Top Banner
1
27

Mathe III

Jan 10, 2016

Download

Documents

toya

Mathe III. Lecture 10. No lecture on Wed February 8th. Thursday 9 th Feb Friday 27 th Jan Friday 10 th Feb. Thursday 14:00 - 17:00 Friday 16:00 – 19:00 HS N. Non Linear Programming. Kuhn – Tucker conditions. Non Linear Programming. Kuhn – Tucker conditions. Nonnegative variables. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mathe III

1

Page 2: Mathe III

2

No lecture on Wed February 8th

Thursday 9th FebFriday 27th JanFriday 10th Feb

Thursday 14:00 - 17:00 Friday 16:00 – 19:00 HS N

Page 3: Mathe III

3

Non Linear Programming

if is a solution of the problem*x

j j = 1,3 .λ 0,. ..,m

is a stationary point (w.r.t. ) of the Lagrangian :

-

*i

m

i i ii=1

2 x. x

x = f x λ g x -c L

*j j1. j = 1, .g x mc , ..,

if then *j j jg x < c λ = j = 1, .4. 0, ..,m

max s.t.

1 1

m m

x

g x c

g x c

f x ......

Kuhn – Tucker conditions

Page 4: Mathe III

4

Non Linear Programming

if is a solution of the problem*x

j j jλ g x - c = 0

if then *j j jg x < c λ = j = 1, .4. 0, ..,m

max s.t.

1 1

m m

x

g x c

g x c

f x ......

Kuhn – Tucker conditions

j j jλ4. j =g x - c = 1, .0, ..,m

if then *j j jg x < c λ = j = 1, .4. 0, ..,m

Page 5: Mathe III

5

Nonnegative variables

max . .s t

x

g x, y c

f x, y x 0

y 0

- - 1 2x, y = f x, y λ g x, y - c -x -yL

max . .s t

x

g x, y

-x 0

-y 0

c

f x, y

1

2

x x

y y

f (x, y) - λg (x, y)+ μ = 0x

f (x, y) - λg (x, y)+ μ = 0y

L

L1 2λ, μ , μ 0

1 2λ g x, y - c x = y = 0

Page 6: Mathe III

6

Nonnegative variables

g x, y c

x 0

y 0

1

2

x x

y y

f (x, y) - λg (x, y)+ μ = 0x

f (x, y) - λg (x, y)+ μ = 0y

L

L

1 2λ, μ , μ 0 1 2λ g x, y - c x = y = 0

1

2

x x

y y

f (x, y) - λg (x, y) = -μ 0

f (x, y) - λg (x, y) = -μ 0

1 x xx > 0 μ = 0 f (x, y) - λg (x, y) = 0

Page 7: Mathe III

7

Nonnegative variables

g x, y c

x 0

y 0

λ 0 λ g x, y - c 0

x x x x

y y y y

f (x, y) - λg (x, y) x = 0, f (x, y) - λg (x, y) 0

f (x, y) - λg (x, y) y = 0 f (x, y) - λg (x, y) 0

For a general problem:

max s.t.

1 1

1 n

m m

x

g x c

x 0 x 0

g x c

f x ...... ......

Page 8: Mathe III

8

Nonnegative variables

j j j jλ g x - c 0, λ 0, j = 1, ...m

m

j hj=1 h

jh

g (x)f (x) - λ x = 0, h = 1, ....,n

x

max s.t.

1 1

1 n

m m

x

g x c

x 0 x 0

g x c

f x ...... ......

m

jj=1 h

jh

g (x)f (x) - λ 0, h = 1, ....,n

x

Page 9: Mathe III

9

Nonnegative variables

Example: Peak Load Pricing

The price of a good (electricity) for time period i is given as pi

The producer chooses how much to produce in each period (xi), and the maximal capacity of his

plant (k).

The total cost of producing(x1,…,xn) is C(x1,…,xn).The cost of capacity k is D(k).

Page 10: Mathe III

10

Nonnegative variables

Example: Peak Load Pricing

The producer maximizes:

n

1 n i i 1 ni=1

π x , ..., x ,k = p x - C x , ..., x - D k

s.t. i 0 x k i = 1,...,n

n n

1 n i i 1 n i ii=1 i=1

x , ..., x ,k = p x - C x , ..., x - D k λ x - kL

i 1 n ii

ip - C x , ..., x - λ 0x

L

Page 11: Mathe III

11

Nonnegative variables Example: Peak Load Pricing

n n

1 n i i 1 n i ii=1 i=1

x , ..., x ,k = p x - C x , ..., x - D k λ x - kL

i 1 n ii

ip - C x , ..., x - λ 0x

L

i 1 n i ιip - C x , ..., x - λ x = 0

n

ii=1

-D k + λ 0k

L

n

ii=1

-D k + λ k 0

i i iλ 0, λ x - k 0, i = 1, ...,n

i i i 1 n ιif x 0, p C x , ...x

i i

i i 1 n

if k > x 0, λ = 0

p C x , ...x

price marginal costi.e. equals in off - peak hours.

