Top Banner
Mathematical Foundation of System Dynamics PUGACHEVA ELENA, Associate Professor Visiting Academic Scholar Radboud University Nijmegen (The Netherlands)
41

Mathematical Foundation of System Dynamics

Dec 29, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mathematical Foundation of System Dynamics

MathematicalFoundationofSystemDynamics

PUGACHEVAELENA,AssociateProfessor

Visiting Academic ScholarRadboud University Nijmegen

(The Netherlands)

Page 2: Mathematical Foundation of System Dynamics

• Softwareofsystemdynamics(Stella,VensimandPowerSim)makesitpossibletobuildacomplicateddynamicmodelwithoutknowingsystemdynamicsanddifferentialequations

FromDynamicstoSystemDynamicsTheaimistointroducesystemdynamics

fromadynamicsviewpointWhy?

• Dynamicanalysisisafoundationofsystemdynamics

• Dynamicanalysishelpstounderstandthemechanismsthroughwhichunpredictable,unknownandemergentchangehappens

Page 3: Mathematical Foundation of System Dynamics

Twodifferentconceptsoftime

• 1.Timeasamomentoftimeorapointintime,denotedhereasτ (τ =1,2,3,....);

• 2.Timeasaperiodoftimeoranintervaloftime,denotedhereast,suchthatt=1st,2nd,3rd,...,ormorelooselyt=1,2,3,…

• Unitsoftheperiodcouldbeasecond,aminute,anhour,aweek,amonth,aquarter,ayear,adecade,acentury,amillennium,etc.,dependingonthenatureofthedynamicsinquestion.

Page 4: Mathematical Foundation of System Dynamics

Stocks

• Stocksareaccumulations• Stocksholdthecurrentstateofthesystem• Stocksfullydescribetheconditionofthesystematanypointintime

• So,stockistheamountthatexistsataspecificpointintime.

• Letxbesuchanamountofstockataspecificpointintimeτ .Thenstockcanbedefinedasx(τ)whereτ canbeanyrealnumber.

Page 5: Mathematical Foundation of System Dynamics

Flows

• Flowsdothechanging• Flowsincreaseanddecreasestocksnotjustonce,buteveryunitoftime

• Flowisdefinedaschangeofstockduringaunitinterval,anddenotedhereby𝑓(𝑡).

Page 6: Mathematical Foundation of System Dynamics

Stock-flowrelation

𝑥(𝜏 + 1) = 𝑥(𝜏) + 𝑓(𝑡)𝜏𝑎𝑛𝑑𝑡 = 0; 1; 2; 3;…

τ+1τ

𝑥(𝑡 + 1)

𝑥(𝑡) 𝑓(𝑡)

x(t+1)=x(t)+f(t)t=0;1;2;3;…

𝑥 𝑡 = 𝑥 0 +3𝑓(𝑖)567

89:

StockFlow

Definedataperiodoftime

Definedatamomentoftime

Page 7: Mathematical Foundation of System Dynamics

ContinuousFlow

• Theinfinitesimalamountofflowthatisaddedtostockataninstantaneouslysmallperiodintimecanbewrittenas

dx = f(t)dtContinuous flow and stock are transformed todifferential equation, and the amount of stock at𝑡is obtained by solving the differential equation.

;<;5

=f(t)

𝑥 𝑡 = 𝑥 0 + = 𝑓 𝑢 𝑑𝑢5

:

Page 8: Mathematical Foundation of System Dynamics

ConstantFlow𝑓(𝑡) = 𝑎

Discreteinterpretation:𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑎

𝑥(𝑡) = 𝑥(0) + 𝑎𝑡

Continuousinterpretation𝑑𝑥𝑑𝑡

= 𝑎

𝑥 𝑡 = 𝑥 𝑜 + ∫ 𝑎𝑑𝑢5: = 𝑥(0) + 𝑎𝑡

Stock2000

1500

1000

500

00 12 24 36 48 60 72 84 96 108 120

Time (Month)

custo

mer

s

Stock : Current

Changestakeplaceata“constant”rate

CustomersCustomer

Acquisition Rate

Constant growthper month

Page 9: Mathematical Foundation of System Dynamics

Feedback

• Flowbecomesafunctionofstock

BankBalanceInterest Payments

Interest Rate

𝑥 𝑡 + 1 = 𝑥 𝑡 + 𝑓 𝑥 𝑡 , 𝑡 = 0; 1; 2; …𝑑𝑥/𝑑𝑡 = 𝑓(𝑥(𝑡))

