Top Banner
Mathematics
52

Mathematics. Session Matrices and Determinants - 2.

Jan 03, 2016

Download

Documents

Jane Cross
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mathematics. Session Matrices and Determinants - 2.

Mathematics

Page 2: Mathematics. Session Matrices and Determinants - 2.

Session

Matrices and Determinants - 2

Page 3: Mathematics. Session Matrices and Determinants - 2.

Session Objectives

Determinant of a Square Matrix

Minors and Cofactors

Properties of Determinants

Applications of Determinants

Area of a TriangleSolution of System of Linear Equations (Cramer’s Rule)

Class Exercise

Page 4: Mathematics. Session Matrices and Determinants - 2.

Determinants

If is a square matrix of order 1,

then |A| = | a11 | = a11

ijA = a

If is a square matrix of order 2, then11 12

21 22

a aA =

a a

|A| = = a11a22 – a21a12

a a

a a

11 12

21 22

Page 5: Mathematics. Session Matrices and Determinants - 2.

Example

4 - 3Evaluate the determinant :

2 5

4 - 3Solution : = 4 ×5 - 2 × -3 = 20 + 6 = 26

2 5

Page 6: Mathematics. Session Matrices and Determinants - 2.

Solution

If A = is a square matrix of order 3, then11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

[Expanding along first row]

11 12 1322 23 21 23 21 22

21 22 23 11 12 1332 33 31 33 31 32

31 32 33

a a aa a a a a a

| A | = a a a = a - a + aa a a a a a

a a a

11 22 33 32 23 12 21 33 31 23 13 21 32 31 22= a a a - a a - a a a - a a + a a a - a a

11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22a a a a a a a a a a a a a a a a a a

Page 7: Mathematics. Session Matrices and Determinants - 2.

Example

2 3 - 5

Evaluate the determinant : 7 1 - 2

-3 4 1

2 3 - 5

1 - 2 7 - 2 7 17 1 - 2 = 2 - 3 + -5

4 1 -3 1 -3 4-3 4 1

= 2 1 + 8 - 3 7 - 6 - 5 28 + 3

= 18 - 3 - 155

= -140

[Expanding along first row]

Solution :

Page 8: Mathematics. Session Matrices and Determinants - 2.

Minors

-1 4If A = , then

2 3

21 21 22 22M = Minor of a = 4, M = Minor of a = -1

11 11 12 12M = Minor of a = 3, M = Minor of a = 2

Page 9: Mathematics. Session Matrices and Determinants - 2.

Minors

4 7 8

If A = -9 0 0 , then

2 3 4

M11 = Minor of a11 = determinant of the order 2 × 2 square sub-matrix is obtained by leaving first row and first column of A

0 0= =0

3 4

Similarly, M23 = Minor of a23

4 7= =12- 14=-2

2 3

M32 = Minor of a32 etc.4 8

= =0+72=72-9 0

Page 10: Mathematics. Session Matrices and Determinants - 2.

Cofactors

i+ jij ij ijC = Cofactor of a in A = -1 M ,

ij ijwhere M is minor of a in A

Page 11: Mathematics. Session Matrices and Determinants - 2.

Cofactors (Con.)

C11 = Cofactor of a11 = (–1)1 + 1 M11 = (–1)1 +1 0 0

=03 4

C23 = Cofactor of a23 = (–1)2 + 3 M23 = 4 7

22 3

C32 = Cofactor of a32 = (–1)3 + 2M32 = etc.4 8

- =- 72-9 0

4 7 8

A = -9 0 0

2 3 4

Page 12: Mathematics. Session Matrices and Determinants - 2.

Value of Determinant in Terms of Minors and Cofactors

11 12 13

21 22 23

31 32 33

a a a

If A = a a a , then

a a a

3 3

i jij ij ij ij

j 1 j 1

A 1 a M a C

i1 i1 i2 i2 i3 i3= a C +a C +a C , for i =1 or i = 2 or i = 3

Page 13: Mathematics. Session Matrices and Determinants - 2.

Properties of Determinants

1. The value of a determinant remains unchanged, if its rows and columns are interchanged.

1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

a b c a a a

a b c = b b b

a b c c c c

i e A A. . '

2. If any two rows (or columns) of a determinant are interchanged, then the value of the determinant is changed by minus sign.

1 1 1 2 2 2

2 2 2 1 1 1 2 1

3 3 3 3 3 3

a b c a b c

a b c = - a b c R R

a b c a b c

Applying

Page 14: Mathematics. Session Matrices and Determinants - 2.

