Top Banner

of 41

MATHEMATICS T (1).docx

Jul 07, 2018

Download

Documents

leeshanghao
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/19/2019 MATHEMATICS T (1).docx

    1/110

    STPM MATHEMATICS T SYLLABUS

    Chapter 1 Functions

    1.1 Functions

    • (a) state the domain and range of a function, and find composite functions;

    The domain of a unction  is all the possible input values, and the ran!e is all possibleoutput values."omain# set of all possible input values (usually x)$an!e# set of all possible output values (usually y)

    a) State the domain and range of the following relation%&'( )*+( &,( -+( &1( )1+( &*( +/

    The domain is all the x-values, and the range is all the y-values  "omain# %'( ,( 1( */  $an!e# %)*( -( 01( /

    a) State the domain and range of the following relation%&'( ,+( &,( ,+( &1( ,+( &*( ,+/

      "omain# %'( ,( 1( */

      $an!e# %,/

    hat is a Function2 A unction( &3+ re4ates an input to an output. Each input is

    re4ated to e3act45 one output.

    This is a unction. There is only one y for each x

    This is a unction. There is only one arrow coming from each x; there is only one y foreach x

    http://coolmathsolutions.blogspot.com/2013/02/functions-domain-and-range.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/functions-domain-and-range.html

  • 8/19/2019 MATHEMATICS T (1).docx

    2/110

    This is not a unction. is in the domain, but it has no range element that corresponds toit

    This is not a unction. ! is associated with two different range elements

    Functions# "omain and $an!e

    The unction composition of two functions ta"es the output of one function as the input

    of a second one

    #n in6erse unction for f, denoted by f -$, is a function in the opposite direction.- See more at% http%&&coolmathsolutions.blogspot.com&'$!&'&what-is-function.htmlsthash.t!*ri+g.dpuf 

    (b) determine whether a function is one-to-one,  and find the inverse of a one-to-onefunction;

    # one-to-one function is a function in which every element in the range of the function

    corresponds with one and only one element in the domain.

    # function, f(x), has an inverse function if f(x) is one-to-one.

    The oriontal /ine Test% 0f you can draw a horiontal line so that it hits the graph inmore than one spot, then it is 12T one-to-one.

    a) 0s below function one-to-one3

    http://coolmathsolutions.blogspot.com/2013/02/functions-domain-and-range.htmlhttp://coolmathsolutions.blogspot.com/2013/02/one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/inverse-one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/inverse-one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/functions-domain-and-range.htmlhttp://coolmathsolutions.blogspot.com/2013/02/one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/inverse-one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/inverse-one-to-one-function.html

  • 8/19/2019 MATHEMATICS T (1).docx

    3/110

    f(x)=x3

    f(x)4x! is one-to-one function and has inverse function. (The horiontal line cuts thegraph of function f at $ point, therefore f is a one-to-one function)

     b) 0s below function one-to-one3

    f(x)=x2

    f(x)4x' is 12T one-to-one function and does 12T has an inverse function. (Thehoriontal line cuts the graph of function f at ' points, therefore f is 12T a one-to-onefunction)

    0f we restricted x greater than or e5ual to . The horiontal line cuts the graph of functionf once and f(x)4x' is one-to-one function and has an inverse function.

  • 8/19/2019 MATHEMATICS T (1).docx

    4/110

     (c) s"etch the graphs of simple functions, including piecewise-defined functions;

    ow to find the inverse of one-to-one function below3

    f(x)=3x−46raw the graph of f(x)4!x-7

    The horizontal line cuts the graph of function f once, therefore f is a one-to-onefunction and it has has inverse function.

    8ind the inverse function

    f(y)=x3y−4=x

    y=x+43

    f−1(x)=x+43

    http://coolmathsolutions.blogspot.com/2013/02/piecewise-defined-functions.htmlhttp://coolmathsolutions.blogspot.com/2013/02/one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/piecewise-defined-functions.htmlhttp://coolmathsolutions.blogspot.com/2013/02/one-to-one-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/one-to-one-function.html

  • 8/19/2019 MATHEMATICS T (1).docx

    5/110

    The graph of an inverse relation is the reflection of the original graph over the identityline, y 4 x.

    9iecewise-defined function is a function which is defined by multiple sub-

    functions, each sub-function applying to a certain interval of the mainfunction:s domain.

    E3amp4e 1

    f(x)={2x−1,x

  • 8/19/2019 MATHEMATICS T (1).docx

    6/110

    f(x)=4x+1

    f(x)=2x3−4x2+5x+11

    f(x)=x7−6x4+3x2

    *ational function is division of two polynomial functions.

    f(x)=P(x)Q(x) where 9 and are polynomial functions in x.

    y=2x+5x−1f(x) is not defined at x4$.

  • 8/19/2019 MATHEMATICS T (1).docx

    7/110

    • (d) use the factor theorem and the remainder theorem;

    The Factor Theorem

    0f the remainder of a polynomial, f(x), when divide by (x-a) is ero, then (x-a) is a factor.Show that (x>!) is a factor of

    x3+5x2+5x−3

    f(−3)=(−3)3+5(−3)2+5(−3)−3

    f(−3)=0

    ?y factor theorem (x>!) is factor of x!>x'>x-!*emainder Theorem

    0f a polynomial f(x) is divided by (x @ r) and a remainder * is obtained, then f(r) 4 *.f(x)=(x−r)⋅q(x)+R

    Axample% &3+73-8'3'0*3*8309 di6ide :5 &301+

    #fter dividing by x-$, there is a remainder of -7.

  • 8/19/2019 MATHEMATICS T (1).docx

    8/110

    (e) solve polynomial and rational e5uations and ine5ualities;

    So46in! $ationa4 Ine;ua4ities

    # rational function is a 5uotient of two polynomials.

    x2+3x+2x2−16≥0

    x2+3x+2x2−16=(x+2)(x+1)(x−4)(x+4)

    as an example for an ine5uality involving a rational function.

    This polynomial fraction will be ero wherever numerator is ero

    (x+2)(x+1)=0

    x=−2,x=−1

    The fraction will be undefined wherever the denominator is ero

    (x−4)(x+4)=0

    x=4,x=−4

    Bonse5uently, the set

    (−∞,−4),[−2,−1],(4,+∞)

    Solution in Cine5ualityC notation

    x4

    http://coolmathsolutions.blogspot.com/2013/02/rational-equations-and-inequalities-01.htmlhttp://coolmathsolutions.blogspot.com/2013/02/rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/rational-equations-and-inequalities-01.htmlhttp://coolmathsolutions.blogspot.com/2013/02/rational-function.html

  • 8/19/2019 MATHEMATICS T (1).docx

    9/110

    Find the inter6a4

    *ational e5uations and ine5ualities '

    So46in! $ationa4 Ine;ua4ities

    A rationa4 unction is a ;uotient o t

  • 8/19/2019 MATHEMATICS T (1).docx

    10/110

    Find the inter6a4

    (f) solve e5uations and ine5ualities involving modulus signs in simple cases;

    So46e the ine;ua4it5 3 * 3 8 1

    • S5uare both sides of each e5uation to omit the modulus signs.

    • *earrange the ine5uality into an e5uivalent form.

    So the solution set is

     

    (g) decompose a rational expression into partial fractions in cases where the denominator 

    has two distinct linear factors, or a linear factor and a prime 5uadratic factor;A rationa4 unction P&3+D&3+ can :e re

  • 8/19/2019 MATHEMATICS T (1).docx

    11/110

      rite the partia4 raction decomposition o

    11x+21(2x−3)(x+6)=A2x−3+Bx+6

    "istri:ute A and B

    11x+21=(x+6)A+(2x−3)B0f x4-D

    11(−6)+21=[2(−6)−3]B

    B=30f x4,

    21=6A−3B

    A=5

    The partia4 raction

    11x+21(2x−3)(x+6)=52x−3+3x+6

    This is the E3ponentia4 Function%

    f(x)=ax a is any value greater than

  • 8/19/2019 MATHEMATICS T (1).docx

    12/110

    For > G a G 1#

    • #s x increases, f(x) heads to

    • #s x decreases, f(x) heads to infinity

    • 0t is a Strictly 6ecreasing function

    • 0t has a oriontal #symptote along the x-axis (y4).

    For a = 1#

    • #s x increases, f(x) heads to infinity

    • #s x decreases, f(x) heads to

    • it is a Strictly 0ncreasing function

    • 0t has a oriontal #symptote along the x-axis (y4).

    The atura4 E3ponentia4 Function is the function

    f(x)=exwhere e is the number (approximately '.E$+'+$+'+)

    1.' E3ponentia4 and 4o!arithmic unctions

    • (h) relate exponential and logarithmic functions, algebraically and graphically;

    This is the E3ponentia4 Function%

    f(x)=ax a is any value greater than

    http://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/exponential-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/logarithmic-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/exponential-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/logarithmic-function.html

  • 8/19/2019 MATHEMATICS T (1).docx

    13/110

    For > G a G 1#

    • #s x increases, f(x) heads to

    • #s x decreases, f(x) heads to infinity

    • 0t is a Strictly 6ecreasing function

    • 0t has a oriontal #symptote along the x-axis (y4).

    For a = 1#

    • #s x increases, f(x) heads to infinity

    • #s x decreases, f(x) heads to

    • it is a Strictly 0ncreasing function

    • 0t has a oriontal #symptote along the x-axis (y4).

    The atura4 E3ponentia4 Function is the function

    f(x)=exwhere e is the number (approximately '.E$+'+$+'+)

    The logarithmic function is the function y 4 logax, where a is any number such that a F ,a G $, and x F .

    http://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/asymptote-in-rational-function.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-function.html

  • 8/19/2019 MATHEMATICS T (1).docx

    14/110

    y 4 logax is e5uivalent to x 4 ay

    The inverse of an exponential function is a logarithmic function.

    Since y 4 log'x is a one-to-one function, we "now that its inverse will also be a function.