Page 10: Mathematical Foundation of System Dynamics

PositiveFeedback

Let a>0beinflowfraction𝑓(𝑥) = 𝑎𝑥(𝑡)

Bank Balance2000

1500

1000

500

00 5 10 15 20 25 30 35 40 45 50

Time (Year)

$

Bank Balance : Current

𝑥 𝑡 + 1 = 𝑥 𝑡 + 𝑎𝑥 𝑡 ; 𝑡 = 0; 1; 2; …

𝑑𝑥/𝑑𝑡=𝑎𝑥,𝑎 > 0𝑋(𝑡) = 𝑥(0)𝑒S5,e=2.71…

Note:theinitialvalueofthestock𝑥(0)cannotbezero,sincenon-zeroamountofstockisalwaysneededasaninitialcapitaltolaunchagrowthof flow

anincreaseinflow↑→anincreaseinstock↑→anincreaseinflow↑

self-increasingrelation

Page 11: Mathematical Foundation of System Dynamics

Stock2000

1500

1000

500

00 5 10 15 20 25 30 35 40 45 50

Time (Month)

$

Stock : Current

StockFlow

Decay Factor

Self-regulatingorbalancingrelation

NegativeFeedback

𝑑𝑥/𝑑𝑡=−𝑏𝑥,𝑏 > 0

anincreaseinflow↑→adecreaseinstock↓→adecreaseinflow↓

Let𝑏 > 0 beoutflowfraction

Page 12: Mathematical Foundation of System Dynamics

AddingConstantFlowsInterestRate=10%Payments=$1

Bank Balance80

40

0

-40

-800 5 10 15 20 25 30 35 40 45 50

Time (Year)

$

Bank Balance : Starting capital = 8Bank Balance : Starting capital = 12Bank Balance : Starting capital = 10

Criticalvalue:𝑥(𝑡 + 1) = 1,1𝑥(𝑡)– 1𝑥∗ = 𝑥(𝑡 + 1) = 𝑥(𝑡)

𝑥 ∗= 1,1𝑥∗ − 1𝑥∗ = 1/0,1 = 10

;<;5=0,1𝑥 − 1𝑑𝑥𝑑𝑡

= 0

0,1𝑥 ∗ −1 = 0,𝑥 ∗= 10

BankBalance

Interest Payments

Interest Rate

Payments

Page 13: Mathematical Foundation of System Dynamics

CombiningFeedbackStock

Inflow Outflow

Inflow Fraction Outflow Fraction

Stock400

300

200

100

00 1 2 3 4 5 6 7 8 9 10 11 12

Time (Month)

$

Stock : Outflow Fraction DominateStock : Inflow Fraction DominateStock : Inflow Fraction = Outflow fraction

𝑑𝑥𝑑𝑡

= 𝑎 − 𝑏 𝑥

Page 14: Mathematical Foundation of System Dynamics

DynamicalSystems

• Dynamicalsystemisasystemthatevolvesintimeaccordingtoawell-definedunchangingrule.

• Oneofthegoalsofthestudyofdynamicalsystemsistoclassifyandcharacterizethesortsofbehaviorsseeninclassesofdynamicalsystems

Page 15: Mathematical Foundation of System Dynamics

TwoTypesofDynamicalSystems

DifferenceEquations• Theoutputofonestepis

usedastheinputforthenext.

• 𝑥5X7 = 𝑓(𝑥5)•

• Y𝑥5X7 = 𝑓(𝑥5)𝑥𝑜

• Timeisdiscrete.

DifferentialEquations

• Z;<;5= 𝑓(𝑥)

𝑥 0 = 𝑥:• Ifthefunctionf(x)is

continuousanddifferentiable,thanthesolutionexists andisunique.

• Thederivative;<;5

istheinstantaneousrateofchange𝑥.