Properties (Con.)

3. If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant.

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ka kb kc a b c

a b c = k a b c

a b c a b c

which also implies

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a b c ma mb mc1

a b c = a b cm

a b c a b c

Page 15: Mathematics. Session Matrices and Determinants - 2.

Properties (Con.)

4. If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants.

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

a +x b c a b c x b c

a +y b c = a b c + y b c

a +z b c a b c z b c

5. The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column).

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 1 1 2 3

3 3 3 3 3 3 3 3

a b c a +mb - nc b c

a b c = a +mb - nc b c C C + mC - nC

a b c a +mb - nc b c

Applying

Page 16: Mathematics. Session Matrices and Determinants - 2.

Properties (Con.)

6. If any two rows (or columns) of a determinant are identical, then its value is zero.

2 2 2

3 3 3

0 0 0

a b c =0

a b c

7. If each element of a row (or column) of a determinant is zero, then its value is zero.

1 1 1

2 2 2

1 1 1

a b c

a b c =0

a b c

Page 17: Mathematics. Session Matrices and Determinants - 2.

Properties (Con.)

a 0 0

8 Let A = 0 b 0 be a diagonal matrix, then

0 0 c

a 0 0

= 0 b 0

0 0 c

A abc

Page 18: Mathematics. Session Matrices and Determinants - 2.

Row(Column) Operations

Following are the notations to evaluate a determinant:

Similar notations can be used to denote column operations by replacing R with C.

(i) Ri to denote ith row

(ii) Ri Rj to denote the interchange of ith and jth rows.

(iii) Ri Ri + Rj to denote the addition of times the elements of jth row to the corresponding elements of ith row.

(iv) Ri to denote the multiplication of all elements of ith row by .

Page 19: Mathematics. Session Matrices and Determinants - 2.

Evaluation of Determinants

If a determinant becomes zero on putting is the factor of the determinant. x = , then x -

2

3

x 5 2

For example, if Δ = x 9 4 , then at x =2

x 16 8

, because C1 and C2 are identical at x = 2

Hence, (x – 2) is a factor of determinant .

0

Page 20: Mathematics. Session Matrices and Determinants - 2.

Sign System for Expansion of Determinant

Sign System for order 2 and order 3 are given by

+ – ++ –

, – + –– +

+ – +

Page 21: Mathematics. Session Matrices and Determinants - 2.

42 1 6 6×7 1 6

i 28 7 4 = 4×7 7 4

14 3 2 2×7 3 2

1

6 1 6

=7 4 7 4 Taking out 7 common from C

2 3 2

Example-1

6 -3 2

2 -1 2

-10 5 2

42 1 6

28 7 4

14 3 2

Find the value of the following determinants

(i) (ii)

Solution :

1 3= 7×0 C and C are identical

= 0

Page 22: Mathematics. Session Matrices and Determinants - 2.

Example –1 (ii)

6 -3 2

2 -1 2

-10 5 2

(ii)

3 2 3 2

1 2 1 2

5 2 5 2

1

1 2

3 3 2

( 2) 1 1 2 Taking out 2 common from C

5 5 2

( 2) 0 C and C are identical

0

Page 23: Mathematics. Session Matrices and Determinants - 2.

Evaluate the determinant1 a b+c1 b c+a1 c a+b

Solution :

3 2 3

1 a b+c 1 a a+b+c

1 b c+a = 1 b a+b+c Applying c c +c

1 c a+b 1 c a+b+c

3

1 a 1

= a+b+c 1 b 1 Taking a+b+c common from C

1 c 1

Example - 2

1 3= a+ b + c ×0 C and C are identical

= 0

Page 24: Mathematics. Session Matrices and Determinants - 2.

2 2 2

a b c

We have a b c

bc ca ab

21 1 2 2 2 3

(a-b) b- c c

= (a-b)(a+b) (b- c)(b+c) c Applying C C - C and C C - C

-c(a-b) -a(b- c) ab

2

1 2

1 1 cTaking a- b and b- c common

=(a- b)(b- c) a+b b+c cfrom C and C respectively

-c -a ab

Example - 3

bc

2 2 2

a b c

a b c

ca ab

Evaluate the determinant:

Solution:

Page 25: Mathematics. Session Matrices and Determinants - 2.

