Top Banner
Mathematics
48

Mathematics. Complex Numbers Session Session Objectives.

Jan 03, 2016

Download

Documents

Imogene Bell
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mathematics. Complex Numbers Session Session Objectives.

Mathematics

Page 2: Mathematics. Complex Numbers Session Session Objectives.

Complex Numbers

Session

Page 3: Mathematics. Complex Numbers Session Session Objectives.

Session Objectives

Page 4: Mathematics. Complex Numbers Session Session Objectives.

Session Objective

1. Polar form of a complex number

2. Euler form of a complex number

3. Representation of z1+z2, z1-z2

4. Representation of z1.z2, z1/z2

5. De-Moivre theorem

6. Cube roots of unity with properties

7. Nth root of unity with properties

Page 5: Mathematics. Complex Numbers Session Session Objectives.

Representation of complex number in Polar or Trigonometric form

z = x + iy

z(x,y)

X

Y

O x

y

2 2x y

2 2

2 2 2 2

x yz x y i

x y x y

This you have learnt in the first

session

Page 6: Mathematics. Complex Numbers Session Session Objectives.

Representation of complex number in Polar or Trigonometric form

z = r (cos + i sin )

where r | z | and arg z

Examples: 1 = cos0 + isin0

-1 = cos + i sin

i = cos /2 + i sin /2

-i = cos (-/2) + i sin (-/2)

z(x,y)

X

Y

O x = rcos

y =rsin

r

2 2x y r

2 2

x xcos

rx y

2 2

y y, sin

rx y

Page 7: Mathematics. Complex Numbers Session Session Objectives.

Eulers form of a complex number

z = x + iy

z = r (cos + i sin )i iz re where e cos isin

i 2 2| e | cos sin 1 i| z | | r || e | r

iz r cos isin re

Examples:i ii0 i 2 21 e , 1 e , i e , i e

Express 1 – i in polar form, and then in euler form

i42 cos isin 2e

4 4

1 i1 i 2 2 cos isin

4 42 2

Page 8: Mathematics. Complex Numbers Session Session Objectives.

Properties of eulers form ei

ie cos isin

i 2 2| e | cos sin 1

iargzz | z |e remember this

ia ibcosa isina cosb isinb e e i a be cos a b isin a b

ia ibe e cosa isina cosb isinb a b a b a b

2cos cos isin2 2 2

a b

i2a b

2cos e2

a biia ib 2a b

e e 2isin e2

Page 9: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

Solution:

i = cos(/2) + i sin(/2) = ei/2

ii = (ei/2)i = e-/2

The value of ii is ____

a) 2 b) e-/2

c) d) 2

iiNow find i

Ans : i

Page 10: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

Find the value of loge(-1).

Solution:

-1 = cos + i sin = ei

loge(-1) = logeei = i

General value: i(2n+1), nZ

As cos(2n+1) + isin(2n+1) = -1

Page 11: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

If z and w are two non zero complex numbers such that |zw| = 1, and Arg(z) – Arg(w) = /2, then is equal to

a) i b) –i

c) 1 d) –1

z w

Page 12: Mathematics. Complex Numbers Session Session Objectives.

Solution

iArg(z)By eulers form z | z | e iArg zw

zw | zw | e

| zw | | z | | w | | z | | w | | zw | 1(given)

Arg zw Arg z Arg w Arg z Arg w2

i2zw e i

Page 13: Mathematics. Complex Numbers Session Session Objectives.

Representation of z1+z2

z1 = x1 + iy1, z2 = x2 + iy2

z = z1 + z2 = x1 + x2 + i(y1 + y2)

O A

z1(x1,y1)

z2(x2,y2)z(x1+x2,y1+y2)

B

2 1Note OAz z Bz

Oz1 + z1z Oz

ie |z1| + |z2| |z1 + z2|

Page 14: Mathematics. Complex Numbers Session Session Objectives.