• Timeiscontinues.

fX f(X)

Page 16: Mathematical Foundation of System Dynamics

FixedPoints

• Apoint𝑥 isfixedpointifitdoesnotchange(equilibriumpoint)

• Iteratedfunction:𝑓(𝑥 ∗) = 𝑥*• Differentialequations:𝑑𝑥/𝑑𝑡 = 0• Afixedpointisstable ifnearbypointsmoveclosertothefixedpointwhentheyareiterated(attractor)

• Afixedpointisunstableifnearbypointsmovefurtherawayfromthefixedpointwhentheyareiterated(repellor)

Page 17: Mathematical Foundation of System Dynamics

LogisticEquation

• PopulationModel• Population(nextyear)=

FunctionofPopulation(thisyear)• 𝑃5X7 = 𝑟𝑃5,• wherer– growthrate

(parameter)

Population2

1.5

1

.5

00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1

Time (Month)

rabb

its

Population : r greater than 1Population : r = 1Population : r less than 1

𝑟 > 1 – populationtendstowardinfinity𝑟 = 1 – populationstaysthesame0 < 𝑟 < 1 – populationapproacheszero

Page 18: Mathematical Foundation of System Dynamics

LogisticEquation• 𝑓(𝑝) = 𝑟𝑝(1 − 𝑝/𝐴)• 𝑝`X7 = 𝑟𝑝𝑛(1 − 𝑝𝑛/𝐴)• 𝑟 – growthrate• 𝐴- annihilationpopulation

• If𝑝 = 𝐴,𝑓(𝑝) = 0,• If𝑝<< 𝐴,𝑓(𝑝) ≈ 𝑟𝑝

Page 19: Mathematical Foundation of System Dynamics

LogisticEquationinaStandardForm

A

𝑥 – populationexpressedasfractionofannihilationpopulation𝑥`X7 = 𝑟𝑥𝑛(1 − 𝑥𝑛)𝑓(𝑥) = 𝑟𝑥(1 − 𝑥)

Page 20: Mathematical Foundation of System Dynamics

Experiment

Fixedpoint=0,333

Page 21: Mathematical Foundation of System Dynamics

Experiment

Cycle:0,560,76

Page 22: Mathematical Foundation of System Dynamics

Experiment

Cycle:0,8750,3830,8270,501

Page 23: Mathematical Foundation of System Dynamics

Experiment

Page 24: Mathematical Foundation of System Dynamics

SensitiveDependenceonInitialConditions

• Adynamicalsystemhassensitivedependenceoninitialconditions(SDIC)ifarbitrarilysmalldifferencesininitialconditionseventuallyleadtoarbitrarilylargedifferencesintheorbits.

Page 25: Mathematical Foundation of System Dynamics

ButterflyEffect

• Averysmallerrorintheinitialconditiongrowsextremelyrapidly

• Long-termpredictionisimpossible• Adeterministic(rule-based)systemcanbehaveunpredictably

Page 26: Mathematical Foundation of System Dynamics

DefinitionofChaos

• Adynamicalsystemischaoticif:• 1.Thedynamicalsystemisdeterministic.• 2.Thesystem’sorbitsarebounded.• 3.Thesystem’sorbitsareaperiodic;i.e.,theyneverrepeat.

• 4.Thesystemhassensitivedependenceoninitialconditions.

Page 27: Mathematical Foundation of System Dynamics

DifferentialEqs vs.IteratedFunctions

DifferentialEquations• 𝑑𝑃/𝑑𝑡 =𝑟𝑃(1−𝑃/𝐾)• Timeiscontinuous• Piscontinuous

• Cyclesandchaosarenotpossible

Iteratedfunctions• 𝑝5X7 = 𝑟𝑝5(1 − 𝑝5/𝐴)• Timemovesinjumps• Pmovesinjumps

• Cyclesandchaosarepossible

Page 28: Mathematical Foundation of System Dynamics

TheLogisticDifferentialEquation

• 𝑑𝑃/𝑑𝑡 = 𝑟𝑃(1 − 𝑃/𝐾)• risagrowthparameter• Kisthecarryingcapacity

• Equilibrium:• 𝑑𝑃/𝑑𝑡 = 0• 𝑃 = 0; 𝑃 = 𝐾

Population100

75

50

25

00 2 4 6 8 10 12 14 16 18 20

Time (Month)

rabb

its

Population : r greater than 1

0 K

Page 29: Mathematical Foundation of System Dynamics

LogisticEquationwithHarvest• 𝑑𝑃/𝑑𝑡 = 𝑟𝑃(1 − 𝑃/𝐾)– ℎ• r- growthparameter• K- carryingcapacity• h- harvestrate

r=3K=100

𝑃7 =dX de6fdg/h�

jd/h

𝑃j =d6 de6fdg/h�

jd/h

Bifurcation:ℎ = 𝑟𝐾/4

Page 30: Mathematical Foundation of System Dynamics

ImportantLessonsforManagers

• Sometimespropertiesofcontinuousmodelsarediscontinuous;

