Top Banner

of 17

Mathcad - Tracking Sunlight Analysis

Jun 04, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    1/17

    Tracking Sunlight AnalysisJavier Ignacio Camacho

    Apparent Motion of the SunBecause the rotation and the orbital motion of the Earth around the Sun,

    the apparent position of the Sun in the sky changes over time.

    In order to utilize the solar energy efficiently we have to perform an analysis and understand the

    apparent motion of the Sun.

    Rotation of Earth : Definition of Latitude and Longitude

    This motion is due to the rotation of the Earth on its axis.

    In order to simplify the problem the Earth is considered as a perfect sphere rotating with a constant

    angular velocity on a fixed axis.

    The axis of rotation of the Ear th crosses the surface of Earth at two points:

    North Pole and Soth Pole.The great circle perpendicular to the axis is the Equator.A location on Earth can be specified by two coordinates, the Latitude ( )andthe Longitude().The Longitude specifies a Meridian(a half of great circle passing through the two poles and thelocation),requires an origin as zero point,the Prime Meridian.The zero point of longitude,is defined as the meridian passing through the Royal Greenwich

    Observatory.

    The Latitude is defined by the poles and equator.

    The convention of sign is: eastward is positive and westward is negative.

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    2/17

    VBI 9.53 VBI 55.52

    world READPRN "world.prn"( )

    world0

    world1

    Global Position of the VBI Building[Northward Latitude ] [Eastward Longitude]

    .VBI

    55

    52

    13.36

    DMS 0.975 .VBI

    9

    53

    10.32

    DMS 0.173 rad

    100 0 10090

    60

    30

    0

    30

    60

    90

    Global Position of a VBI Building

    VBI

    VBI

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    3/17

    Celestial SphereFrom the point of view of an observer on Earth, the Sun is located on a sphere with a large radius.

    This imaginary sphere is called Celestial Sphere.There are two commonly used coordinate systems to describe the position of the Sun (or any star) on

    the celestial sphere, The Horizont Systemand The Equatorial System.The extension of the center of Earth and an observer O into the sky is poiting to the Zenith Z and theplane perpendicular to that line or the corresponding great circle is the Horizon.The Horizon divides the sphere into two hemipheres. The upper hemisphere is visible to the observer

    and the lower is hidden below the horizont.

    The angular distance of a celestial body above the horizon is its Height (h)( altitude or elevation).The

    height of the North Pole P equals the geographical latitude of the observer ( ).

    To completely identify the position of a celestial body X,we need another reference point. The greater

    circle connecting the zenith with the North Pole is called the Meridian. It intersects the horizon at

    point S, the south point of the horizont.

    To identify the position of the celestial body with respect to the south point, we draw a g reat circle

    through the zenith and the star, which intersects the horizon at point C.

    The angle SC is defined as the Azimuth A, or the horizontal direction of the celestial body. The azimuth

    of the Sun always increases over time.

    The Horizon Coordinate Systemdefines the position of a celestial body as directly perceived bythe observer. However, because Earth is round and rotating on its axis, those coordinates depend on

    the location of the observer and vary overtime. In Equatorial Coordinate System, on the otherhand, the position of the Sun is relatively independent of the location of the observer.

    The coordinates of the Sun in the horizon system can be obtained using a coordinate transformation

    from its coordinates in the horizontal system.

    In the equatorial system, the coordinate equivalent to the latitude of the Earth is the declination and

    the coordinate equivalent to the longitude of the Earth for a fixed observer is the hour angle .

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    4/17

    Notation in Positional Astronomyatitude ( ): Geographical coordinate

    Longitude():Geographical coordinateHeight(h): Altitude or elevation to the horizontAzimuth(A): Horizontal direction or bearingDeclination(): Angular distance to the equatorHour Angle(): In radians, westwardSunset hour Angle(s):In radians, always positiveEast-West hour Angle(ew):In radians, always positiveRight Ascension(): Absolute celestial coordinateMean Ecliptic Longitude(l):On ecliptic planeTrue Ecliptic Longitude():On ecliptic planeEccentricity of Orbit(e):Currently 0.0167 Obliquity of Eliptic():Currently 23.44