  • 8/19/2019 MATHEMATICS T (1).docx

    15/110

    (i) use the properties of exponents and logarithms;

    $. 0ndices

    an,a≠0

    a0=1,a≠0a−n=1/an

    '. /aw of 0ndices

    am×an=am+n

    am÷an=am−n

    (am)n=am×n

    am×bm=(a×b)m

    am÷bm=(ab)m

    !. /ogarithms

    Ifa=bc,then logba=c

    loga1=0

    logaa=1

    alogab=1

    7. /aw of /ogarithms

    logaxy=logax+logay

    loga(xy)=logax−logay

    logaxn=nlogax

    Bhange of base of /ogarithms

    logab=1logba

    logab=lognblogna

     (H) solve e5uations and ine5ualities involving exponential or logarithmic expressions;

    So46in! $ationa4 Ine;ua4ities

    http://coolmathsolutions.blogspot.com/2013/01/rules-of-logarithm.htmlhttp://coolmathsolutions.blogspot.com/2013/02/rational-equations-and-inequalities-01.htmlhttp://coolmathsolutions.blogspot.com/2013/02/rational-equations-and-inequalities-01.htmlhttp://coolmathsolutions.blogspot.com/2013/01/rules-of-logarithm.htmlhttp://coolmathsolutions.blogspot.com/2013/02/rational-equations-and-inequalities-01.html

  • 8/19/2019 MATHEMATICS T (1).docx

    16/110

    A rationa4 unction is a ;uotient o t

  • 8/19/2019 MATHEMATICS T (1).docx

    17/110

    1.- Tri!onometric unctions

    • (") relate the periodicity and symmetries of the sine, cosine and tangent functions to their 

    graphs, and identify the inverse sine, inverse cosine and inverse tangent functions andtheir graphs;

    • (l) use basic trigonometric identities and the formulae for sin ( A I B), cos ( A I B) and tan( A I B), including sin 2A, cos 2A and tan 2A;

    • (m) express a sin θ > b cos θ in the forms r sin ( θ  I J) and r cos ( θ  I J);

    • (n) find the solutions, within specified intervals, of trigonometric e5uations andine5ualities.

     Trigonometric Identities

    sin(A+B)=sinAcosB+cosAsinB

    sin(A−B)=sinAcosB−cosAsinB

    cos(A+B)=cosAcosB−sinAsinB

    cos(A−B)=cosAcosB+sinAsinB

    tan(A+B)=tanA+tanB1−tanAtanB

    tan(A−B)=tanA−tanB1+tanAtanB

    sin(2A)=2sinAcosA

    cos(2A)=cos2(A)−sin2(A)

    =2cos2(A)−1

    =1−2sin2

    (A)

    tan2A=2tanA1−tan2A

    E3press a sin J : cos in the orm $ sin & J K+

    http://coolmathsolutions.blogspot.com/2013/02/trigonometric-identities.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-sin.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-sin.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-sin.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-sin.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-sin.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-sin.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-cos.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-cos.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-cos.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-cos.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-cos.htmlhttp://coolmathsolutions.blogspot.com/2013/02/trigonometric-identities.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-sin.htmlhttp://coolmathsolutions.blogspot.com/2013/02/express-sin-b-cos-in-form-r-cos.html

  • 8/19/2019 MATHEMATICS T (1).docx

    18/110

    E3press a sin J : cos in the orm $ sin& J K+(

  • 8/19/2019 MATHEMATICS T (1).docx

    19/110

    AxampleAxpress - sin 8' cos in the form $ sin& 8 K+

    R=42+32−−−−−−√ =25−−√=5 

    α=tan−1 34=36.87∘So

    4sinθ+3cosα=5sin(θ+36.87∘)

    Summar5 o the e3pressions and conditions

    E3press a sin J : cos in the orm $ cos & J K+

    E3press a sin J : cos in the orm $ cos& J K+(

  • 8/19/2019 MATHEMATICS T (1).docx

    20/110

    =tanαSo

    α=tan−1ab

    R=a2+b2−−−−−−√ 

    Then we have expressed a sin K > b cos K in the form re5uired

    asinθ+bcosθ≡Rcos(θ−α)

    Summar5 o the e3pressions and conditions

  • 8/19/2019 MATHEMATICS T (1).docx

    21/110

    Chapter *

     Se;uences and Series

    *.1 Se;uences

    • (a) use an explicit formula and a recursive formula for a se5uence;

    • (b) find the limit of a convergent se5uence;

    Con6er!ent Se;uence

    # se5uence is said to be convergent if it approaches some limit. 8ormally, a se5uenceconverges to the limit

    limn→∞Sn=S

    E3amp4e

    • The se5uence '.$, '.$, '.$, '.$, . . . has limit ', so the se5uence converges to '.

    • The se5uence $, ', !, 7, , D, . . . has a limit of infinity (L). This is not a real number, so

    the se5uence does not converge. 0t is a divergent se5uence.

    Con6er!ent se;uences ha6e a inite 4imit.

    1,12, 13,14,15,16....,1n

    Limit=0

    1,12, 23,34,45,56....,nn+1

    Limit=1

    *.* Series

    http://coolmathsolutions.blogspot.com/2013/03/convergent-sequence.htmlhttp://coolmathsolutions.blogspot.com/2013/03/convergent-sequence.html

  • 8/19/2019 MATHEMATICS T (1).docx

    22/110

    (c) use the formulae for the nth term and for the sum of the first n terms of anarithmeticseries and of a geometric series;

    An arithmetic progression or arithmetic sequence is a sequence of numberssuch that the dierence between the consecutive terms is constant.

     The nth term of the sequence an! is given b"

    an=a1+(n−1)d

     The sum of the sequence of the #rst n terms is then given b"

    Sn=n2[2a+(n−1)d]or

    Sn=n2(a1+a2)

    eometric Series is a series

  • 8/19/2019 MATHEMATICS T (1).docx

    23/110

    a+ar+ar2+ar3+ar4.....=∑   k=0∞ark=a1−r

  • 8/19/2019 MATHEMATICS T (1).docx

    24/110

    (x+y)2=x2+2xy+y2

    (x+y)3=x3+3x3y+3xy2+y3

    (x+y)4=x4+4x3y+6x2y2+4xy3+y4

    It is possib&e to e'pand an" power of ' ( " into a sum of the form

    (x+y)n=(n0)xny0+(n1)xn−1y1+(n2)xn−2y2+...+

    (nn−1)x1yn−1+(nn)x0yn It can be written as

    (x+y)n=∑   k=0n(nk)xn−kyk%inomia& formu&a ) invo&ves on&" a sing&e variab&e

    (1+x)n=(n0)x0+(n1)x1+(n2)x2+...+(nn−1)xn−1+(nn)xn(1+x)n=∑   k=0n(nk)xk

    According to the ratio test for series convergence a series converges when)

    if limk→∞(ak+1ak)1,series diverges

    iflimk→∞(ak+1ak)=1,result is indeterminate The %inomia& Theorem converges when *'*+,

  • 8/19/2019 MATHEMATICS T (1).docx

    25/110

    (g) expand ($>x) n , wheren$Q, and identify the condition M x M N $ for the validity of thisexpansion;

    (h) use binomial expansions in approximations.

     Chapter '

     Matrices

    '.1 Matrices

    (a) identify null, identity, diagonal, triangular  and symmetric matrices;

    http://coolmathsolutions.blogspot.com/2013/03/binomial-expansions.htmlhttp://coolmathsolutions.blogspot.com/2013/03/binomial-expansions.htmlhttp://coolmathsolutions.blogspot.com/2013/01/inverse-of-diagonal-matrix.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-triangular-matrix.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-triangular-matrix.htmlhttp://coolmathsolutions.blogspot.com/2013/03/binomial-expansions.htmlhttp://coolmathsolutions.blogspot.com/2013/01/inverse-of-diagonal-matrix.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-triangular-matrix.html

  • 8/19/2019 MATHEMATICS T (1).docx

    26/110

    In6erse o "ia!ona4 Matri3

    6iagonal matrix is a matrix in which the entries outside the main diagonal are all ero.

    A=- a11000a22 0 00a33/0

    A−1=-11111111a11000 1a22 0 00 1a33/02222222

    Axample

    A=- 5000 3 0 00 1/0

    A−1=-111115000 13 0 001/02222

    (b) use the conditions for the e5uality of two matrices;

    (c) perform scalar multiplication, addition, subtraction and multiplication of matriceswith at most three rows and three columns;

    hat is Trian!u4ar Matri3

    # matrix is a trian!u4ar matri3 if all the elements either above or below the diagonal areero. # matrix that is both upper and lower triangular is a diagonal matrix.

    Properties o Trian!u4ar Matri3

    • The determinant of a triangular matrix is the product of the diagonal elements.

    • The inverse of a triangular matrix is a triangular matrix.

    • The product of two (upper or lower) triangular matrices is a triangular matrix.

    Upper Trian!u4ar Matri3

    A=33333130250013333=3.2.1=6

    A−1=33331/3−1/6−1/601/2−5/250013333

    Lo

  • 8/19/2019 MATHEMATICS T (1).docx

    27/110

    B−1=33331/2003/2−10−11613333

    (d) use the properties of matrix operations;

    Properties o Matrices

    AB≠BA

    A+B=B+A

    A(B+C)=AB+AC

    (A+B)C=AC+BC

    A(BC)=(AB)C

    AI=IA=A

    A0=I

    Scalar Oultiplication

    λ(AB)=(λA)B

    (AB)λ=A(Bλ)

    Transpose

    (AB)T=BTAT

    9roperties of 0nverse Oatrix

    AA−1=A−1A=I

    (A−1)−1=A

    (AT)−1=(A−1)T

    (An)−1=(A−1)n

    (cA)−1=c−1A−1=1cA−1

    (e) find the inverse of a non-singular matrix using elementary row operations;

    http://coolmathsolutions.blogspot.com/2013/01/properties-of-matrix.htmlhttp://coolmathsolutions.blogspot.com/search/label/Elementary%20Row%20Operation%20Matrixhttp://coolmathsolutions.blogspot.com/search/label/Elementary%20Row%20Operation%20Matrixhttp://coolmathsolutions.blogspot.com/2013/01/properties-of-matrix.htmlhttp://coolmathsolutions.blogspot.com/search/label/Elementary%20Row%20Operation%20Matrix

  • 8/19/2019 MATHEMATICS T (1).docx

    28/110

    8ind the inverse of a non-singular matrix using elementary row operations

    4shirts +2 pants +2 pairofshoes=$190

    3shirts +4 pants +3 pairofshoes=$295

    2shirts +4 pants +2 pairofshoes=$190

    /et x 4 price of shirt , y4 price of pant, 4 price for a pair of shoe

    -4322 4 4 232/0-xyz/0=-190295250/0/et

    A=-4322 4 4 232/0,B=-190295250/0

    A-xyz/0=-190295250/0

    AA−1=A−1A=I

    A−1A-xyz/0=A−1-190295250/0

    -xyz/0=-0.50−0.5−0.5 −0.5 1.50.250.75−1.25/0-190295250/0

    -xyz/0=-104035/0

    A4ternati6e(

    a1x+b1y+c1z=d1

    a2x+b2y+c2z=d2

    a3x+b3y+c3z=d3

    Oode F A1 F Pn"nowns4!, input data below

    a1=4,b1=2,c1=2,d1=190

    a2=3,b2=4,c2=3,d2=295

    a3=2,b3=4,c3=2,d3=250

    x=10,y=40,z=35

    (f) evaluate the determinant of a matrix;

    http://coolmathsolutions.blogspot.com/2013/01/inverse-of-matrices-3x3_6.htmlhttp://coolmathsolutions.blogspot.com/2013/01/inverse-of-matrices-3x3_6.html

  • 8/19/2019 MATHEMATICS T (1).docx

    29/110

    In6erse o a Matrices ''

    A=-adgbeh cfi/0

    $. 6eterminant of !x! Oatrices

    4A4=4444adgbehcfi4444=a444 e hfi444@b444dgfi444+c444dgeh444

    =a(ei−fh)−b(di−fg)+c(dh−eg)

    '. 0nverse of !x! Oatrices

    A−1=-adgbe h cfi/0−1=14A4-A D GBEHCFI/0T=14A4-A BC

    DEFGHI/0A=444ehfk444,B=−444dgfk444,C=444dgeh444

    D=−444bhck444,E=444agck444,F=−444agbh444

    G=444becf444,H=−444adcf444,K=444adbe444

    -+−+− +−+−+/0

    (g) use the properties of determinants;

    Properties o "eterminant

    $. M#M 4 if it has two e5ual line

    33333132 223133333=0

    '. M#M 4 if all elements of a line are ero

    33333032023033333=0

    !. M#M 4 if the elements of a line are a linear combination of the others. (row ! 4 row $ >row ')

    33332133252463333=0

    7. The determinant of matrix # and its transpose # are e5ual. M#TM4M#M

    http://coolmathsolutions.blogspot.com/2013/02/properties-of-determinant.htmlhttp://coolmathsolutions.blogspot.com/2013/02/properties-of-determinant.html

  • 8/19/2019 MATHEMATICS T (1).docx

    30/110

    A=33332131213423333, |AT|=33332131243123333

    |A|=|AT|=−5. # triangular determinant is the product of the diagonal elements.