Representation of z1-z2

z1 = x1 + iy1, z2 = x2 + iy2

z = z1 - z2 = x1 - x2 + i(y1 - y2)

z2(x2,y2)

z1(x1,y1)

-z2(-x2,-y2)z(x1-x2,y1-y2)

O

Oz + z1z Oz1

ie |z1-z2| + |z2| |z1|

|z1-z2| ||z1| - |z2||

also |z1-z2| + |z1| |z2|

Page 15: Mathematics. Complex Numbers Session Session Objectives.

Representation of z1.z2

z1 = r1ei1, z2 = r2ei2

z = z1.z2 = r1r2ei(1+ 2)

1 2 1 2 1 2| z z | r r | z | | z |

1 2 1 2 1 2Arg z z Arg z Arg z

r1ei1

r2ei2

r1r2ei(1+ 2)

O x

Y

1

2

1+ 2

Page 16: Mathematics. Complex Numbers Session Session Objectives.

Representation of z1.ei and z1.e-i

z1 = r1ei1

z = z1. ei = r1ei(1+ )

1 1| z | r and Arg z

r1ei1

r1ei(1+ )

O x

Y

1

r1ei(1- )

What about z1e-i

Page 17: Mathematics. Complex Numbers Session Session Objectives.

Representation of z1/z2

z1 = r1ei1, z2 = r2ei2

z = z1/z2 = r1/r2ei(1- 2)

11 1

2 2 2

zz rz

z r z

11 2 1 2

2

zArg z Arg Arg z Arg z

z

r1ei1

r2ei2

r1/r2ei(1- 2)

1

2

1- 2

Page 18: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

If z1 and z2 be two roots of the equation z2 + az + b = 0, z being complex. Further, assume that the origin, z1 and z2 form an equilateral triangle, then

a) a2 = 3b b) a2 = 4b

c) a2 = b d) a2 = 2b

Page 19: Mathematics. Complex Numbers Session Session Objectives.

Solution

/3 z1

z2 = z1ei /3

i / 3 i0 i / 31 2 1 1 1Sum z z z z e z e e

i6

12z cos e a .......I6

i2 23

1Squaring I we get 3z e a

i2 31 2 1Pr oduct z z z e b

Hence a2 = 3b

Page 20: Mathematics. Complex Numbers Session Session Objectives.

De Moivre’s Theorem

1) n Z,

ncos isin cosn isinn

ncos isin cosn isinn

m ncosa isina cosb isinb cos ma nb isin ma nb

m

n

cosa isinacos ma nb isin ma nb

cosb isinb

Page 21: Mathematics. Complex Numbers Session Session Objectives.

De Moivre’s Theorem

2) n Q,

cos n + i sin n is one of the values of (cos + i sin )n

n p / q

p / q 1 / qcos isin cosp isinp

2k p 2k pcos isin ,k 1,2,..., q 1

q q

Particular case

1 / n 2k 2kcos isin cos isin ,k 0,1,2,...,n 1

n n

1/ qcos p 2k isin p 2k

Page 22: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

Solution:

72

5

31

4

2 2cos5 isin5 cos isin

7 7Simplify

2 2cos4 isin 4 cos isin

3 3

2 725 5 7

1 324 4 3

cos isin cos isin

cos isin cos isin

2 2 1 2cos isin

3cos isin

cos3 isin3

Page 23: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

Solution:

n

1n n 2n

Pr ove that : 1 i 1 i 2 cos4

1 i 2 cos isin4 4

1 i 2 cos isin4 4

n

n 2n n

1 i 2 cos isin4 4

n

n 2n n

1 i 2 cos isin4 4

n n

1n n 2 2n n

1 i 1 i 2 2cos 2 cos4 4

Page 24: Mathematics. Complex Numbers Session Session Objectives.

Cube roots of unity

1

33x 1 or x 1

3 2x 1 0or x 1 x x 1 0

1 i 3 1 i 3x 1, ,

2 2

2 2or x 1, , or 1, ,

2i2 31 i 3 1 3 2 2

i cos isin e2 2 2 3 3

2i

31 i 3 1 3 2 2i cos isin e

2 2 2 3 3

Find using (cos0 + isin0)1/3

2

1 i 3 1 i 3Note :

2 2

2

1 i 3 1 i 3and

2 2

Page 25: Mathematics. Complex Numbers Session Session Objectives.

