Top Banner

of 32

Mathematical Models of Control Systems

Jul 07, 2018

Download

Documents

Lai Yon Peng
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 Mathematical Models of Control Systems

    1/32

    EMT 360/3

    Control EngineeringMathematical Models ofControl Systems

  • 8/18/2019 Mathematical Models of Control Systems

    2/32

    System Modelling

    •  To model a system, we have todetermine dierential eqation thatre!resents the system and how it

    change with res!ect to time• "etermine dierential eqations sing

    #a!lace o!erator

    • "etermine transfer fnction• Standard form of transfer fnction$

    % &irst order

    % Second order

  • 8/18/2019 Mathematical Models of Control Systems

    3/32

    Differential equations of physical systems

    • #iqid level tan'

    • (C Circit

    • Car ss!ension

  • 8/18/2019 Mathematical Models of Control Systems

    4/32

    Example 1: Liquid Level

    • &low in ) *ow ot + rate ofaccmlation of liqid in the tan'

    khdt 

    dh AQin

    dt 

    dh AkhQin

    dt dh AQout Qin

    +=

    =−

    =−

  • 8/18/2019 Mathematical Models of Control Systems

    5/32

    Example 2: ! !ircuit

    • "ierential eqation that relates ot to in

    Ca!acitorcrrent

    dt 

    dVout CRVout Vin

     R

    dt 

    dVout C Vout Vin

    iRVout Vin

    dt 

    dvC i

    +=

    =−

    =−

    =

  • 8/18/2019 Mathematical Models of Control Systems

    6/32

    Example ": !ar Suspension

    • Mass/s!ring/dam!er system#e$ton%s Second La$:

    Damping:

    Spring:

     &pplying #e$ton%s Second La$:

    -oth ' and " o!!ose the motion, hence the)ve sign

    kxdt 

    dx D

    dt 

     xd m Fin

     Findt 

    dx Dkxdt 

     xd m

    kx F dt 

    dx D Dv F 

    dt 

     xd  M ma F 

    out 

    out 

    ++=

    +−−=

    =

    ==

    ==

    2

    2

    2

    2

    2

    2

    dt 

    dva

    dt 

    dxv

    =

    =

  • 8/18/2019 Mathematical Models of Control Systems

    7/32

    #a!lace Transform (eview

    •  . system re!resented y a dierential eqationis diclt to model as a loc' diagram1

    • Ths, #a!lace Transform is sed to re!resent thein!t, ot!t, and the system as se!arateentities1

    •  . transformation from time 2t) domain tocom!le freqency 2s) domain

  • 8/18/2019 Mathematical Models of Control Systems

    8/32

    #a!lace Transform4ro!erties

    • #inearity

    • "ierentiation

    • &inal vale theorem• 5nitial vale theorem

    • (egion of convergence

  • 8/18/2019 Mathematical Models of Control Systems

    9/32

    Laplace Transform

    #a!lace Transform is dened as

    where s is a #a!lace o!erator in a form of com!le freqency given y

    where σ and jω  are the real and imaginary freqency com!onentsres!ectively

    [ ]

    ∫ 

    ∞−==

    0

     st dt et  f  t  f   L s F  ).()()(

    ω σ    j s   +=

  • 8/18/2019 Mathematical Models of Control Systems

    10/32

    Soltion$

    7tained a #a!lace Transform for a nit ste!

    f 2t 8

    t

    am!le 9$

     s

    1

     s

    e

     s

    e   0 s s

    =

    =

    −∞−   ..

    0,1)(   ≥=   t t  f 

    [ ]

    ∞−

    −=

    = ∫ 

    0

    0

    .1)(

     se

    dt et  f   L

     st 

     st 

  • 8/18/2019 Mathematical Models of Control Systems

    11/32

    7tained a #a!lace Transform for the ram! fnction, 

    Soltion$

    Eam!le :$

    0t t t  f    ≥= ,)([ ]

    2

    00

    0

    1

    1)(

     1

     

    )(

     s

    dt e s s

    te s F 

     s

    evdu

    edvt u

    vduuvudv

    dt tet  f   L

     st  st 

     st 

     st 

     st 

    =

    +

    −=

    −==

    ==−=

    =

    ∫ 

    ∫ ∫ 

    ∫ 

    ∞ −∞−

    ∞−

  • 8/18/2019 Mathematical Models of Control Systems

    12/32

    &ind the #a!lace Transform of

    Soltion$

    am!le 3$

    0t t u Aet  f    at  ≥=   − ),()(

    [ ]

    a s

     A

    ea s

     A

    dt e A

    tdt e Aedt et   f   L

    0t 

    t a s

    0

    a)t -(s

    0

     st at  st 

    +=

    +−=

    =

    =

    =+−

    ∞+

    −−−

    ∫ 

    ∫ 

     