    A=33333130 250013333=3.2.1=6D. The determinant of a product e5uals the product of the determinants.

    |A.B|=|A|.|B|

    E. 0f a determinant switches two parallel lines its determinant changes sign.

    33332131213423333=@5,33331232114323333=5

    '.* S5stems o 4inear e;uations

    (h) reduce an augmented matrix to row-echelon form, and determine whether a system oflinear e5uations has a uni5ue solution, infinitely many solutions or no solution;

    (i) apply the =aussian elimination to solve a system of linear e5uations;

    aussian e4imination is a method for solving matrix e5uations of the form

    Ax=b

    =aussian elimination starting with the system of e5uations

    Bompose the Caugmented matrix e5uationC

    9erform elementary row operations to put the augmented matrix into the uppertriangular form

    # matrix that has undergone =aussian elimination is said to be in echelon form=iven below matrix e5uation

    0n au!mented orm, this becomes

    http://coolmathsolutions.blogspot.com/2013/02/gaussian-elimination.htmlhttp://coolmathsolutions.blogspot.com/2013/02/gaussian-elimination.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-triangular-matrix.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-triangular-matrix.htmlhttp://coolmathsolutions.blogspot.com/2013/02/gaussian-elimination.htmlhttp://coolmathsolutions.blogspot.com/2013/02/gaussian-elimination.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-triangular-matrix.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-triangular-matrix.html

  • 8/19/2019 MATHEMATICS T (1).docx

    31/110

     Switching the first and second rows (without switching the elements in the right-hand column vector) gives

    8irst row times ! and minus third row gives

    8irst row times ' and minus second row gives

    8inally, second row times -E&! and minus third row gives (augmented matrix has been reduced to ro

  • 8/19/2019 MATHEMATICS T (1).docx

    32/110

    Oode F A1 F Pn"nowns4!, input data below

    a1=20,b1=0,c1=−10,d1=−100

    a2=0,b2=20,c2=10,d2=300

    a3=−10,b3=10,c3=20,d3=200

    x=−5,y=15,z=0

     Chapter -

    Comp4e3 um:ers

    - Comp4e3 um:ers

  • 8/19/2019 MATHEMATICS T (1).docx

    33/110

    • (a) identify the real and imaginary  parts of a complex number ;

    The rea4 num:ers include all inte!er, rationa4 num:er (number that can be expressed asthe 5uotient or fraction p&5 of two integers, with the denominator 5 not e5ual to ero) and irrationa4 num:ers (numbers cannot be represented as a simple fraction)

    0ntergers

    ...−4,−3,−2−1,0,1,2,3,4....*ational 1umber

    12,−12,1537,....0rrational 1umber

    2√,3√3,π,e,log23,....

    Ima!inar5 num:er is a number than can be written as a real number multiplied by the

    imaginary unit i 

    i=−1−−−√

    i2=−1

    # complex number is a number that can be put in the form

    a+biwhere a and : are real numbers and i  is the s5uare root of -$, the ima!inar5 unit

    i=−1−−−√

    i2=−1

    The a:so4ute 6a4ue or modu4us of a complex number 4 a > bi is

    |z|=a2+b2−−−−−−√ 

    http://coolmathsolutions.blogspot.com/2013/02/real-number-and-imaginary-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/real-number-and-imaginary-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-complex-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/real-number-and-imaginary-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-complex-number.html

  • 8/19/2019 MATHEMATICS T (1).docx

    34/110

    (b) use the conditions for the e5uality of two complex numbers;

    (c) find the modulus and argument of a complex number in cartesian form and expressthe complex number in polar form;

    hat is Ar!ument o Comp4e3 um:er

    Bomplex 1umber , 4a>biOodulus is the length of the line segment, that is 29 (modulus of can Qnd using9ythagorasR theorem)

    |z|=a2+b2−−−−−−√ 

    |z|=42+32−−−−−−√ 

    |z|=25−−√=5

    The angle theta is called the argument of the complex number,

    tanΘ=ba

    tanΘ=34

    Θ=tan−134

    arg z=0.644rad

    ow to change theta4!D.+E to radian

    rad=Θ6π1800

    rad=Θ6π1800

    36.8706π1800=0.644rad

    http://coolmathsolutions.blogspot.com/2013/02/what-is-argument-of-complex-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-complex-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-complex-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-argument-of-complex-number.htmlhttp://coolmathsolutions.blogspot.com/2013/02/what-is-complex-number.html

  • 8/19/2019 MATHEMATICS T (1).docx

    35/110

    (d) represent a complex number geometrically by means of an #rgand diagram;

    Ar!and "ia!ram

    The #rgand diagram is used to represent complex numbers.#rgand diagram form by y-axis which represents the ima!inar5 part and x-axisrepresent the rea4 part.

    Axample%

    Z1=3+2i

    Z2=−4+i

    BonHugate of

    Z61=3−2i

    Z62=−4−i

    Z1+Z2=−1+3i

    (e) find the complex roots of a polynomial e5uation with real coefficients;

    (f) perform elementary operations on two complex numbers expressed in cartesian form;

    http://coolmathsolutions.blogspot.com/2013/03/argand-diagram.htmlhttp://coolmathsolutions.blogspot.com/2013/02/conjugate-of-complex-number.htmlhttp://coolmathsolutions.blogspot.com/2013/03/argand-diagram.htmlhttp://coolmathsolutions.blogspot.com/2013/02/conjugate-of-complex-number.html

  • 8/19/2019 MATHEMATICS T (1).docx

    36/110

    (g) perform multiplication and division of two complex numbers expressed in polar form;

    (h) use de OoivreRs theorem to find the powers and roots of a complex number 

    "e Moi6reNs ormu4a 0 STPM Mathematics

    "e Moi6reNs

    6e Ooivre:s formula states that for any real number x and any integer n,

    (cosx+isinx)n=cos(nx)+isin(nx)

    From Eu4erNs ormu4a

    eix=cosx+isinx

    (eix)n=einx

    ei(nx)=cos(nx)+isin(nx)

    "e Moi6reNs Theorem in Comp4e3 um:er

    0f 4 x > yi 4 reiK, and n is a natural number. Then

    zn=(x+yi)n=(reiθ)n

    E3amp4e 1# Pse 6e OoivreRs theorem to Qnd ($>i)$.

  • 8/19/2019 MATHEMATICS T (1).docx

    37/110

    =32(cos450∘+isin450∘)

    =32(0+i)

    =32i

    E3amp4e *# Pse 6e OoivreRs theorem to Qnd (! > i ) E .

  • 8/19/2019 MATHEMATICS T (1).docx

    38/110

    Chapter , Ana45tic eometr5

    , Ana45tic eometr5

    (a) transform a given e5uation of a conic into the standard form; Transform 7onic 8ection into 8tandard 9orm

    A conic section is the intersection of a p&ane and a doub&e right circu&arcone. %" changing the ang&e and &ocation of the intersection: we can producedierent t"pes of conics: such as circles, ellipses, hyperbolas and parabolas.

    Equation of a Circle in Standard Form

    http://coolmathsolutions.blogspot.com/2013/03/transform-conic-section-into-standard.htmlhttp://coolmathsolutions.blogspot.com/2013/03/circle.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-and-foci-of-ellipse.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-foci-and-asymptotes-of.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertex-focus-and-directrix-of-parabola.htmlhttp://coolmathsolutions.blogspot.com/2013/03/circle.htmlhttp://coolmathsolutions.blogspot.com/2013/03/transform-conic-section-into-standard.htmlhttp://coolmathsolutions.blogspot.com/2013/03/circle.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-and-foci-of-ellipse.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-foci-and-asymptotes-of.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertex-focus-and-directrix-of-parabola.htmlhttp://coolmathsolutions.blogspot.com/2013/03/circle.html

  • 8/19/2019 MATHEMATICS T (1).docx

    39/110

    (x−h)2+(y−k)2=r2Equation of an Ellipse in Standard Form

    (x−h)2a2+(y−k)2b2=1Equation of a Hyperbolas in Standard Form

    (x−h)2a2−(y−k)2b2=1Equation of a Parabolas in Standard Form

    a(x−h)2+k

    (b) find the vertex, focus and directrix of a parabola;

    Oerte3( Focus and "irectri3 o a Para:o4a

    # para:o4a is the set of all points 9 in the plane that are e5uidistant from a fixed point 8&ocus+ and a fixed line d &directri3+.The 6erte3 of the parabola is at e5ual distance between focus and the directrix.

    9arabolas are fre5uently encountered as graphs of ;uadratic unctions, such as 

    y=x2

    http://coolmathsolutions.blogspot.com/2013/03/vertices-centre-and-foci-of-ellipse.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-foci-and-asymptotes-of.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertex-focus-and-directrix-of-parabola.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertex-focus-and-directrix-of-parabola.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-and-foci-of-ellipse.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-foci-and-asymptotes-of.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertex-focus-and-directrix-of-parabola.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertex-focus-and-directrix-of-parabola.html

  • 8/19/2019 MATHEMATICS T (1).docx

    40/110

     (c) find the vertices, centre and foci of an ellipse;

    Oertices( Centre and Foci o an E44ipse

    E44ipse is a planar curve which in some Bartesian system of coordinates is described bythe e5uation%

    (x−h)2a2+(y−k)2b2=1

    Oerte3 o an e44ipse. The points at which an ellipse ma"es its sharpest turns. The verticesare on the maHor axis.Centre o an e44ipse # point inside the ellipse which is the midpoint of the line segmentlin"ing the two foci.Foci o an e44ipse 0 The foci, c is always lie on the maHor (longest) axis, spaced e5uallyeach side of the centre. 

    c2=a2−b2

    E3amp4e

    16x2+25y2=400

    16x2400+25y2400=1

    x225+y216=1

    x252+y242=1

    (x2−0)252+(y2−0)242=1

    Oerte3 is &0,(>+ and &,(>+( the maor &4on!est+ a3is.