21 1 2

0 1 c

=(a- b)(b- c) -(c- a) b+c c Applying c c - c

-(c- a) -a ab

2

0 1 c

=-(a- b)(b- c)(c- a) 1 b+c c

1 -a ab

22 2 3

0 1 c

= - (a- b)(b- c)(c- a) 0 a+b+c c - ab Applying R R - R

1 -a ab

Now expanding along C1 , we get(a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2)]= (a-b) (b-c) (c-a) (ab + bc + ac)

Solution Cont.

Page 26: Mathematics. Session Matrices and Determinants - 2.

Without expanding the determinant,

prove that3

3x+y 2x x

4x+3y 3x 3x =x

5x+6y 4x 6x

3x+y 2x x 3x 2x x y 2x x

L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x

5x+6y 4x 6x 5x 4x 6x 6y 4x 6x

3 2

3 2 1 1 2 1

=x 4 3 3 +x y 3 3 3

5 4 6 6 4 6

Example-4

Solution :

3 21 2

3 2 1

=x 4 3 3 +x y×0 C and C are identical in I I determinant

5 4 6

Page 27: Mathematics. Session Matrices and Determinants - 2.

Solution Cont.

31 1 2

1 2 1

=x 1 3 3 Applying C C - C

1 4 6

32 2 1 3 3 2

1 2 1

=x 0 1 2 ApplyingR R - R and R R - R

0 1 3

31

3

= x ×(3- 2) Expanding along C

=x =R.H.S.

3

3 2 1

=x 4 3 3

5 4 6

Page 28: Mathematics. Session Matrices and Determinants - 2.

Prove that : = 0 , where is cube root of unity.

3 5

3 4

5 5

1 ω ω

ω 1 ω

ω ω 1

3 5 3 3 2

3 4 3 3

5 5 3 2 3 2

1 ω ω 1 ω ω .ω

L.H.S = ω 1 ω = ω 1 ω .ω

ω ω 1 ω .ω ω .ω 1

2

3

2 2

1 2

1 1 ω

= 1 1 ω ω =1

ω ω 1

=0=R.H.S. C and C are identical

Example -5

Solution :

Page 29: Mathematics. Session Matrices and Determinants - 2.

Example-6

2

x+a b c

a x+b c =x (x+a+b+c)

a b x+CProve that :

1 1 2 3

x+a b c x+a+b+c b c

L.H.S= a x+b c = x+a+b+c x+b c

a b x+C x+a+b+c b x+c

Applying C C +C +C

Solution :

1

1 b c

= x+a+b+c 1 x+b c

1 b x+c

Taking x+a+b+c commonfrom C

Page 30: Mathematics. Session Matrices and Determinants - 2.

Solution cont.

2 2 1 3 3 1

1 b c

=(x+a+b+c) 0 x 0

0 0 x

Applying R R -R and R R -R

Expanding along C1 , we get

(x + a + b + c) [1(x2)] = x2 (x + a + b + c)

= R.H.S

Page 31: Mathematics. Session Matrices and Determinants - 2.

1 1 2 3

2(a+b+c) 2(a+b+c) 2(a+b+c)

= c+a a+b b+c Applying R R +R +R

a+b b+c c+a

1 1 1

=2(a+b+c) c+a a+b b+c

a+b b+c c+a

Example -7

Solution :

Using properties of determinants, prove that

2 2 2

b+c c+a a+b

c+a a+b b+c =2(a+b+c)(ab+bc+ca- a - b - c ).

a+b b+c c+a

b+c c+a a+b

L.H.S= c+a a+b b+c

a+b b+c c+a

Page 32: Mathematics. Session Matrices and Determinants - 2.

1 1 2 2 2 3

0 0 1

=2(a+b+c) (c- b) (a- c) b+c Applying C C - C and C C - C

(a- c) (b- a) c+a

Now expanding along R1 , we get

22(a+b+c) (c- b)(b- a) - (a- c)

2 2 2=2(a+b+c) bc- b - ac+ab- (a +c - 2ac)

Solution Cont.

2 2 2=2(a+b+c) ab+bc+ac- a -b - c

=R.H.S

Page 33: Mathematics. Session Matrices and Determinants - 2.

Using properties of determinants prove that

2

x+4 2x 2x

2x x+4 2x =(5x+4)(4- x)

2x 2x x+4

Example - 8

1 2x 2x

=(5x+4) 1 x+4 2x

1 2x x+4

Solution :

1 1 2 3

x+4 2x 2x 5x+4 2x 2x

L.H.S = 2x x+4 2x =5x+4 x+4 2x Applying C C +C +C

2x 2x x+4 5x+4 2x x+4

Page 34: Mathematics. Session Matrices and Determinants - 2.