Properties of cube roots of unity

21 0

2 31. . 1 2| | | | 1

2 22

1, ,

1,, 2 are the vertices of equilateral triangle and lie on unit circle |z| = 1

Why so?

1

2

O

2

3

4

3

Page 26: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

If is a complex number such that

2++1 = 0, then 31 is

a) 1 b) 0

c) 2 d)

Page 27: Mathematics. Complex Numbers Session Session Objectives.

Solution

2 1 0

21 i 3or

2

31 31let ,

312 31 2 62 2or ,

Page 28: Mathematics. Complex Numbers Session Session Objectives.

Nth roots of unity

1 1n nx 1 cos0 isin0

2k 2kcos isin ,k 0,1,...,n 1

n n

i0k 0, x 1 e 2i

n2 2k 1, x cos isin e

n n

4

i 2n4 4k 2, x cos isin e

n n.

.

2 n 1i n 1n

2 n 1 2 n 1k n 1, x cos isin e

n n

Page 29: Mathematics. Complex Numbers Session Session Objectives.

Properties of Nth roots of unity

n2 n 1 1

a) 1 ..... 01

n 1 n

n 12 n 1 2b) 1. . ...... 1

1 n is odd

1 n is even

c) Roots are in G.P

d) Roots are the vertices of n sided regular polygon lying on unit circle |z| = 1

2/n

4/n

n-1

1

23

Page 30: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

Solution:

Find fourth roots of unity.

1

4x 1 1

4cos0 isin 0 2k 2k

cos isin , k 0,1,2,34 4

k 0, x cos0 isin 0 1

k 1, x cos isin i2 2

k 2, x cos isin 1

3 3k 3, x cos isin i

2 2

-1 1

-i

i

Page 31: Mathematics. Complex Numbers Session Session Objectives.

Illustrative Problem

Solution:

3

4Find 1 in eulers form.

3

41 3

4cos isin

1

4cos3 isin3

2k 3 2k 3cos isin , k 0,1,2,3

4 4

3 5 7 9i i i i i

4 4 4 4 4e ,e ,e ,e e

Page 32: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise

Page 33: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 1

Express each of the following complex numbers in polar form and hence in eulers form.

(a) (b) –3 i 6 2 i

Solution

r | 6 2i |1. (a) 6 2 2 2

+ = 6

76

(– ) 6, – 2

1 2

tan66

7i

67 76 2i 2 2 cos isin 2 2 e

6 6

Page 34: Mathematics. Complex Numbers Session Session Objectives.

Solution Cont.

r 3i 0 9 3

13

tan0 2

–3i

32

3 3–3i 3 cos isin

2 2

b) –3i

3i

23e

Page 35: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 2

Solution

| z z | | z | | z |1 2 1 2

| z | | z | | z z |1 2 1 2

z1 and z2 are in the same line

z1 and z2 have same argument or their difference is multiple of 2

arg (z1) – arg (z2) = 0 or 2n in general

(triangle inequality)

If z1 and z2 are non-zero complex numbers such that |z1 + z2| = |z1| + |z2| then arg(z1) – arg (z2) is equal to

(a) – (b) (c) 0 (d) 2

2

Page 36: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 3

Solution

R (iZ)

Q (Z + iZ)

P (Z)

OX

Y

We have to find the area of PQR. Note that OPQR is a square as OP = |z| = |iz| = OR and all angles are 90°

Area of area of square OPQR 1

PQR2

1 12 2OP | z |2 2

Find the area of the triangle on the argand diagram formed by the complex numbers z, iz and z + iz.

Page 37: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 4

If where

x and y are real, then the ordered pair (x, y) is given by ___.

503 i 3 253 (x iy),2 2

3 1a) ,

2 2

1 3c) ,

22

3 1d) ,

2 2

1 3b) ,

2 2

Page 38: Mathematics. Complex Numbers Session Session Objectives.