    Co06erte3 is &>(0-+( &>( -+ minor &shortest+ a3is

    The centre is at &h(+7&>(>+

    Foci o an e44ipse. The foci are three unit to either side of the centre, at &0'(>+ and &'(>+

    c2=a2−b2

    c2=52−42

    http://coolmathsolutions.blogspot.com/2013/03/vertices-centre-and-foci-of-ellipse.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vertices-centre-and-foci-of-ellipse.html

  • 8/19/2019 MATHEMATICS T (1).docx

    41/110

    c2=±3

    • 8ind ertices, Bentre, and 8oci of Allipse $

    • 8ind ertices, Bentre, and 8oci of Allipse '

    • 8ind ertices, Bentre, and 8oci of Allipse !

    (d) find the vertices, centre, foci and asymptotes of a hyperbola;

    (e) find the e5uations of parabolas, ellipses and hyperbolas satisfying prescribed

    conditions (excluding eccentricity);

    (f) s"etch conics;

    (g) find the cartesian e5uation of a conic defined by parametric e5uations;

    (h) use the parametric e5uations of conics.

    Chapter Oectors

    .1 Oectors in t

  • 8/19/2019 MATHEMATICS T (1).docx

    42/110

    A unit vector, or  direction vector is a vector which has &ength of , ormagnitude of ,.

    b!u  =̂u4u4

    c!d!

    =osition ! is ca&&ed a position vector.

    =oint A has the position vector a, if

    A=(35) =oint % has the position vector b, if

    B=

    (62

    )

    e!

    (b) perform scalar multiplication, addition and subtraction of vectors;

    8ca&ar ?u&tip&ication of

  • 8/19/2019 MATHEMATICS T (1).docx

    43/110

    c[a1a2]=[ca1ca2]E3amp4e# Oultiply the vector u 4 N ', ! F of by the scalars ', U!, and $&'

    2u  @ =2[23]=[46]12u  @ =12[23]=[13/2]−3u  @ =@3[23]=[−6−9]

    (c) find the scalar product of two vectors, and determine the angle between two vectors;

    The scalar product( or dot product is an a4!e:raic operation that taes t

  • 8/19/2019 MATHEMATICS T (1).docx

    44/110

    • u(v>w)4uv>uw

    • u.u4MMuMMVW'X

    • c(u.v)4cu.v4u.cv

    Sca4ar product can :e o:tained :5 ormu4a 

    a.b=|a||b|cosθMaM means the magnitude (length) of vector a. and

    a.b=axbx+ayby

    Balculate the scalar product of vectors a and b, given K 4 Y. 

    a=[−68],b=[512]

    |a|=(−6)2+82−−−−−−−−−√ =10|b|=52+122−−−−−−−√ =13

    a.b=|a||b|cosθ

    a.b=10612cos59.5∘or

    a.b=axbx+ayby

    a.b=(−6)(5)+(8)12)=66

    8ind the angle between the two vectors.

    a=-234/0,b=-1−23/0

  • 8/19/2019 MATHEMATICS T (1).docx

    45/110

    a.b=axbx+ayby

    a.b=|a||b|cosθ

    a.b=(2)(1)+(3)(−2)+(4)(3)=8

    |a|=22+32+42−−−−−−−−−−√ =29−−√

    |a|=12+(−2)2+32−−−−−−−−−−−−√ =14−−√8=29−−√14−−√cosθ

    cosθ=0.397

    θ=66.6∘

     (d) find the vector product of two vectors, and determine the area a parallelogram and ofa triangle;

    Oector Product o T

  • 8/19/2019 MATHEMATICS T (1).docx

    46/110

    =−3i+6 j−3k

    u  @ =@3,6,−3B

    ector product, c 4 a x b 4 (-!, D, -!)

    .* Oector !eometr5

    (e) find and use the vector and cartesian e5uations of lines;

  • 8/19/2019 MATHEMATICS T (1).docx

    47/110

    a=EFaxayazGH,b=EFbxbybzGHJ,r=EFxyzGH7artesian Cquation wi&& be

    x−axbx−ax=y−ayby−ay=z−azbz−az

    C'amp&e) 7ompute the cartesian equation of a straight &ine through point Aand % with position vector)

    a=EF1−32GH,b=EF3−15GH,r=EFxyzGH

    x−13−1=y−(−3)−1−(−3)=z−25−2

    x−12=y+32=z−23

    (f) find and use the vector and cartesian e5uations of planes;

    Oector E;uations o P4anes

    The vector e5uation of the plane

    r=a+λu+µv

    Axample% Bompute the vector e5uation of a plane through point #, ? and B with position

    vector%a=EF2−13GH,b=EF14−1GH,c=EF0−21GH

    u=b−a=EF14−1GH−EF2−13GH=EF−15−4GH

    v=c−a=EF0−21GH−EF2−13GH=EF−2−1−2GH

    r=a+λu+µv

    r=EF2−13GH+λEF−15−4GH+µEF−2−1−2GH

    Cartesian E;uations o P4anes

    8ormula for Bartesian A5uations of 9lanes

    n=(b−a)6(c−a)

    http://coolmathsolutions.blogspot.com/2013/03/vector-and-cartesian-equations-of-planes.htmlhttp://coolmathsolutions.blogspot.com/2013/03/vector-and-cartesian-equations-of-planes.html

  • 8/19/2019 MATHEMATICS T (1).docx

    48/110

    r.n=a.n

    a=EF2−13GH,b=EF14−1GH,c=EF0−21GH,r=EFxyzGH

    n=(b−a)6(c−a)

    n=EF−15−4GHEF−2−1−2GH=EF−14611GH

    r.n=a.n

    EFxyzGH.EF−14611GH=EF2−13GH.EF−14611GH

    −14x+6y+11z=(2)(−14)+(−1)(6)+(3)(11)Bartesian A5uations of 9lanes

    −14x+6y+11z=−1

    (g) calculate the angle between two lines, between a line and a plane, and between two planes;

    Ang&e %etween Two Dines

    Ang&e %etween Two Dines

    θ=β−α

    tanθ=tan(β−α)=tanβ−tanα1+tanβtanα

    =m1−m21+m1m29or two &ine of gradient m,: mK te acute ang&e between them is a&wa"spositive

    tanθ=333m1−m21+m1m2333

    http://coolmathsolutions.blogspot.com/2013/03/angle-between-two-lines.htmlhttp://coolmathsolutions.blogspot.com/2013/03/angle-between-line-and-plane.htmlhttp://coolmathsolutions.blogspot.com/2013/03/angle-between-two-planes.htmlhttp://coolmathsolutions.blogspot.com/2013/03/angle-between-two-planes.htmlhttp://coolmathsolutions.blogspot.com/2013/03/angle-between-two-lines.htmlhttp://coolmathsolutions.blogspot.com/2013/03/angle-between-line-and-plane.htmlhttp://coolmathsolutions.blogspot.com/2013/03/angle-between-two-planes.htmlhttp://coolmathsolutions.blogspot.com/2013/03/angle-between-two-planes.html

  • 8/19/2019 MATHEMATICS T (1).docx

    49/110

     m1m ! "1: this formu&a doesnLt worM for perpendicu&ar &ines.

    E#ample 1) 9ind the acute ang&e between the &ines " N O' P , and " N PK' (O.

    tanθ=333m1−m21+m1m2333tanθ=3333−(−2)1+(3)(−2)333

    tanθ=|−1|=1

    θ=tan−1(1)=45∘

    E#ample ) 9ind the acute ang&e between the &ines Q' P " ( R N S and PO'P,," (,S N S

    earrange the equation

    y=6x+8

    y=−311x−1011

    m,NQ: mKNPOU,,

    tanθ=333m1−m21+m1m2333

    tanθ=33336−(−311)1+(6)(−311)3333

    tanθ=333−697333θ=tan−1697=84.2∘

    (h) find the point of intersection of two lines, and of a line and a plane;

    9ind the =oint of Intersection %etween Two Dines

    At the point of intersecting &ines: the points are equa&.

    C'amp&e) 9ind the point of intersection between &ines " N O' P V and " NPK'(O.

    y=3x−7−−−−−(1)

    y=−2x+3−−−−−(1)8ubstitute ,! into K!

    http://coolmathsolutions.blogspot.com/2013/03/find-point-of-intersection-between-two.htmlhttp://coolmathsolutions.blogspot.com/2013/03/find-point-of-intersection-between-two.htmlhttp://coolmathsolutions.blogspot.com/2013/03/point-of-intersectiona-of-line-and-plane.htmlhttp://coolmathsolutions.blogspot.com/2013/03/find-point-of-intersection-between-two.htmlhttp://coolmathsolutions.blogspot.com/2013/03/point-of-intersectiona-of-line-and-plane.html

  • 8/19/2019 MATHEMATICS T (1).docx

    50/110

    3x−7=−2x+3

    5x=10

    x=2

    'NK:y=3(2)−7

    y=−1• Wence: the intersecting point is K: P,!

    •   =oogle

    • P 8ee more at) http)UUcoo&mathso&utions.b&ogspot.comUKS,OUSOU#ndPpointPofPintersectionPbetweenPtwo.htm&Xsthash.h"vY

  • 8/19/2019 MATHEMATICS T (1).docx

    51/110

    Find the 6ectorDcross product o these norma4 6ectors

    n1→6n2→=3333i23 j−54k3−33333n1→6n2→=333@543−3333i−333233−3333 j+33323−54333k

    =3i+15 j+23kector product is N!, $, '!F

    Find the position 6ector rom the ori!in

    8ind some point which lies on both the planes because then it must lie on their line of

    intersection. #ny point which lies on both planes will do. Bould be plane- xy, yz, xz.0f x4,

    −5y+3z=12

    4y−3z=6

    y=−18,z=−269oint with position vector (, -$+, -'D) lies on the line of intersection.

    The e5uation of the line of intersection is

    r=(0,−18,−26)+t(3,15,23)

    To chec" that point that we get does really lie on both planes and so on their line ofintersection. 0f t4$

    r=(3,−3,−3)Substitute into the planes e5uations

    2(3)−5(−3)+3(−3)=12

    3(3)+4(−3)−3(−3)=6

    I 57>

    2x+3z=12

    3x−3z=6

  • 8/19/2019 MATHEMATICS T (1).docx

    52/110

    x=3.6,z=1.69oint with position vector (, !.D, $.D) lies on the line of intersection.