    )(

    |)(

  • 8/18/2019 Mathematical Models of Control Systems

    13/32

    • 5ntegration is hard, tales areeasier;

    am!le

  • 8/18/2019 Mathematical Models of Control Systems

    14/32

  • 8/18/2019 Mathematical Models of Control Systems

    15/32

    5nverse #a!lace

    • &ind inverse #a!lace transform of 

    • Soltion$

     f(t)u(t)

    dse s F  j2

    1 s F  L j

     j

     st 1

    =

    = ∫   ∞+

    ∞−

     

    )()]([σ 

    σ π 

    a s

    1 s F 

    −=)(

    at et  f    =)(

  • 8/18/2019 Mathematical Models of Control Systems

    16/32

    7tain the inverse la!lace transform of the following

    32

    1)( .5

    4

    3)( .4

    2

    3)( .3

    5

    1)( .2

    1)( .1

    −=

    −=

    +=

    =

    −=

     s s F 

     s

     s F 

     s s F 

     s

     s F 

     s s F 

    1

    12)( .7

    4

    1)( .6

    2

    2

    +

    +−=

    +

    +=

     s s

     s F 

     s

     s s F 

  • 8/18/2019 Mathematical Models of Control Systems

    17/32

    !haracteristic of Laplace 'ransform

    (1) Linear

    5f a9 and a: are constant, and &92s8 and &:2s8 are #a!lace Transform

    (2) Diferential Theorem

    #et

    and

    [ ] )()()()( 22112211   s F a s F at  f  at  f  a L   +=+

    ∫ ∞

    =

    0

    )()(dt e

    dt 

    t df 

    dt 

    t df  L   st 

    ∫ ∫    −=   duvvudvu st eu   −=

    ( )dt t df dv )(=dt e sdu   st −−= .

    )(t  f  v =

    )()0(

    )()()(

    00

     s sF  f 

    dt t  f  seet  f dt 

    t df  L   st  st 

    +−=

    −−=

    ∫ ∞

    −∞−

  • 8/18/2019 Mathematical Models of Control Systems

    18/32

    Mlti!lication y time

    Mlti!lication y tn

    7ther !ro!erties of #a!lace Transform

    n

    nn

    ds

     sd 

    nt  ! t  L

    )(

    )1()}({   −=

    ds

     sdF t tf   L

    )()}({   −=

  • 8/18/2019 Mathematical Models of Control Systems

    19/32

    •  To nd inverse #a!lace transform of a com!licated fnction, wecan convert the fnction into a sm of sim!ler terms sing !artialfraction e!ansion1

    • 5f , where the order of N(s) is less than D(s), then a!artial fraction

    e!ansion can e made1

    Example 1:

    • =2s8 mst e divided y "2s8 sccessively ntil the reslt has aremainder whose nmerator is of order less than its denominator1

    •  Ta'ing the inverse #a!lace transform, we otain

    4artial &raction E!ansion

    )()()(

     s D s "  s F    =

    ][)()(

    # s s

    2 Lt 

    dt 

    t d t  f  

    2

    11

    ++

    ++=   −δ δ 

    # s s$  s%  s2 s s F 

    2

    2&

    1++

    +++=)(

    # s s

    2

    1 s s F  21 ++++=)(

  • 8/18/2019 Mathematical Models of Control Systems

    20/32

    Example 1a:

    7tain the inverse la!lace transform of the following

    34

    16176)(

    2

    23

    +++++

    = s s

     s s s s F 

  • 8/18/2019 Mathematical Models of Control Systems

    21/32

    •  Three cases of !artial fraction e!ansion$

    2a8(oots of the "enominator of &2s8 are (eal and "istinct

    28(oots of the "enominator of &2s8 are (eal and (e!eated

    2c8 (oots of the "enominator of &2s8 are Com!le and 5maginary

    Example 2:

    (•) >e write !artial fraction e!ansion as a sm of terms where eachfactor of the original denominator forms the denominator of eachterm, and constants, called resides form the nmerators1

     

    (•) Mlti!ly eqation aove y 2s?98,

    4artial &raction E!ansion 2Cont@d8

    ( ) ( )2 s1 s

    2 s F 

    ++

    =)(

    ( ) ( ) 2121

    2)(1

    ++

    +=

    ++=

     s

     '

     s

     A

     s s s F 

    ( )( )

    2

    1

    2

    2)(1 +

    ++=

    +=

     s

     s ' A

     s s F 

  • 8/18/2019 Mathematical Models of Control Systems

    22/32

    • #etting s a!!roach %9, we get .+:1

    • &ind - with the similar a!!roach, letting s a!!roach %:, we get -+%:1

    •  Ths,

    (•)  Ta'ing inverse #a!lace transform, we get

    4artial &raction E!ansion 2Cont@d8

    2 s

    2

    1 s

    2 s F 1 +

    −+

    =)(

    )()()(   t u22t  f  t 2t  ee

    1

    −−

    −=

  • 8/18/2019 Mathematical Models of Control Systems

    23/32

    • Example 3

    (•) .dd additional term consisting of denominator factor of redced mlti!licity,

     