Solution

253 cos 8 isin 8

3 3

253 cos isin3 3

= 325 (x + iy)

1

x cos3 2

3y sin

3 2

50 503 3 3 i50i ( 3)2 2 2

503 i2532

503 i253

2 2

50253 cos isin

6 6

25 25253 cos isin3 3

253 cos 8 isin 8

3 3

Page 39: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 5

Solution

Let x cos isin y cos isin

z cos isin

(cos cos cos ) i(sin sin sin )x + y + z =

If then prove that

cos cos cos 0 sin sin sin

cos3 cos3 cos3 3cos( )

sin3 sin3 sin3 3sin

= 0 + i0 = 0x3 + y3 + z3 – 3xyz

= (x + y + z) (x2 + y2 + z2 – xy – yz – zx) = 0

x3 + y3 + z3 = 3xyz

Page 40: Mathematics. Complex Numbers Session Session Objectives.

Solution Cont.

x3 + y3 + z3 = 3xyz

3 3 3(cos isin ) (cos isin ) (cos isin )

3 cos( ) isin( )

comparing real part cos3 cos3 cos3 3cos( )

comparing imaginary part sin3 sin3 sin3 3sin

Page 41: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 6

Solution

If and then

is equal to ___.

1

x 2cosx

1

y 2cos ,y

m nx yn my x

a)2cos b)2cos(m n )

c)2cos(m – n ) d) 0

1

x 2cosx 2x 2cos x 1 0

22cos 4cos 4x

2

2cos 2isin

2 cos isin

x cos isin

Take any one of the values say

Page 42: Mathematics. Complex Numbers Session Session Objectives.

Solution Cont.

x cos isin

y cos isinSimilarly

m n m nx y (cos isin ) (cos isin )n m n my x (cos isin ) (cos isin )

cos m – n isin m – n

cos n m isin n m

2cos m n

Page 43: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 7

Solution

The value of the expression

2 21(2 )(2 ) ... (n 1)(n )(n ),

where is an imaginary cube root of unity is ___.

n 2(r 1)(r )(r )r 2

n 2 2 3(r 1)(r ( )r )r 2

n 2(r 1)(r r 1)r 2

n 3(r 1)r 2

n n3r 1r 2 r 2

n n3r – 1r 1 r 1

22n n 1n

4

Page 44: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 8

Solution

If are the cube roots of p, p < 0, thenfor any x, y, z, is equal to

(a) 1 (b) (c) 2 (d) None of these

x y z

x y z

1

3x p , p 0

1 1 123 3 3p , p , p

123say p , ,

2x y z x y z2x y z x y z

2x y z2 2

2x y z

Page 45: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 9

Solution:

The value of is

(a) –1 (b) 0

(c) i (d) –i

6 2k 2ksin – icos

7 7k 1

6 2k 2ksin – icos

7 7k 1

6 2k 2kcos isin 0

7 7k 0

6 2k 2k–i cos isin

7 7k 1...(i)

roots of x7 – 1 = 0 are

2k 2kcos isin ,

7 7 k = 0, 1, …, 6

Page 46: Mathematics. Complex Numbers Session Session Objectives.

Solution Cont.

6 2k 2kcos isin 0

7 7k 0

6 2k 2k1 cos isin 0

7 7k 1

6 2k 2ksin – icos (–i)(–1) i

7 7k 1

6 2k 2kcos isin –1

7 7k 1...(ii)

From (i) and (ii), we get

Page 47: Mathematics. Complex Numbers Session Session Objectives.

Class Exercise - 10

Solution:

If 1, are the roots of the equation xn – 1 = 0, then the argument of is

(a) (b) (c) (d)

2 n 1, ,...,

2

2

n4

n

6

n

8

n

2

2n

2n

X

Y

O 1

As nth root of unity are the vertices of n sided regular polygon with each side making an angle of 2/n at the centre, 2 makes an angle of 4/n with x axis and hence, arg(2) = 4/n

Page 48: Mathematics. Complex Numbers Session Session Objectives.

Thank you