    The e5uation of the line of intersection is

    r=(3.6,0,1.6)+t(3,15,23)

    To chec" that point that we get does really lie on both planes and so on their line ofintersection. 0f t4$

    r=(6.6,15,24.6)Substitute into the planes e5uations

    2(6.6)−5(15)+3(24.6)=12

    3(6.6)+4(15)−3(24.6)=6

  • 8/19/2019 MATHEMATICS T (1).docx

    53/110

    Chapter 9 Limits and Continuit5

    9.1 Limits

    (a) determine the existence and values of the left-hand limit, right-hand limit and limit ofa function;

    DeftPhand Dimit and ightPhand Dimit

    A &imit is the va&ue that a function or sequence [approaches[ as the input orinde' approaches some va&ue.

     The &imit of f(x) as ' approaches a from the right.

    limx→a+f(x)

     The &imit of f(x) as ' approaches a from the left .

    limx→a−f(x)

    C'amp&e) 9ind

    limx→2−(x3−1)

    limx→2−(x3−1)=limx→2−(23−1)=7As ' approaches K from the &eft: 'Opproaches R and 'OP, approaches V.

    9ind

    limx→2+(x3−1)

    limx→2+(x3−1)=limx→2+(23−1)=7

    (b) use the properties of limits;=roperties of &imits

     The &imit of a constant is the constant itse&f.

    limx→ak=k

    http://coolmathsolutions.blogspot.com/2013/03/left-hand-limit-and-right-hand-limit.htmlhttp://coolmathsolutions.blogspot.com/2013/03/properties-of-limits.htmlhttp://coolmathsolutions.blogspot.com/2013/03/left-hand-limit-and-right-hand-limit.htmlhttp://coolmathsolutions.blogspot.com/2013/03/properties-of-limits.html

  • 8/19/2019 MATHEMATICS T (1).docx

    54/110

     The &imit of a function mu&tip&ied b" a constant is equa& to the va&ue of thefunction mu&tip&ied b" the constant.

    limx→ak.f(x)=k.limx→af(x)

     The &imit of a sum or dierence! of the functions is the sum or dierence! ofthe &imits of the individua& functions.

    limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x)

    limx→a[f(x)−g(x)]=limx→af(x)−limx→ag(x)

     The &imit of a product is the product of the &imits.

    limx→af(x).g(x)=limx→af(x).limx→ag(x)

     The &imit of a quotient is the quotient of the &imits

    limx→af(x)g(x)=limx→af(x)limx→ag(x)

     The &imit of a power is the power of the &imit.

    limx→axn=an

    9.* Continuit5

    (c) determine the continuity of a function at a point and on an interval;

    Continuit5 o a Function at A Point and Qn An Inter6a

    Continuit5 at a Point

    # function f (x) is continuous at a if the following three conditions are valid%

    i) The function is de fined at a% That is, a is in the domain of definition of f (x)

    ii) if

    limx→af(x)exists.

    iii) if

    http://coolmathsolutions.blogspot.com/2013/03/continuity-of-function-at-point-and-on.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuity-of-function-at-point-and-on.html

  • 8/19/2019 MATHEMATICS T (1).docx

    55/110

    limx→af(x)=f(a)

    0f any of the three conditions in the definition of continuity fails when x 4 c, the functionis discontinuous at that point.

    Continuit5 on An Inter6a4

    # function which is continuous at every point of an open interval I is called continuouson I .

    (d) use the intermediate value theorem.

    /et f (x) be a continuous function on the interval Ra :

    0f d is between &a+ and &:+, then a corresponding c between a and :, exists, so that

    f(c)=d

    http://coolmathsolutions.blogspot.com/2013/03/intermediate-value-theorem.htmlhttp://coolmathsolutions.blogspot.com/2013/03/intermediate-value-theorem.html

  • 8/19/2019 MATHEMATICS T (1).docx

    56/110

    Chapter "ierentiation

    .1 "eri6ati6es

    (a) identify the derivative of a function as a limit;

    \erivative of a 9unction as a Dimit

    9or a function f'!: its derivative is de#ned as

    f′(x)=lim]x→0f(x+]x)−f(x)]x

    C'amp&e ,) 7ompute the derivative of f'! b" using &imit de#nition

    f(x)=13x−25

    f′(x)=lim]x→0f(x+]x)−f(x)]x

    f′(x)=lim]x→013(x+]x)−25−{13x−25}]x=lim]x→013x+13]x−25−13x+25]x

    =lim]x→013]x]x

    =13

    C'amp&e ,) 7ompute the derivative of f'! b" using &imit de#nition

    f(x)=5−x+2−−−−√

    f′(x)=lim]x→0f(x+]x)−f(x)]x

    http://coolmathsolutions.blogspot.com/2013/03/derivative-of-function-as-limit.htmlhttp://coolmathsolutions.blogspot.com/2013/03/derivative-of-function-as-limit.html

  • 8/19/2019 MATHEMATICS T (1).docx

    57/110

    =lim]x→0{5−(x+]x)+2−−−−−−−−−−−√ }−{5−x+2−−−−√}]x

    =lim]x→0x+2−−−−√−x+]x+2−−−−−−−−−√]x

    =lim]x→0x+2−−−−√−x+]x+2−−−−−−−−−√]x.x+2−−−

    −√+x+]x+2−−−−−−−−−√x+2−−−−√+x+]x+2−−−−−−

    −−−√

    =lim]x→0(x+3)−(x+]x+3)]x{x+3−−−−√+x+]x+3−−−−−−

    −−−√}

    =lim]x→0−]x]x{x+3−−−−√+x+]x+3−−−−−−−−−√}

    =lim]x→0−1x+3−−−−√+x+]x+3−−−−−−−−−√

    =−1x+3−−−−√+x+3−−−−√

    =−12x+3−−−−√

    • (b) find the derivatives of   xn (n $ Q ), e x , ln x( sin x, cos x,  tan x,  sin -1  x,  cos -1  x, tan-1  x, with constant multiples, sums, differences, products, 5uotients and composites;

    Common "eri6ati6es

    Ta:4e o "eri6ati6es

    ddx(x)=1

    ddx(xn)=nxn−1

    ddx(ex)=ex

    ddx(lnx)=1x,x>0

    ddx(sinx)=cosx

    ddx(cosx)=−sinx

    http://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.htmlhttp://coolmathsolutions.blogspot.com/2013/03/common-derivatives.html

  • 8/19/2019 MATHEMATICS T (1).docx

    58/110

    ddx(tanx)=sec2x

    ddx(sin−1x)=11−x2−−−−−√

    ddx(cos−1x)=−11−x2−−−−−√

    ddx(secx)=secxtanx

    ddx(cscx)=−cscxcotx

    ddx(cotx)=−csc2x

    (c) perform implicit differentiation;

    C'p&icit and Imp&icit \ierentiation

     There are two wa"s to de#ne functions:  implicitly  and  e#plicitly. ?ost of the equations we have dea&t with have been e'p&icit equations: such as " NO'PK. This is ca&&ed e#plicit because given an ': "ou can direct&" get f'!.

     The technique of  implicit di$erentiation a&&ows "ou to #nd the derivative of " with respect to ' without having to so&ve the given equation for ". Ziven

    x2+y2=10

    =erforming a chain ru&e to get d"Ud': so&ve d"Ud' in terms of ' and ".9ind d"Ud' for

    x2+y2=10

    2x+2ydydx=0

    2ydydx=−2x

    dydx=−xy

    (d) find the first derivatives of functions defined parametrically;

    First "eri6ati6e o Parametric Functions

    http://coolmathsolutions.blogspot.com/2013/03/implicit-differentiation.htmlhttp://coolmathsolutions.blogspot.com/2013/03/derivative-of-parametric-functions.htmlhttp://coolmathsolutions.blogspot.com/2013/03/implicit-differentiation.htmlhttp://coolmathsolutions.blogspot.com/2013/03/derivative-of-parametric-functions.html

  • 8/19/2019 MATHEMATICS T (1).docx

    59/110

    Parametric deri6ati6e is a derivative in calculus that is ta"en when both the x and yvariables (independent and dependent, respectively) depend on an independent thirdvariable t, usually thought of as CtimeC.

    The irst deri6ati6e o the parametric e;uations is

    dydx=dydtdxdt

    dydx=dydt.dtdx

    x=f(t),y=g(t)

    E3amp4e#  8ind the first derivative, given

    x=t+cost

    y=sint

    dydx=dydtdxdt=cost1−sint

    E3amp4e#  8ind the first derivative, given

    x=t4−4t2

    y=t3

    dydx=dydtdxdt=2t23t3−8t

    .* App4ications o dierentiation

    (e) determine where a function is increasing, decreasing, concave upward and concavedownward

    here is a unction increasin! or decreasin!2

    • Increasin! unction# if f :(x)F, function is increasing.

    • "ecreasin! unction# if f :(x)N, function is decreasing

    http://coolmathsolutions.blogspot.com/2013/03/functions-increasing-decreasing-concave.htmlhttp://coolmathsolutions.blogspot.com/2013/03/functions-increasing-decreasing-concave.htmlhttp://coolmathsolutions.blogspot.com/2013/03/functions-increasing-decreasing-concave.htmlhttp://coolmathsolutions.blogspot.com/2013/03/functions-increasing-decreasing-concave.html

  • 8/19/2019 MATHEMATICS T (1).docx

    60/110

    here is unction conca6e up or conca6e do

  • 8/19/2019 MATHEMATICS T (1).docx

    61/110

    C'tremum =oints

    ?a'ima and minima are points where a function reaches a highest or

    &owest va&ue: respective&"g!

    h!i!

    Second %erivative

    If fLLL'! is positive: then it is a minimum point.If fLLL'! is ne&ative: then it is a ma#imum point.

    If fLLL'!N ^ero: then it cou&d be a ma'imum: minimum or point of in_e'ion.=oint of In_e'ionAn in_ection point is a point on a curve at which the sign of thecurvature changes.

    d2ydx2=0

    'hird %erivative

    If fLLL'! ` S There is an in(e#ion point

  • 8/19/2019 MATHEMATICS T (1).docx

    62/110

    (g) s"etch the graphs of functions, including asymptotes parallel to the coordinateaxes;

    (h) find the e5uations of tangents and normals to curves, including parametric curves;

    Tan!ents and orma4s to a Cur6e

    #t point (x$,y$) on the curve y4f(x) the e;uation o tan!ent is

    y−y1=m1(x−x1)where

    m1=f′(x)=dydxthe gradient to the function of f(x).

