … [Isenburg & Alliez, 02]

but … does not work well in the dual !!

Page 16: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

High Degree Polygons

v2v1

v0

v4

v2v1

v0 v3

c0 = 0.8090c1 = -0.3090c2 = -0.3090c3 = 0.8090

c0 = 0.8c1 = -0.6c2 = -0.4c3 = 1.2

v3

v4

c0 = 0.9009c1 = -0.6234c2 = 0.2225c3 = 0.2225c4 = -0.6234c0 = 0.9009v2v1

v0v3

v4

v5

v6

v2v1

v3v0

c0 = 1.0c1 = -1.0c2 = 1.0

polygonal rules: vp = c0 v0 + c1 v1 + … + cp-1 vp-1

v2v1

v2v1

v0v3

v3v0

v2v1

v0v3

v2v1

v0 v3

parallelogram rule: v3 = v0 – v1 + v2

Page 17: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Overview

• Motivation

• Geometry Compression

• Frequency of Polygons

• Polygonal Prediction Rules

• Results

• DiscussionINFORMATIKINFORMATIK

Page 18: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

Geometry Compression[Deering, 95]

Geometric Compression through topological surgery [Taubin & Rossignac, 98]

Triangle Mesh Compression[Touma & Gotsman, 98]

Java3D

MPEG - 4

Virtue3D

Page 19: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

• Recent approaches [00 – 03]:– spectral

– re-meshing

– space-dividing

– vector-quantization

– angle-based

– delta coordinates

Page 20: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

• Recent approaches [00 – 03]:– spectral

– re-meshing

– space-dividing

– vector-quantization

– angle-based

– delta coordinates

Spectral Compressionof Mesh Geometry

[Karni & Gotsman, 00]

expensive numericalcomputations

Page 21: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

• Recent approaches [00 – 03]:– spectral

– re-meshing

– space-dividing

– vector-quantization

– angle-based

– delta coordinates

Progressive GeometryCompression

[Khodakovsky et al., 00]

modifies mesh priorto compression

Page 22: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

• Recent approaches [00 – 03]:– spectral

– re-meshing

– space-dividing

– vector-quantization

– angle-based

– delta coordinates

Geometric Compressionfor interactive transmission

[Devillers & Gandoin, 00]

poly-soups; complexgeometric algorithms

Page 23: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

• Recent approaches [00 – 03]:– spectral

– re-meshing

– space-dividing

– vector-quantization

– angle-based

– delta coordinates

Vertex data compressionfor triangle meshes

[Lee & Ko, 00]

local coord-system +vector-quantization

Page 24: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

• Recent approaches [00 – 03]:– spectral

– re-meshing

– space-dividing

– vector-quantization

– angle-based

– delta coordinates

Angle-Analyzer: A triangle-quad mesh codec

[Lee, Alliez & Desbrun, 02]

dihedral + internal =heavy trigonometry

Page 25: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometry Compression

• Classic approaches [95 – 98]:– linear prediction

• Recent approaches [00 – 03]:– spectral

– re-meshing

– space-dividing

– vector-quantization

– angle-based

– delta coordinates

High-Pass Quantization forMesh Encoding

[Sorkine et al., 03]

basis transformationwith Laplacian matrix

Page 26: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Linear Prediction Schemes

1. quantize positions with b bits

2. traverse positions

3. linear prediction from neighbors

4. store corrective vector

(1.2045, -0.2045, 0.7045) (1008, 68, 718)floating point integer

Page 27: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Linear Prediction Schemes

1. quantize positions with b bits

2. traverse positions

3. linear prediction from neighbors

4. store corrective vector

use traversal order implied bythe connectivity coder

Page 28: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Linear Prediction Schemes

1. quantize positions with b bits

2. traverse positions

3. linear prediction from neighbors

4. store corrective vector

(1004, 71, 723)apply prediction rule prediction

Page 29: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Linear Prediction Schemes