• Atbifurcationpointthebehaviorofdynamicalsystemchangessuddenlyandqualitatively;

• Profitoptimizationleadstoacatastrophicvalue;• Thedecisionconcerningtheamountofexploitation(harvesting,taxation,obligatorypayments)shouldbedonenotonthebaseofprescriptiveguidelines,butonthebasisoffeedback.

Page 31: Mathematical Foundation of System Dynamics

LogisticMap

Iteration• 𝑥(𝑛+1)=𝑟𝑥𝑛(1−𝑥𝑛)• 𝑓(𝑥)=𝑟𝑥(1−𝑥)• 0 ≤ 𝑥 ≤ 1• 0 ≤ 𝑟 ≤ 4

• Fixedpoints:𝑥 ∗= 𝑓(𝑥 ∗)• 𝑥 ∗= 0• 𝑥 ∗= 1 − 1/𝑟

CobwebPlot

Page 32: Mathematical Foundation of System Dynamics

r=0,5

r=2,9

Page 33: Mathematical Foundation of System Dynamics

r=3,2

r=3,5

Page 34: Mathematical Foundation of System Dynamics

r=3,9

Page 35: Mathematical Foundation of System Dynamics

BifurcationDiagram

r

...6692016,4

,

12

1lim

=

=

+-

+

-+

¥®

d

d

nrnr

nrnr

n

Feldman,DavidP.ChaosandFractals:AnElementaryIntroduction.OxfordUniversityPress,2012.

Page 36: Mathematical Foundation of System Dynamics

Chaos

• islong-termbehaviorofnonlineardynamicalsystem;

• lookslikearandomfluctuation,butstilloccursincompletelydeterministic,simpledynamicalsystems;

• exhibitssensitivitytoinitialconditions;• occurswhennoperiodictrajectoriesarestable;• isaprevalentphenomenonthatcanbefoundeverywhereinnature,aswellasinsocialreality.

Page 37: Mathematical Foundation of System Dynamics

ImportantResultsofModelling

• 1.Smallchangesinparametercanshiftthedynamicalbehaviorofthesystemfromstabletochaotic.

• 2.Achaoticsystembehavesasifitisrandom,notgovernedbyadeterministicrule.Sodeterministicsystemscanproducerandom,unpredictablebehavior.

• 3.Theperiod-doublingroutetochaosisuniversalscenario.Universalitygivesussomereasontobelievethatwecanunderstandcomplexsystemswithsimplemodels.

Page 38: Mathematical Foundation of System Dynamics

• Not only in research, but in the world of politics and economics, we would all be better off if more people realized that simple non-linear systems do not necessarily possess simple dynamical properties.

• R. M. May et al., “Simple mathematical models with very complicated dynamics,”

Nature, vol. 261, no. 5560, pp. 459–467, 1976.

Page 39: Mathematical Foundation of System Dynamics

Readinglist

• R.M.May,“Simplemathematicalmodelswithverycomplicateddynamics,”Nature,vol.261,no.5560,pp.459–467,1976.(beforeclass)

• KaoruYamaguchi“Stock-FlowFundamentals,DeltaTime(DT)andFeedbackLoop-FromDynamicstoSystemDynamics”,JournalofBusinessAdministration,OsakaSangyoUniversity,Vol.1No.2,March2000(afterclass)

Page 40: Mathematical Foundation of System Dynamics

AdditionalReading

• Gleick,James.Chaos:Makinganewscience.RandomHouse,1997.

• Stewart,Ian.DoesGodplaydice?:Thenewmathematicsofchaos.PenguinUK,1997.

• Feldman,DavidP.ChaosandFractals:AnElementaryIntroduction.OxfordUniversityPress,2012.

• JosLeys,EtienneGhys,andAurelien Alvarez,Chaos:AMathematicalAdventurehttp://www.chaos-math.org/en

Page 41: Mathematical Foundation of System Dynamics

Thankyouforattention