    Tangent is perpendicular to norma4, thus

    m1m2=−1

    http://coolmathsolutions.blogspot.com/2013/03/equations-of-tangents-and-normals-to.htmlhttp://coolmathsolutions.blogspot.com/2013/03/equations-of-tangents-and-normals-to.html

  • 8/19/2019 MATHEMATICS T (1).docx

    63/110

    E3amp4e# 8ind the e5uations of the tangent line and the normal line for the curve at t4$.

    x=t2

    y=2t+1

    dxdt=2t

    dydt=2

    dydx=dydt.dtdx

    =2t2t4$

    dydx=2Since t 4 $, x 4 $, y 4 ! A5uation of tangent

    y−y1=m1(x−x1)

    y−3=1(x−1)

    y=x+2A5uation of normal

    m1m2=−1

    m2=−1y−3=−1(x−1)

    y=−x+4

    (i) solve problems concerning rates of change, including related rates;

    http://coolmathsolutions.blogspot.com/2013/03/rates-of-change.htmlhttp://coolmathsolutions.blogspot.com/2013/03/rates-of-change.html

  • 8/19/2019 MATHEMATICS T (1).docx

    64/110

    ates of 7hange and e&ated ates

    e&ated rates prob&ems invo&ve #nding a rate at which a quantit" changesb" re&ating that quantit" to other quantities whose rates of change areMnown. The rate of change is usua&&" with respect to time.

    E#ample)  Air is being pumped into a spherica& ba&&oon such that itsradius increases at a rate of .RS cmUmin. 9ind the rate of change of itsvo&ume when the radius is cm.

     The vo&ume

    V=43πr3\ierentiating above equation with respect to t

    dVdt=43π.3r2.drdt

    dVdt=4πr2.drdt The rate of change of the radius drUdt N S.RS cmUmin because the radius isincreasing with respect to time.

    dVdt=4π(5)2(0.80)

    dVdt=80π cm3/min

    Wence: the vo&ume is increasing at a rate of RS cmOUmin when the radiushas a &ength of cm.

    (H) solve optimisation problems.

    The differentiation and its applications can be used to solve practical problems. Thisinclude minimiing costs, maximiing areas, minimiing distances and so on.

    $. "ia!ram - 6raw a diagram.'. oa4 - Oaximie or minimie which un"nown3!. "ata - 0ntroduce variable names.

  • 8/19/2019 MATHEMATICS T (1).docx

    65/110

    • Pse the Qrst or second derivative test to determine whether the critical points are localmaxima, local minima, or neither.

    • Bhec" end points of f, if applicable.

    Chapter Inte!ration

    .1 Indeinite inte!ra4s

    (a) identify integration as the reverse of differentiation;

    (b) integrate  xn  (n $ Q ), e x   , sin x, cos x,  sec2 x,  with constant multiples, sums anddifferences;

    Integra& 7ommon 9unction

    Constant

    ∫adx=ax+C*ariable 

    ∫xdx=x22+CPo+er 

    ∫xndx=xn+1n+1+Ceciprocal

    ∫1xdx=ln|x|+CE#ponential

    http://coolmathsolutions.blogspot.com/2013/03/definite-and-indefinite-integral.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.htmlhttp://coolmathsolutions.blogspot.com/2013/03/definite-and-indefinite-integral.htmlhttp://coolmathsolutions.blogspot.com/2013/03/integral-common-function.html

  • 8/19/2019 MATHEMATICS T (1).docx

    66/110

    ∫exdx=ex+C∫axdx=axlna+C∫ln(x)dx=x(ln(x)−1)+C'ri&onometry

    ∫cos(x)dx=sin(x)+C∫sin(x)dx=−cos(x)+C∫sec2(x)dx=tan(x)+C

      (c) integrate rational functions by means of decomposition into partial fractions;

    Inte!ration :5 Partia4 Fractions "ecomposition

    Ho< to inte!rate the rationa4 unction( ;uotient o t

  • 8/19/2019 MATHEMATICS T (1).docx

    67/110

    ∫1x2+5x+6dx8actor (x) into linear and&or 5uadratic (irreducible) factors Z find the partial fractiondecomposition

    1(x+2)(x+3)=Ax+2+Bx+31=A(x+3)+B(x+2)

    x=−2,A=1

    x=−3,B=−1

    1(x+2)(x+3)=1x+2−1x+30ntegrate the result

    ∫1x2+5x+6dx=∫1(x+2)(x+3)dx=∫1x+2−1x+3dx=ln|x+2|−ln|x+3|+C

    E3amp4e *# Avaluate the indefinite integral

    1(x−1)(x+2)(x+1)=Ax−1+Bx+2+Cx+1

    6ecomposition of rational functions into partial fractions

    1=A(x+2)(x+1)+B(x−1)(x+1)+C(x−1)(x+2)

    x=1,6A=1,A=16

    x=−1−2C=1,C=−12

    x=−23B=1,B=13

    1(x−1)(x+2)(x+1)=16

    (1x−1

    )+13

    (1x+2

    )−12

    (1x+1

    )0ntegrate the result

    ∫1(x−1)(x+2)(x+1)dx

  • 8/19/2019 MATHEMATICS T (1).docx

    68/110

    =∫16(1x−1)+13(1x+2)−12(1x+1)=16ln|x−1|+13ln|x+2|−12ln|x+1|+C

    (d) use trigonometric identities to facilitate the integration of trigonometric functions;

    (e) use algebraic and trigonometric substitutions to find integrals;

    Inte!ration :5 Tri!onometric Su:stitution V Identities

    Su:stitute one o the o44o

  • 8/19/2019 MATHEMATICS T (1).docx

    69/110

    .* "einite inte!ra4s

    (g) identify a definite integral as the area under a curve;

    (h) use the properties of definite integrals;

    Properties o Inte!ra4s

    Additi6e Properties

    Split a definite integral up into two integrals with the same integrand but different limits

    ∫baf(x)dx+∫cbf(x)dx=∫caf(x)dx0f the upper and lower bound are the same, the area is .

    ∫aaf(x)dx=00f an interval is bac"wards, the area is the opposite sign.

    ∫ba

    f(x)dx=−∫ab

    f(x)dx

    Inte!ra4 o Sum

    The integral of a sum can be split up into two integrands

    ∫ba[f(x)+g(x)]dx=∫baf(x)dx+∫bag(x)dx

    Sca4in! :5 a constant

    Bonstants can be distributed out of the integrand and multiplied afterwards.

    ∫bacf(x)dx=c∫baf(x)dx

    http://coolmathsolutions.blogspot.com/2013/03/definite-and-indefinite-integral.htmlhttp://coolmathsolutions.blogspot.com/2013/03/properties-of-integrals.htmlhttp://coolmathsolutions.blogspot.com/2013/03/definite-and-indefinite-integral.htmlhttp://coolmathsolutions.blogspot.com/2013/03/properties-of-integrals.html

  • 8/19/2019 MATHEMATICS T (1).docx

    70/110

    Tota4 Area ithin an Inter6a4

    ∫baf(x)dx=F(b)−F(a)∫ba|f(x)|dx=F(b)+F(a)

    Inte!ra4 ine;ua4ities

    0f

    f(x)≥0and a

  • 8/19/2019 MATHEMATICS T (1).docx

    71/110

    0f y 4 f(x) is continuous and f(x) N on [a, b\, then the area under the curve from a to bis%

    Area=−∫baf(x)dx

    0f y 4 f(x) is continuous and f(x) N and f(x) F

    Area=∫ba

    f(x)d(x)+333∫cb

    f(x)d(x)333+∫dc

    f(x)d(x)

    0f x 4 g (y ) is continuous and non-negative on [c, d\, then the area under the curve of gfrom c to d is%

    Area=∫dcg(y)dy

  • 8/19/2019 MATHEMATICS T (1).docx

    72/110

    (") calculate volumes of solids of revolution about one of the coordinate axes.

    Chapter 1>

    "ierentia4 E;uations

    • (a) find the general solution of a first order differential e5uation with separable variables;

    • (b) find the general solution of a first order linear differential e5uation by means of anintegrating factor;

  • 8/19/2019 MATHEMATICS T (1).docx

    73/110

    • (c) transform, by a given substitution, a first order differential e5uation into one withseparable

    • variables or one which is linear;

    • (d) use a boundary condition to find a particular solution;

    • (e) solve problems, related to science and technology, that can be modelled by differentiale5uations.

    Chapter 11

    Mac4aurin Series

  • 8/19/2019 MATHEMATICS T (1).docx

    74/110

    (a) find the Oaclaurin series for a function and the interval of convergence;

    ?ac&aurin 8eries

    'aylor series is a representation of a function as an in#nite sum of termsthat are ca&cu&ated from the va&ues of the functionLs derivatives at a sing&epoint.'aylor Series

    f(x)=∑   x=0∞fn(a)n!(x−a)n=f(a)+f′(a)(x−a)+f′(a)2!(x−a)2+f′′(a)3!(x−a)3+...+f(n)(a)n!

    (x−a)n+...

    -acLaurin series is the Ta"&or series of the function about #./0

    f(x)=∑   x=0∞fn(0)n!xnf(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+...+f(n)(0)n!xn+...

    E#ample ) 9ind the ?ac&aurin 8eries e'pansion of e'

    f(x)=e5x

    f′(x)=5e5x

    f′′(x)=52e5x

    f′′′(x)=53e5x

    f(4)(x)=54e5x

    f(0)=1

    f′(0)=5

    f′′(0)=52

    f′′′(0)=53

    f(4)=54

    http://coolmathsolutions.blogspot.com/2013/03/maclaurin-series.htmlhttp://coolmathsolutions.blogspot.com/2013/03/interval-of-convergence.htmlhttp://coolmathsolutions.blogspot.com/2013/03/maclaurin-series.htmlhttp://coolmathsolutions.blogspot.com/2013/03/interval-of-convergence.html

  • 8/19/2019 MATHEMATICS T (1).docx

    75/110

    f(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+...+f(n)(0)n!xn+...

    e5x=1+5x1!+52x22!+53x33!+...+5nxnn!

    =∑   n=0∞5nxnn!

    Inter6a4 o Con6er!ence

    The set of points where the series converges is called the inter6a4 o con6er!enceFindin! inter6a4 o con6er!ence$) perform ratio test to test for the convergence of a series.') Bhec" endpoint

    $atio test 

    L=limn→∞333an+1an333

    if / N $ then the series converges.if / F $ then the series does not converge;if / 4 $ or the limit fails to exist, then the test is inconclusive

    E3amp4e# 6etermine the interval of convergence for the series

    ∑   n=1∞

    (x−2)

    nn.5n

    #pply ratio test

    limn→∞333an+1an333=333(x−2)n+1(n+1).5n+1.n.5n(x−2)n333

    =limn→∞333x−25.nn+1333

    =15|x−2|limn→∞333nn+1333

    =15|x−2|#s n approcaches infinity, n&n>$ aprpoaches $

    limn→∞333nn+1333]1 The series converges for

    15|x−2|

  • 8/19/2019 MATHEMATICS T (1).docx

    76/110

    Bhec" end point x4E,

    ∑   n=1∞(5)nn.5n=∑   n=1∞1nThis is the harmonic series, and it diverges.