1. quantize positions with b bits

2. traverse positions

3. linear prediction from neighbors

4. store corrective vector0

10

20

30

40

50

60

70

position distribution

0

500

1000

1500

2000

2500

3000

3500

corrector distribution

(1004, 71, 723)(1008, 68, 718)position

(4, -3, -5)correctorprediction

Page 30: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Deering, 95

Prediction: Delta-Coding

A

processed regionunprocessed region

P

P = A

Page 31: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Taubin & Rossignac, 98

Prediction: Spanning Tree

A

BC D

E

processed regionunprocessed region

P

P = αA + βB + γC + δD + εE + …

Page 32: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Touma & Gotsman, 98

Prediction: Parallelogram Rule

processed regionunprocessed region

P

P = A – B + C

A

BC

Page 33: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

“within”- predictions often find existing parallelograms (i.e. quadrilateral faces)

“within” versus “across”

“within”- predictions avoid creases

within-predictionacross-prediction

Page 34: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Overview

• Motivation

• Geometry Compression

• Frequency of Polygons

• Polygonal Prediction Rules

• Results

• DiscussionINFORMATIKINFORMATIK

Page 35: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Discrete Fourier Transform (1)

)1)(1()1(21

)1(242

12

1

1

1

1111

1F

nnnn

n

n

n

nn CC

ni /2e where .

The Discrete Fourier Transform (DFT) of a complex vector is a basis transform that is described by the matrix:

nC

Page 36: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Discrete Fourier Transform (2)

Here is the Fourier Transform of .

1

2

1

0

1

2

1

0

)1)(1()1(21

)1(242

12

1

1

1

1111

1

nnnnnn

n

n

p

p

p

p

z

z

z

z

n

1

2

1

0

nz

z

z

z

1

2

1

0

np

p

p

p

Page 37: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Discrete Fourier Transform (3)

Rewriting the equation makes the change of basis more obvious.

This basis is called the Fourier Basis.

1

2

1

0

)1)(1(

)1(2

1

1

)1(2

4

2

2

1

210

111

1

1

1

1

nnn

n

n

n

nn p

p

p

p

zzzz

basis vectors

n

1

Page 38: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Geometric Interpretation

4

3

2

1

0

15

12

8

4

4

12

9

6

3

3

8

6

4

2

2

4

3

210

1111

1

1

1

1

1

p

p

p

p

p

zzzzz

v2

v1

v0

v3

v4

Page 39: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

6

4

2

2

1

z

The parallelogramrule predicts thehighest frequencyto be zero: 02 z

Predict with Low Frequencies

3

2

1

0

9

6

3

3

6

4

2

2

3

210

111

1

1

1

1

p

p

p

p

zzzz

v2

v1

v0

v3v3

v2

v1

v0

v3v3

Page 40: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Overview

• Motivation

• Geometry Compression

• Frequency of Polygons

• Polygonal Prediction Rules

• Results

• DiscussionINFORMATIKINFORMATIK

Page 41: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Eliminate High Frequencies (1)

v3

v2

v1

v4

v0

v3v5

5

4

3

2

1

0

25

20

15

10

5

5

20

15

12

8

4

4

15

12

9

6

3

3

10

8

6

4

2

2

5

4

3

2

10

11111

1

1

1

1

1

1

p

p

p

p

p

p

zzzzzz

v3

v2

v1

v4

v0

v3v5

Page 42: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Eliminate High Frequencies (2)

v2

v3

v1

v0

v4

v1

v0

v4

v2

v3

4

3

2

1

0

15

12

8

4

4

12

9

6

3

3

8

6

4

2

2

4

3

210

1111

1

1

1

1

1

p

p

p

p

p

zzzzz

Page 43: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Eliminate High Frequencies (3)

4

3

2

1

0

15

12

8

4

4

12

9

6

3

3

8

6

4

2

2

4

3

210

1111

1

1

1

1

1

p

p

p

p

p

zzzzz

v1

v0

v4

v3

v2

v1

v0

v4

v3

v2

Page 44: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Computing the Coefficients

given k of n points are known:1. write polygon in Fourier basis2. put n-k highest frequencies to zero3. invert known sub-matrix4. calculate prediction coefficients