Solution Cont.

2 2 1 3 3 2

1 2x 2x

=(5x+4) 0 -(x - 4) 0 ApplyingR R - R and R R - R

0 x- 4 -(x - 4)

Now expanding along C1 , we get

2(5x+4) 1(x - 4) - 0

2=(5x+4)(4- x)

=R.H.S

Page 35: Mathematics. Session Matrices and Determinants - 2.

Example -9

Using properties of determinants, prove that

x+9 x x

x x+9 x =243 (x+3)

x x x+9

x+9 x x

L.H.S= x x+9 x

x x x+9

1 1 2 3

3x+9 x x

= 3x+9 x+9 x Applying C C +C +C

3x+9 x x+9

Solution :

Page 36: Mathematics. Session Matrices and Determinants - 2.

1=3(x+3) 81 Expanding along C

=243(x+3)

=R.H.S.

1 x x

=(3x+9) 1 x+9 x

1 x x+9

Solution Cont.

2 2 1 3 3 2

1 x x

=3 x+3 0 9 0 Applying R R - R and R R - R

0 -9 9

Page 37: Mathematics. Session Matrices and Determinants - 2.

Example -10

Solution :

2 2 2 2 2

2 2 2 2 21 1 3

2 2 2 2 2

(b+c) a bc b +c a bc

L.H.S.= (c+a) b ca = c +a b ca Applying C C - 2C

(a+b) c ab a +b c ab

2 2 2 2

2 2 2 21 1 2

2 2 2 2

a +b +c a bc

a +b +c b ca Applying C C +C

a +b +c c ab

2

2 2 2 2

2

1 a bc

=(a +b +c ) 1 b ca

1 c ab

2 2

2 2 2 2 2

2 2

(b+c) a bc

(c+a) b ca =(a +b +c )(a- b)(b- c)(c- a)(a+b+c)

(a+b) c ab

Show that

Page 38: Mathematics. Session Matrices and Determinants - 2.

Solution Cont.

2

2 2 22 2 1 3 3 2

1 a bc

=(a +b +c ) 0 (b- a)(b+a) c(a-b) Applying R R -R and R R -R

0 (c-b)(c+b) a(b- c)

2 2 2 2 21=(a +b +c )(a- b)(b- c)(-ab- a +bc+c ) Expanding along C

2 2 2=(a +b +c )(a- b)(b- c)(c- a)(a+b+c)=R.H.S.

2

2 2 2

1 a bc

=(a +b +c )(a-b)(b- c) 0 -(b+a) c

0 -(b+c) a

2 2 2=(a +b +c )(a- b)(b- c) b c- a + c- a c+a

Page 39: Mathematics. Session Matrices and Determinants - 2.

Applications of Determinants (Area of a Triangle)

The area of a triangle whose vertices are

is given by the expression

1 1 2 2 3 3(x , y ), (x , y ) and (x , y )

1 1

2 2

3 3

x y 11

Δ = x y 12

x y 1

1 2 3 2 3 1 3 1 2

1= [x (y - y ) + x (y - y ) + x (y - y )]

2

Page 40: Mathematics. Session Matrices and Determinants - 2.

Example

Find the area of a triangle whose vertices are (-1, 8), (-2, -3) and (3, 2).

Solution :

1 1

2 2

3 3

x y 1 -1 8 11 1

Area of triangle= x y 1 = -2 -3 12 2

x y 1 3 2 1

1= -1(-3- 2) - 8(-2- 3)+1(-4+9)

2

1= 5+40+5 =25 sq.units

2

Page 41: Mathematics. Session Matrices and Determinants - 2.

Condition of Collinearity of Three Points

If are three points,

then A, B, C are collinear

1 1 2 2 3 3A (x , y ), B (x , y ) and C (x , y )

1 1 1 1

2 2 2 2

3 3 3 3

Area of triangle ABC =0

x y 1 x y 11

x y 1 =0 x y 1 =02

x y 1 x y 1

Page 42: Mathematics. Session Matrices and Determinants - 2.

If the points (x, -2) , (5, 2), (8, 8) are collinear, find x , using determinants.

Example

Solution :

x -2 1

5 2 1 =0

8 8 1

x 2- 8 - -2 5- 8 +1 40-16 =0

-6x - 6+24=0

6x =18 x =3

Since the given points are collinear.