    (•) .+: can e otained as !reviosly descried1(•) 5solate - y mlti!lying y 2s?:8:,

    2:1:

  • 8/18/2019 Mathematical Models of Control Systems

    24/32

     

    •  Ta'e inverse #a!lace transform,

    4artial &raction E!ansion 2Cont@d8

    ( )( )   ( ) ( )2 s2

    2 s

    2

    1 s

    2

    2 s1 s

    2

     s F  221 +−+−+=++= )()(

    )()(   t 21   e2te2e2t  f  t 2t  −−−=

      −−

  • 8/18/2019 Mathematical Models of Control Systems

    25/32

    Example 4

     

    •  The fnction can e e!anded in

    •  Eq 2:1398

    Asing the !revios way, can e fond1

    Mlti!ly Eq 2:1398 y the lowest common denominator,

    -alancing coecients,

    4artial &raction E!ansion 2Cont@d8

    ( )# s2 s s& s F 

    21 ++=)(

    ( ) ( )52523

    22 +++

    +=++   s sC  's

     s

     A

     s s s

    5

    3= A

     sC  s '      

       ++ 

      

       +=

    5

    6

    5

    30

    2

    5

    6 ,

    5

    3   −=

    −=   C  '

  • 8/18/2019 Mathematical Models of Control Systems

    26/32

    &ind the inverse #a!lace transforms of the following fnctions14erform !artial%fraction e!ansion on B2s8 rst, then se the#a!lace transform tale1

    )2(

    )1(2)( .4

    )1)(4(

    )2(100)( .3

    )3()1(

    10)(G .2

    )3)(2(

    1)(G .1

    2

    2

    2

    ++

    +=

    +++

    =++

    =

    ++=

     s s s

     s s

    e s s s

     s s

     s s

     s

     s s s s

     s

  • 8/18/2019 Mathematical Models of Control Systems

    27/32

    Eam!le 9Biven the following dierential eqation, solve for  (t) if all

    initial conditions are ero1 Ase the #a!lace transform1

    Laplace transform solution of a differential equation

    )(3232122

    2

    t u dt 

    d

    dt 

     d =++

  • 8/18/2019 Mathematical Models of Control Systems

    28/32

    Soltion

    Sstitte the corres!onding &2s8 for each term in theeqation

    )8)(4(

    32)(

    )3212(

    32)(

    32

    )()3212(

    32)(32)(12)(

    2

    2

    2

    ++=

    ++=

    =++

    =++

     s s s s 

     s s s s 

     s s  s s

     s s  s s  s  s

    l i 2 d8

  • 8/18/2019 Mathematical Models of Control Systems

    29/32

    Soltion 2Cont@d8

    g !artial%fraction e!ansion

    ence

    g inverse #a!lace transforms

    )()21()(

    )8(

    1

    )4(

    21)(

    1)4(

    32

    2)8(

    32

    1)8)(4(

    32

    )8()4()8)(4(

    32)(

    84

    8

    3

    42

    01

    321

    t ueet  

     s s s s 

     s s * 

     s s * 

     s s * 

     s

     * 

     s

     * 

     s

     * 

     s s s s 

    t t 

     s

     s

     s

    −−

    −→

    −→

    +−=

    +

    +

    +

    −=

    −=

    +

    =

    −=

    +

    =

    =

    ++

    =

    +

    +

    +

    +=

    ++

    =

  • 8/18/2019 Mathematical Models of Control Systems

    30/32

    Eam!le : $ =on%ero initial condition

    Biven the following dierential eqation, determine theres!onse of the system ,  (t)

     Ta'ing #a!lace Transform

    0)0(,1)0(   ==dt 

    )3)(1(

    24)(

    34

    24)(

    34

    42)(

    42

    ]34)[(

    2)(34)(4)(

    2)(3)]0()([4)]0(')0()([

    ;234

    2

    23

    2

    2

    2

    2

    2

    2

    2

    2

    ++

    ++=

    ++

    ++=

    ++

    ++=

    ++=++

    =+−+−

    =+−+−−

    =++

     s s s

     s s s) 

     s s s

     s s s) 

     s s

     s s s) 

     s s

     s s s) 

     s s)  s s)  s s)  s

     s s)  ( s s)  ( s)  s)  s

     (dt d(

    dt  (d 

  • 8/18/2019 Mathematical Models of Control Systems

    31/32

    t t  eet  (

     s

     s

     '

     s

     A

     s s s

     s s s) 

    3

    2

    6

    1

    2

    1

    3

    2)(

    31)3)(1(

    24)(

    −− −+=

    ++

    ++=

    ++

    ++=

    Solve the following dierential

  • 8/18/2019 Mathematical Models of Control Systems

    32/32

    Solve the following dierentialeqations

    91

    :1

    31