. ipeak

for peak hours : D k = λ

Page 12: Mathe III

12

The Maximum Principle

Optimization over time

Stock – state variablesFlow – control variables

A.K. Dixit: Optimization in Economic Theory, Oxford University Press, 1989. Chapter 10

*

*

t = 1,2,3, .....,T

t+1 t t ty - y = Q y ,z ,t

stocks of capital goods

consumption, labor supplyflow variable

production function

Page 13: Mathe III

13

The Maximum Principle

Optimization over time

Stock – state variablesFlow – control variables

t = 1,2,3, .....,T

t+1 t t ty - y = Q y ,z ,t

t+1 t t ty y + Q y ,z ,t t tG y ,z ,t 0

Page 14: Mathe III

14

The Maximum Principle

Optimization over time

t+1 t t ty - y = Q y ,z ,t

t tG y ,z ,t 0 t = 0,1,2, .....,T

T

t tt=0

F y ,z ,t

additively separable utility function

F a,0 + F b,1 + F c,2

The marginal rate of substitution between periods 1,2

F c,2-

F b,1is independent of the quantitiy consumed in period 0

Page 15: Mathe III

15

The Maximum Principle

. .s t

t+1 t t t

t t

t = 0,1, .....,Ty - y = Q y ,z ,t

G y ,z ,t 0

maxT

t tt =0t t

y ,zF y ,z ,t

{

}

T

t tt=0

t+1 t t t t+1 t t t

F y ,z ,t

+ π y + Q y ,z ,t - y - λ G y ,z ,t

L

Page 16: Mathe III

16

The Maximum Principle

. .s t

t+1 t t t

t t

t = 0,1, .....,Ty - y = Q y ,z ,t

G y ,z ,t 0

maxT

t tt =0t t

y ,zF y ,z ,t

{

}

T

t tt=0

t+1 t t t t+1 t t t

F y ,z ,t

+ π y + Q y ,z ,t - y - λ G y ,z ,t

L

Page 17: Mathe III

17

.......

1 0 0 0 1 t t -1 t -1 t -1 t

t+1 t t t t+1

π y + Q y ,z ,0 - y π y + Q y ,z ,t - 1 - y

+ π y + Q y ,z ,t - y + .........

{

}

T

t tt=0

t+1 t t t t+1 t t t

F y ,z ,t

+ π y + Q y ,z ,t - y - λ G y ,z ,t

L

z t t t+1 z t t t z t tt

F y ,z ,t π Q y ,z ,t - λ G y ,z ,t = 0z

Lderivative w.r.t. zt:

derivative w.r.t. yt:

.......

1 0 0 0 1 t t -1 t -1 t -1

t+1 t tt t +1

tπ y + Q y ,z ,0 - y π y + Q y ,z ,t - 1 -

+

y

π + Q ,z ,t - y + .....y y ....

T

t+1 t t t t+1t=0

π y + Q y ,z ,t - y

y t t t+1 y t t t y t tt

t+1 t

F y ,z ,t π Q y ,z ,t - λ G y ,z ,ty

+ π - π = 0

L

Page 18: Mathe III

18

z t t t+1 z t t t z t tt

F y ,z ,t π Q y ,z ,t - λ G y ,z ,t = 0z

L

y t t t+1 y t t t y t tt

t+1 t

F y ,z ,t π Q y ,z ,t - λ G y ,z ,ty

+ π - π = 0

L

t+1 t y t t t+1 y t t t y t tπ - π = - F y ,z ,t π Q y ,z ,t - λ G y ,z ,t

Define the Hamiltonian:

H y,z,π,t = F y,z,t πQ y,z,t

maximizes s.t. t t t t+1 t tz H y ,z ,π ,t G y ,z ,t 0

Let be the value at maximum*t t+1H y ,π ,t

Page 19: Mathe III

19

z t t t+1 z t t t z t tF y ,z ,t π Q y ,z ,t - λ G y ,z ,t = 0

t+1 t y t t t+1 y t t t y t tπ - π = - F y ,z ,t π Q y ,z ,t - λ G y ,z ,t

H y,z,π,t = F y,z,t πQ y,z,t

The Hamiltonian is maximized at s.t. t t t z G y ,z ,t 0

is the value at maximum.*t t+1H y ,π ,t

The two Lagrange conditions:

The Hamiltonian:

Page 20: Mathe III

20

z t t t+1 z t t t z t tF y ,z ,t π Q y ,z ,t - λ G y ,z ,t = 0

t+1 t y t t t+1 y t t t y t tπ - π = - F y ,z ,t π Q y ,z ,t - λ G y ,z ,t

H y,z,π,t = F y,z,t πQ y,z,t

Define :