    Bhec" end point x4-!,∑   n=1∞(−5)nn.5n=∑   n=1∞(−1)n1nThe series converges by the #lternating Series Test.

    The inter6a4 o con6er!ence is

    −3≤x

  • 8/19/2019 MATHEMATICS T (1).docx

    77/110

    x4+x2*ewrite the function as

    x4+x2=x(14+x2)=x4EF11+x24GH

    =x4EF11−(−x24)GHJThis is the sum of the infinite geometric series with the first term x&7 and ratio x'&7

    =x4∑   n=0∞(−x24)=x4∑   n=0∞(−1)nx2n4n=∑   n=0∞(−1)nx2n+14n+1

     (c) perform differentiation and integration of a power series;

    (d) use series expansions to find the limit of a function.

    Chapter 1* umerica4 Method

    1*.1 umerica4 so4ution o e;uations

    (a) locate a root of an e5uation approximately by means of graphical considerations and by searching for a sign change;

    http://coolmathsolutions.blogspot.com/2013/03/geometric-series.htmlhttp://coolmathsolutions.blogspot.com/2013/03/geometric-series.html

  • 8/19/2019 MATHEMATICS T (1).docx

    78/110

    (b) use an iterative formula of the form xn>$ 4f(xn) to find a root of an e5uation to a prescribed degree of accuracy;

    (c) identify an iteration which converges or diverges;

    (d) use the 1ewton-*aphson method;

    1*.* umerica4 inte!ration

    (e) use the trapeium rule;

    (f) use s"etch graphs to determine whether the trapeium rule gives an over-estimate oran under-estimate in simple cases.

    Chapter 1'

    "ata "escription

    (a) identify discrete, continuous, ungrouped and grouped data;

    "iscrete( Continuous( Un!rouped and rouped "ata

    "iscrete "ata

    http://coolmathsolutions.blogspot.com/2013/03/discrete-continuous-ungrouped-and.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-continuous-ungrouped-and.html

  • 8/19/2019 MATHEMATICS T (1).docx

    79/110

    6iscrete 6ata is counted and can only ta"e certain values (whole numbers).Ag 1umber of students in a class, 1umber of children in a playground, etc.

    Continuous "ata

    Bontinuous 6ata is data that can ta"e any value (within a range)Ag. eight of children, weights of car, etc.

    rouped "ata

    6ata that has been organied into groups (into a fre5uency distribution).

    Ag.Class

    0−5

    6−10

    11−15

    16−20

    Frequency

    10

    20

    17

    4

    Un!rouped "ata

    6ata that has not been organied into groups$ $ ' 7 + 7 DE E+ $ $$ '! D Y + $

    (b) construct and interpret stem-and-leaf diagrams, box-and-whis"er plots, histogramsand cumulative fre5uency curves;

    Stem0and0Lea "ia!rams

    # stem0and04ea dia!rams presents 5uantitative data in a graphical format, similar to ahistogram, to assist in visualiing the shape of a distribution, giving the reader a 5uic"overview of distribution.

    http://coolmathsolutions.blogspot.com/2013/03/stem-and-leaf-diagrams-box-and-whisker.htmlhttp://coolmathsolutions.blogspot.com/2013/03/histograms-and-cumulative-frequency.htmlhttp://coolmathsolutions.blogspot.com/2013/03/histograms-and-cumulative-frequency.htmlhttp://coolmathsolutions.blogspot.com/2013/03/histograms-and-cumulative-frequency.htmlhttp://coolmathsolutions.blogspot.com/2013/03/stem-and-leaf-diagrams-box-and-whisker.htmlhttp://coolmathsolutions.blogspot.com/2013/03/histograms-and-cumulative-frequency.htmlhttp://coolmathsolutions.blogspot.com/2013/03/histograms-and-cumulative-frequency.html

  • 8/19/2019 MATHEMATICS T (1).docx

    80/110

    -, - - - ' , 9' 9' 9, 9 1 , 1>9

    7 M D + Y M

    D M ! D + +E M ! ! D+ M $ +$ M E"ey 7 M means 7

    Bo30and0hiser P4ots

    Bo30and0hiser P4ots displays of the spread of a set of data through five-number

    summaries% the minimum, lower 5uartile ($), median ('), upper 5uartile(!), andmaximum.

    • The first and third 5uartiles are at the ends of the box,

    • The median is indicated with a vertical line in the interior of the box

    • Ands of the whis"ers indicated the maximum and minimum.

    Histo!rams and Cumu4ati6e Fre;uenc5 Histo!rams

    Histo!rams and Cumu4ati6e Fre;uenc5 Histo!rams

    # histo!ram is constructed from a fre5uency tableThe cumu4ati6e re;uenc5 is the running total of the fre5uencies.

  • 8/19/2019 MATHEMATICS T (1).docx

    81/110

    (c) state the mode and range of ungrouped data;

    Mode o un!rouped data

    #n observation occurring most fre5uently in the data is called mode of the data

    http://coolmathsolutions.blogspot.com/2013/03/mode-and-range-of-ungrouped-data.htmlhttp://coolmathsolutions.blogspot.com/2013/03/mode-and-range-of-ungrouped-data.html

  • 8/19/2019 MATHEMATICS T (1).docx

    82/110

    E3amp4e# 8ind the median of the following observations

    $, $7, $D, ', '7, '+, '+, !, !', 7

    0n the given data, the observation '+ occurs maximum. So the mode is *.

    $an!e o un!rouped data

    $an!e 7 Hi!hest Oa4ue ) Lo

  • 8/19/2019 MATHEMATICS T (1).docx

    83/110

    E3amp4e 1# 8ind the median, lower 5uartile and upper 5uartile of the following numbers.

    1*( ,( **( '>( 9( '( 1( -*( 1,( -'( ',

    *earrange the data in ascending order%

    $ 44 $&7 ($$>$) 4 !th observation, $4$'' 44 $&' ($$>$) 4 Dth observation, '4''! 44 !&7 ($$>$) 4 Yth observation, !4!+

    Inter;uarti4e $an!e 4 ! -$ 4 !+ - $' 4 'D$an!e 4 /argest value - smallest value 4 7! - 4 !+

    E3amp4e *# 8ind the median, lower 5uartile and upper 5uartile of the following numbers.

    1*( ,( **( '>( 9( '( 1( -*( 1,( -'( ',( ,>

    *earrange the data in ascending order%

    Q1=(12+152)=13.5Q2=(22+302)=26Q3=

    (38+422

    )=40

    Inter;uarti4e $an!e 4 ! -$ 4 7 - $!. 4 'D.$an!e 4 /argest value - smallest value 4 - 4 7

    Median and Inter;uarti4e $an!e o rouped "ata

  • 8/19/2019 MATHEMATICS T (1).docx

    84/110

    Median=Lm+(n2−Ffm)Cn 4 the total fre5uency/m 4 the lower boundary of the class median8 4 the cumulative fre5uency before classmedianf 4 the fre5uency of the class medianf m4 the lower boundary of the class medianB4 the class width

    Q1=LQ1+(n4−FfQ1)CQ3=LQ3+EF3n4−FfQ3GHC

    E3amp4e % 8ind the median and inter5uartile range of below data.

    Q2=20.5+EF502−2312GH10=22.167

    Q1=10.5+EF504−1010GH10=13

    Q3=30.5+EF3(50)4−358GH10=33.625

     (e) calculate the mean and standard deviation of ungrouped and grouped data, from rawdata and from given totals such as

    http://coolmathsolutions.blogspot.com/2013/03/mean-and-standard-deviation-of_29.htmlhttp://coolmathsolutions.blogspot.com/2013/03/mean-and-standard-deviation-of_29.htmlhttp://coolmathsolutions.blogspot.com/2013/03/mean-and-standard-deviation-of_29.html

  • 8/19/2019 MATHEMATICS T (1).docx

    85/110

    ∑   i=1n(xi−a)and ∑   i=1n(xi−a)2

    Mean and Standard "e6iation o Un!rouped and rouped "ata

    Un!rouped "ata

    Oean

    x̄=∑xn

    Standard 6eviation

    s=∑(x−x̄)2n−−−−−−−−−√ s=∑x2n−(∑xn)2−−−−−−−−−−−−−− ⎷ ̂ ^

    rouped "ata

    Oean

    x̄=∑fx∑f

    Standard 6eviation

    s=∑f(x−x̄)2n−−−−−−−−−−√ s=∑fx2∑f−(∑fx∑f)2−−−−−−−−−−−−−−−− ⎷ ̂ ^

    (f) select and use the appropriate measures of central tendency and measures ofdispersion;

    Measures o Centra4 Tendenc5

    Oeasure of central tendency is an average of a set of measurements.

    http://coolmathsolutions.blogspot.com/2013/03/measures-of-central-tendency-and.htmlhttp://coolmathsolutions.blogspot.com/2013/03/measures-of-central-tendency-and.htmlhttp://coolmathsolutions.blogspot.com/2013/03/measures-of-central-tendency-and.htmlhttp://coolmathsolutions.blogspot.com/2013/03/measures-of-central-tendency-and.html

  • 8/19/2019 MATHEMATICS T (1).docx

    86/110

    • Mode 0 the number that occurs most fre5uently.

    • Median 0 the value of the middle item in a set of observations.

    • Mean 0 average value of the distribution.

    Measures o "ispersion

    Oeasures of 6ispersion is group of analytical tools that describes the spread or variability ofa data set.

    • $an!e - 6ifference between the largest and smallest sample values.

    • OarianceD Standard "e6iation - Oeasures the dispersion around an average.

    • Coeicient o 6ariation - Axpressed in a relative value.

    • (g) calculate the 9earson coefficient of s"ewness;

    Pearson coeicient o se

  • 8/19/2019 MATHEMATICS T (1).docx

    87/110

    Positi6e se

  • 8/19/2019 MATHEMATICS T (1).docx

    88/110

    Addition Princip4e

    0f we want to find the probability that event # happens or event ? happens, we shouldadd the probability that # happens to the probability that ? happens.

    Addition $u4e#

    P&A or B+ 7 P&A+ 8 P&B+

    E3amp4e# # single D-sided die is rolled.

  • 8/19/2019 MATHEMATICS T (1).docx

    89/110

  • 8/19/2019 MATHEMATICS T (1).docx

    90/110

    7omp&ementar": C'haustive and ?utua&&" C'c&usive Cvents

    7omp&ementar" Cvent

     The comp&ement of an" event A: AL is the event that A does not occur.