1

2

1

0

1

2

1

0

)1)(1()1(21

)1(242

12

1

1

1

1111

1

nnnnnn

n

n

p

p

p

p

z

z

z

z

n

knownpoints

missingpoints

Page 45: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Example: n = 5, k = 3

v0

v1

v4

v2

v3

4

3

2

1

0

4

3

2

1

0

151284

12963

8642

432

1

1

1

1

11111

5

1

p

p

p

p

p

z

z

z

z

z

4

1

0

4

1

0

154

4

1

1

111

5

1

p

p

p

z

z

z

4

1

0

444140

141110

040100

4

1

0

p

p

p

iii

iii

iii

z

z

z 4041010000 pipipiz

4141110101 pipipiz

4441410404 pipipiz

missingpoints

v0

v1

v4

v2

v3

knownpoints

Page 46: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Example: n = 5, k = 3

48

12

025

1zzzp

)()(5

1444141040

8414111010

2404101000 pipipipipipipipipi

444

814

204

141

811

201

040

810

200

5

)(

5

)(

5p

iiip

iiip

iii

0c 1c 4c

v0

v1

v4

v2

v3

missingpoints

4

3

2

1

0

4

3

2

1

0

151284

12963

8642

432

1

1

1

1

11111

5

1

p

p

p

p

p

z

z

z

z

z

knownpoints

Page 47: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Polygonal Predictors

v2v1

v0v3

v2v1

v0 v3

c0 = 1.0c1 = -1.6180c2 = 1.6180

c0 = 1.0c1 = -2.0c2 = 2.0

v2v1

v0 v3

c0 = 1.0c1 = -2.2470c2 = 2.2470

v2v1

v0v3

c0 = 1.0c1 = -2.4142c2 = 2.4142

• three vertices are known

v2v1

v0

v4

v3

c0 = 0.8090c1 = -0.3090c2 = -0.3090c3 = 0.8090

v3

v2

v0 v3

c0 = 1.0c1 = -1.0c2 = 1.0c3 = -1.0c4 = 1.0

v4v5

c0 = 0.9009c1 = -0.6234c2 = 0.2225c3 = 0.2225c4 = -0.6234c5 = 0.9009v2v1

v0 v3

v4

v5

v6

v2v1

v0 v3

v4

c0 = 1.0 c1 = -1.0 c2 = 1.0 c3 = -1.0 c4 = 1.0 c5 = -1.0 c6 = 1.0

v7

v5v6

v1

• one vertex is missing

Page 48: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Overview

• Motivation

• Geometry Compression

• Frequency of Polygons

• Polygonal Prediction Rules

• Results

• DiscussionINFORMATIKINFORMATIK

Page 49: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Test Set of Dual Meshes

Page 50: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Parallelogram vs. Polygonal

Page 51: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Prediction Rule Histogram

hexagon hexagon hexagon

heptagon heptagon heptagon

pentagon pentagon pentagon

octagon octagon octagon

Page 52: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Dual vs. Primal Compression

( coordinates quantized at 14 bits of precision )

Page 53: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Average Prediction Error

Page 54: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Overview

• Motivation

• Geometry Compression

• Frequency of Polygons

• Polygonal Prediction Rules

• Results

• DiscussionINFORMATIKINFORMATIK

Page 55: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Validation of Predictors

• eliminating the highest frequency in a mesh element

– +

+parallelogram

predictor

[Touma & Gotsman, 98]

+

– +–

+ –

+Lorenzopredictor

[Ibarria et al, 03]

Page 56: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Exact barycentric prediction

• after dualization polygons of even order have a highest frequency of zero

Page 57: Max-Plank Institut für Informatik systematic error parallelogram rule polygonal rules exact prediction Geometry Prediction for High Degree Polygons Martin.

Thank You

INFORMATIKINFORMATIK