(the Lagrangian at )t t t+1 t t tL = H(y ,z ,π ,t) - λ G y ,z ,t

t

The two Lagrange conditions:

The Hamiltonian:

The Hamiltonian is maximized at s.t. t t t z G y ,z ,t 0

is the value at maximum.*t t+1H y ,π ,t

t+1 t y t t t+1π - π = -L y ,z ,π ,t

From the envelope theorem:

*t+1 t y t t+1π - π = -H y ,π ,t

Page 21: Mathe III

21

max

s.t. j

x

g x,r = 0, j = 1, ...,m

f x,r

the solution is

and the maximum is

,

*

* *

x r

f r = f x r ,r

Envelope Theorem

* **

j j

x , λ ,rf r=

r r

L

Page 22: Mathe III

22

z t t t+1 z t t t z t tF y ,z ,t π Q y ,z ,t - λ G y ,z ,t = 0

t+1 t y t t t+1 y t t t y t tπ - π = - F y ,z ,t π Q y ,z ,t - λ G y ,z ,t

H y,z,π,t = F y,z,t πQ y,z,t

Define :

(the Lagrangian at )t t t+1 t t tL = H(y ,z ,π ,t) - λ G y ,z ,t

t

The two Lagrange conditions:

The Hamiltonian:

t+1 t y t t t+1π - π = -L y ,z ,π ,t

From the envelope theorem:

*t+1 t y t t+1π - π = -H y ,π ,t

Page 23: Mathe III

23

z t t t+1 z t t t z t tF y ,z ,t π Q y ,z ,t - λ G y ,z ,t = 0

t+1 t y t t t+1 y t t t y t tπ - π = - F y ,z ,t π Q y ,z ,t - λ G y ,z ,t

H y,z,π,t = F y,z,t πQ y,z,t

Define :

(the Lagrangian at )t t t+1 t t tL = H(y ,z ,π ,t) - λ G y ,z ,t

t

The two Lagrange conditions:

The Hamiltonian:

t+1 t y t t t+1π - π = -L y ,z ,π ,t

From the envelope theorem:

*t+1 t y t t+1π - π = -H y ,π ,t

Similarly from the envelope theorem:*π πH = L = Q

Page 24: Mathe III

24

z t t t+1 z t t t z t tF y ,z ,t π Q y ,z ,t - λ G y ,z ,t = 0

H y,z,π,t = F y,z,t πQ y,z,t

Define :

(the Lagrangian at )t t t+1 t t tL = H(y ,z ,π ,t) - λ G y ,z ,t

t

The two Lagrange conditions:

The Hamiltonian:

*t+1 t y t t+1π - π = -H y ,π ,t

Similarly from the envelope theorem:*π πH = L = Q

*t+1 t π t t+1y - y = H y ,π ,t *

π t t+1= H y ,π ,t t+1 t t ty - y = Q y ,z ,t

Page 25: Mathe III

25

The Maximum Principle:

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

. .

For each : maximizes

the Hamiltonian s t t

t t t+1 t t

t z

H y ,z ,π ,t G y ,z

.

,t

1

0

t t t+1 t t t+1 t tH y ,z ,π ,t = F y ,z ,t π Q y ,z ,t

*t+1 t y t t+1 π - π = -H y ,π2. ,t

*t+1 t π t t+1 y -3. y = H y , π ,t

max s.t. *t t+1 t t t+1 t t

tzH y ,π ,t = H y ,z ,π ,t G y ,z ,t 0

Page 26: Mathe III

26

The Maximum Principle:

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

. .

For each : maximizes

the Hamiltonian s t t

t t t+1 t t

t z

H y ,z ,π ,t G y ,z

.

,t

1

0

t t t+1 t t t+1 t tH y ,z ,π ,t = F y ,z ,t π Q y ,z ,t

*t+1 t y t t+1 π - π = -H y ,π2. ,t

*t+1 t π t t+1 y -3. y = H y , π ,t

max s.t. *t t+1 t t t+1 t t

tzH y ,π ,t = H y ,z ,π ,t G y ,z ,t 0 t t t+1 t t t+1 t tH y ,z ,π ,t = F y ,z ,t π Q y ,z ,t

Page 27: Mathe III

27

The Maximum Principle:

. .s t

t+1 t t t

t t

y - y = Q y ,z ,t

G y ,z ,t 0 max

T

t tt =0t t

y ,zF y ,z ,t

. .

For each : maximizes

the Hamiltonian s t t

t t t+1 t t

t z

H y ,z ,π ,t G y ,z

.

,t

1

0

*t+1 t y t t+1 π - π = -H y ,π2. ,t

*t+1 t π t t+1 y -3. y = H y , π ,t

t t t+1 t t t+1 t tH y ,z ,π ,t = F y ,z ,t π Q y ,z ,t t t t+1 t t t tH y ,z ,π ,t = F y ,z ,t Q yt+1 ,z ,tπ