    C'haustive Cvent

    A set of events is co&&ective&" e'haustive if at &east one of the events mustoccur. 9or e'amp&e: when ro&&ing a si'Psided die: the outcomes ,: K: O: : :and Q are co&&ective&" e'haustive: because the" inc&ude the entire range of possib&e outcomes. Thus: a&& samp&e spaces are co&&ective&" e'haustive.

    P(AB)=1

    -utually E#clusive Event

     Two events are Lmutua&&" e'c&usiveL if the" cannot occur at the same time.C'amp&e: tossing a coin once: which can resu&t in either heads or tai&s: but notboth.

    P(A∩B)=0

    P(AB)=P(A)+P(B)

  • 8/19/2019 MATHEMATICS T (1).docx

    91/110

    (e) use the formula

    Independent Cvents 7onditiona& =robabi&ities

    Formu4a

    P(AB)=P(A)+P(B)−P(A∩B)

    Independent E6ents

    Two events are independent means that the occurrence o one does not aect thepro:a:i4it5 o the other. Two events, # and ?, are independent if and only if 

    P(A∩B)=P(A).P(B)

    Conditiona4 Pro:a:i4it5

    Conditiona4 Pro:a:i4it5 is the probability that an event will occur, when another event is"nown to occur or to have occurred.

    =iven two events # and ?, , the conditional probability of # given ? is defined as the5uotient of the Hoint probability of # and ?, and the probability of ?

    P(A|B)=P(A∩B)P(B)

    P(A∩B)=P(A|B).P(B)

     

    P&A  B+ 7 P&A+ 8 P&B+ 0 P&A ∩ B+W

    • (f) calculate conditional probabilities, and identify independent events;

    • (g) use the formulae 

    P&A ∩ B+ 7 P&A+ 3 P&BA+ 7 P&B+ 3 P&A B+W

    (h) use the rule of total probability.

    http://coolmathsolutions.blogspot.com/2013/03/independent-events-conditional.htmlhttp://coolmathsolutions.blogspot.com/2013/03/independent-events-conditional.htmlhttp://coolmathsolutions.blogspot.com/2013/03/independent-events-conditional.htmlhttp://coolmathsolutions.blogspot.com/2013/03/the-fundamental-laws-of-set-algebra.htmlhttp://coolmathsolutions.blogspot.com/2013/03/the-fundamental-laws-of-set-algebra.htmlhttp://coolmathsolutions.blogspot.com/2013/03/independent-events-conditional.htmlhttp://coolmathsolutions.blogspot.com/2013/03/independent-events-conditional.htmlhttp://coolmathsolutions.blogspot.com/2013/03/independent-events-conditional.htmlhttp://coolmathsolutions.blogspot.com/2013/03/the-fundamental-laws-of-set-algebra.html

  • 8/19/2019 MATHEMATICS T (1).docx

    92/110

     The 9undamenta& Daws of 8et A&gebra

    Commutative la+s 

    AB=BA

    A∩B=B∩A

    2ssociative La+s 

    (AB)C=A(BC)

    (A∩B)∩C=A∩(B∩C)

    %istributive La+s 

    A(B∩C)=(AB)∩(AC)

    A∩(BC)=(A∩B)(A∩C)

    3mpotent La+s 

    A∩A=A

    AA=A

    %omination La+s 

    AU=U

    A∩=

    2bsorption La+s

    A(A∩B)=A

    A∩(AB)=A

    3nverse La+s 

    AA′=U

    A∩A′=

    • La+ of Complement 

    (A′)′=A

    U′=

  • 8/19/2019 MATHEMATICS T (1).docx

    93/110

    ′=U

    • %e-or&an4s La+ 

    (AB)′=A′∩B′

    (A∩B)′=A′B′

    • elative Complement of 5 in 2

    A−B=A∩B′

    Chapter 1, Pro:a:i4it5 "istri:utions

  • 8/19/2019 MATHEMATICS T (1).docx

    94/110

    1,.1 "iscrete random 6aria:4es

    Var(X)=E(X2)−[E(X)]2

    Var(X)=σ2x=∑  [x2i6P(xi)]−µ2x

    • (a) identify discrete random variables;

    • (b) construct a probability distribution table for a discrete random variable;

    • (c) use the probability function and cumulative distribution function of a discrete randomvariable;

    • (d) calculate the mean and variance of a discrete random variable;

    "iscrete random 6aria:4es

    # discrete 6aria:4e is a variable which can only ta"e a counta:4e num:er o 6a4ues.

    # discrete random variable _ is uni5uely determined by

    0ts set of possible values _

    • 0ts probability density function (pdf)% # real-valued function f (`) deQned for each x$_ as the probability that _ has the value x.

    • Pro:a:i4it5 "ensit5 Function 

    f(x)=Pr(X=x)

    ∑   x=inf(xi)=1• Cumu4ati6e "istri:ution Function 8(x) is defined to be

    F(x)=P(X≤x)

    http://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.htmlhttp://coolmathsolutions.blogspot.com/2013/03/discrete-distribution-discrete-random.html

  • 8/19/2019 MATHEMATICS T (1).docx

    95/110

    "iscrete Pro:a:i4it5 "istri:ution

    The probability that random variable _ will ta"e the value xi is denoted by p(xi) whereP(xi)=P(X=xi)

    Mean and Oariance of a Discrete Random Variable

    Oean

    E(X)=µx=∑  [xi6P(xi)]ariance

    1,.* Continuous random 6aria:4es

    • (e) identify continuous random variables;

    • (f) relate the probability density function and cumulative distribution function of acontinuous random variable;

    • (g) use the probability density function and cumulative distribution function of acontinuous random variable;

    • (h) calculate the mean and variance of a continuous random variable;

    Continuous $andom Oaria:4es

    # random variable _ is continuous if its set of possible values is an entire interval ofnumbers

    Pro:a:i4it5 "ensit5 Function

    http://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.htmlhttp://coolmathsolutions.blogspot.com/2013/03/continuous-distribution-continuous.html

  • 8/19/2019 MATHEMATICS T (1).docx

    96/110

    /et _ be a continuous random variables. Then a pro:a:i4it5 distri:ution or pro:a:i4it5densit5 unction &pd+ o  is a function f (x) such that for any two numbers a and b,

    P(a≤X≤b)=

    ∫baf(x)dx

    The graph of f is the density curve.

    #rea of the region between the graph of f and the x U axis is e5ual to $.

    The Cumu4ati6e "istri:ution Function

    The cumulative distribution function, 8(x) for a continuous random variables _ is definedfor every number x by

    F(x)=P(X≤x)=∫x−∞f(y)dy

    P(a≤X≤b)=F(b)−F(a)8or each x, 8(x) is the area under the density curve to the left of x.

    E3pected Oa4ue

    The expected or mean value of a continuous random variables _ with pdf f(x) is

    E(X)=µx=∫∞−∞x.f(x)dx

    Oariance

    The variance of continuous random variables _ with pdf f(x) is

    σ2x=Var(X)=∫∞−∞(x−µ)2.f(x)dxE[(x−µ)2]

  • 8/19/2019 MATHEMATICS T (1).docx

    97/110

    Var(X)=E(X2)−[E(x)]2

    1,.' Binomia4 distri:ution

    • (i) use the probability function of a binomial distribution, and find its mean and variance;

    • (H) use the binomial distribution as a model for solving problems related to science andtechnology;

    Binomia4 "istri:ution

    The :inomia4 distri:ution is used when there are exactly two mutually exclusive outcomes

    of a trial. These outcomes are appropriately labeled CsuccessC and CfailureC.

    0f the random variable _ follows the binomial distribution with parameters n and p, _ (?(n,9), the probability of getting exactly k  successes in n trials is given by the probability massfunction

    f(k;n, p)=Pr(X=k)=(nk) pk(1− p)n−k0f _ ?(n, p), _ is a binomially distributed random variable, then the expected value of_ is

    Mean =npand the variance is

    Variance =np(1− p)

    n number of successes p is the probability of success in ?inomial 6istribution, assumes that p is fixed for alltrials.

    1,.- Poisson distri:ution

    • (") use the probability function of a 9oisson distribution, and identify its mean andvariance;

    • (l) use the 9oisson distribution as a model for solving problems related to science andtechnology;

    http://coolmathsolutions.blogspot.com/2013/03/binomial-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/binomial-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/binomial-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/binomial-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/binomial-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/binomial-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.htmlhttp://coolmathsolutions.blogspot.com/2013/03/poisson-distribution.html

  • 8/19/2019 MATHEMATICS T (1).docx

    98/110

    =oisson \istribution

    Poisson distribution  is a discrete probabi&it" distribution that e'pressesthe probabi&it" of a given number of events occurring in a #'ed interva& of time andUor space if these events occur with a Mnown average rate and

    independent&" of the time since the &ast event.A discrete stochastic variab&e is said to have a =oisson distribution withparameter S: if for M N S: ,: K: ... the probabi&it" mass function of isgiven b"

    f(k;λ)=Pr(X=k)=λke−λk!

    is the number of occurrences of an eventj the probabi&it" of which is givenb" the function is a positive rea& number.

    ?ean and

  • 8/19/2019 MATHEMATICS T (1).docx

    99/110

    The norma4 distri:ution is a continuous probability distribution, defined by the formula

    f(x)=1σ2π−−√e−(x−µ)22σ2The normal distribution is also often denoted

    Xk N(µ,σ2)

    Standard orma4 "istri:ution

    0f 4 and 4 $, the distribution is called the standard norma4 distri:ution.

    8ormula for -score%

    z=x−µσ

    • is the C-scoreC (Standard Score)

    • x is the value to be standardied

    • is the mean

    • is the standard deviation

  • 8/19/2019 MATHEMATICS T (1).docx

    100/110

    orma4 Appro3imations

    Binomia4 Appro3imation

    The normal distribution can be used as an approximation to the binomial distribution,under certain circumstances, namely%

    0f _ ?(n, p) and if n is 4ar!e and&or p is c4ose to X, then _ is approximately 1(np,np5)

  • 8/19/2019 MATHEMATICS T (1).docx

    101/110

    Poisson Appro3imation

    The normal distribution can also be used to approximate the 9oisson distribution for4ar!e 6a4ues o    (the mean of the 9oisson distribution).

    0f _ 9o() then for large values of l, _ 1(, ) approximately.

  • 8/19/2019 MATHEMATICS T (1).docx

    102/110

    Chapter 1

    Samp4in! and Estimation

    1.1 Samp4in!

    • (a) distinguish between a population and a sample, and between a parameter and astatistic;

    • (b) identify a random sample;

    • (c) identify the sampling distribution of a statistic;

    • (d) determine the mean and standard deviation of the sample mean;

    • (e) use the result that _ has a normal distribution if _ has a normal distribution;

    • (f) use the central limit theorem;

    • (g) determine the mean and standard deviation of the sample proportion;

    • (h) use the approximate normality of the sample