Page 43: Mathematics. Session Matrices and Determinants - 2.

Solution of System of 2 Linear Equations (Cramer’s Rule)

Let the system of linear equations be

2 2 2a x +b y = c ... ii

1 1 1a x +b y = c ... i

1 2D DThen x = , y = provided D 0,

D D

1 1 1 1 1 11 2

2 2 2 2 2 2

a b c b a cwhere D = , D = and D =

a b c b a c

Page 44: Mathematics. Session Matrices and Determinants - 2.

Cramer’s Rule (Con.)

then the system is consistent and has infinitely many solutions.

1 22 If D = 0 and D =D = 0,

then the system is inconsistent and has no solution.

1 If D 0

Note :

,

then the system is consistent and has unique solution.

1 23 If D = 0 and one of D , D 0,

Page 45: Mathematics. Session Matrices and Determinants - 2.

Example

2 -3D= =2+9=11 0

3 1

1

7 -3D = =7+15=22

5 1

2

2 7D = =10- 21=-11

3 5

Solution :

1 2

D 0

D D22 -11By Cramer's Rule x= = =2 and y= = =-1

D 11 D 11

Using Cramer's rule , solve the following system of equations 2x-3y=7, 3x+y=5

Page 46: Mathematics. Session Matrices and Determinants - 2.

Solution of System of 3 Linear Equations (Cramer’s Rule)

Let the system of linear equations be

2 2 2 2a x +b y +c z = d ... ii

1 1 1 1a x +b y +c z = d ... i

3 3 3 3a x +b y +c z = d ... iii

31 2 DD DThen x = , y = z = provided D 0,

D D D,

1 1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

a b c d b c a d c

where D = a b c , D = d b c , D = a d c

a b c d b c a d c

1 1 1

3 2 2 2

3 3 3

a b d

and D = a b d

a b d

Page 47: Mathematics. Session Matrices and Determinants - 2.

Cramer’s Rule (Con.)

Note:

(1) If D 0, then the system is consistent and has a unique solution.

(2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite solutions or no solution.

(3) If D = 0 and one of D1, D2, D3 0, then the system is inconsistent and has no solution.

(4) If d1 = d2 = d3 = 0, then the system is called the system of homogeneous linear equations.

(i) If D 0, then the system has only trivial solution x = y = z = 0.

(ii) If D = 0, then the system has infinite solutions.

Page 48: Mathematics. Session Matrices and Determinants - 2.

Example

Using Cramer's rule , solve the following system of equations5x - y+ 4z = 5 2x + 3y+ 5z = 25x - 2y + 6z = -1

Solution :

5 -1 4

D= 2 3 5

5 -2 6

1

5 -1 4

D = 2 3 5

-1 -2 6

= 5(18+10)+1(12+5)+4(-4 +3)= 140 +17 –4= 153

= 5(18+10) + 1(12-25)+4(-4 -15)= 140 –13 –76 =140 - 89= 51 0

Page 49: Mathematics. Session Matrices and Determinants - 2.

3

5 -1 5

D = 2 3 2

5 -2 -1

= 5(-3 +4)+1(-2 - 10)+5(-4-15)= 5 – 12 – 95 = 5 - 107= - 102

Solution Cont.

1 2

3

D 0

D D153 102By Cramer's Rule x= = =3, y= = =2

D 51 D 51D -102

and z= = =-2D 51

2

5 5 4

D = 2 2 5

5 -1 6

= 5(12 +5)+5(12 - 25)+ 4(-2 - 10)= 85 + 65 – 48 = 150 - 48= 102

Page 50: Mathematics. Session Matrices and Determinants - 2.

Example

Solve the following system of homogeneous linear equations:

x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0

Solution:

1 1 - 1

We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6

3 6 - 5

= 4 + 8 - 12 = 0

The system has infinitely many solutions.

Putting z = k, in first two equations, we get

x + y = k, x – 2y = -k

Page 51: Mathematics. Session Matrices and Determinants - 2.

Solution (Con.)

1

k 1

D -k - 2 -2k + k kBy Cramer's rule x = = = =

D -2 - 1 31 1

1 - 2

2

1 k

D 1 - k -k - k 2ky = = = =

D -2 - 1 31 1

1 - 2

k 2kx = , y = , z = k , where k R

3 3

These values of x, y and z = k satisfy (iii) equation.

Page 52: Mathematics. Session Matrices and Determinants - 2.

Thank you