    Coordinate Transformation: Spherical TrigonometryTo study the location of the Sun with respect to a specific location on Earth, we will correlate the

    coordinates of the location on the terrestrial sphere of Earth with the location of the Sun on the

    celestial sphere. The mathematical tool of this study is Spherical Trigonometry.Focus on the spherical triangle PZX, with three arcs:

    p=ZX

    z=XPx=PZ

    The relations between the elements of the spherical triangle and the quantities of interest are:

    P=Z=180 - Ap=90 - hz=90 -

    x=90 -

    First, consider the case of given declination and hour anglein the equatorialsystem to find the height h and the azimuth A in the horizontal coordinates system.

    he latitude of the observer's location is a necessary parameter.Cosine Formulacos p( ) cos x( ) cos z( ) sin x( ) sin z( ) cos P( )=

    Substitution from the relations between the elements yield

    sin h( ) sin ( ) sin ( ) cos ( ) cos ( ) cos ( )= EQ 1

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    5/17

    Sine Formulasin Z( )

    sin z( )

    sin P( )

    sin p( )=

    Substitution from the relations between the elements yield

    cos h( ) sin A( ) sin ( ) cos ( )=

    Applying Formula Csin x( ) cos Z( ) cos z( ) sin p( ) sin z( ) cos p( ) cos X( )= EQ 2Substitution from the relations between the elements yield

    cos h( ) cos A( ) sin ( ) cos ( ) cos ( ) cos ( ) sin ( )= EQ 3Next, we consider the case of given height h and azimuth A in the horizon coordinatesystem to find declination and hour angle in the equatorial system.Again the

    atitude of the obsever's location is a necessary parameter.Cosine Formulacos z( ) cos p( ) cos x( ) sin p( ) sin x( ) cos Z( )=

    sin ( ) cos h( ) cos A( ) cos ( ) sin h( ) sin ( )= EQ 4cos ( ) sin ( ) cos h( ) sin A( )=

    sin z( ) cos P( ) cos p( ) sin x( ) sin p( ) cos x( ) cos Z( )= EQ 5cos ( ) cos ( ) cos h( ) coa A( ) sin ( ) sin h( ) cos ( )= EQ 6

    Treatment in Solar TimeThe Solar Time ( t

    ), which is based on the hour angle of the Sun, is an intuitive measure of time and

    was used for thousands of years in all cultures of the world.

    Becasue the apparent motion of the Sun is nonuniform and depends on location, it is not an accurate

    measure of the time.

    The difference between solar time and standard time as used in everyday life, even with a proper

    alignment, can be more than 15 min.

    To make an estimation of solar radiation, sometimes high accuracy is not required.

    s

    t

    12

    12

    =

    t

    12 12s

    =

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    6/17

    Obliquity and Declination of the Sun

    The orbital plane of the Earth arround the Sun, the Ecliptic, is at an angle called the Obliquity ()from the Equator.

    Currently: 23.44 (This is what causes the seasons)Related to the motions of the Sun over a calendar year, there are four cardinal points.

    Vernal Equinox, the trajectory of the Sun intersects the celestial equator, heading north.

    Summer Solstice, the trajectory of the Sun reaches its northernmost point, which is about23.44 above the celestial equator.

    Autmnal Equinox, the trajectoyr of the Sun intersects the celestial equator, heading south.

    Winter Solstice, the trajectory of the Sun reaches its lowest point, which is about 23.44 belowthe celestial equator.

    In line with the concept of solar time, the motion of the Sun along its orbital can be described by

    the Mean Longitude (l).Vernal Equinox l=0Summer Solstice l=/2=90Autmnal Equinox l==180Winter Solstice l=3/2=270

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    7/17

    Declination Approximation FormulaThe next formula is a simple approximation by assuming that the declination varies sinusoidally

    with the mean longitude l and consequently is linear according to the number of the days in a year.

    The error could be as large as 1.60, but it is accceptable in this application.

    23.44=

    sin l( ) sin2 N 80( )[ ]

    365.2422

    =

    N INT275 M

    9

    K INTM 9

    12

    D 30=

    Where :

    M=Number of month

    N= Number of day

    D= is the day of the month

    K=2(common year)/K=1(leap year)INT=means taking the integer part of the number

    The number 80 is the of the day of the vernal equinox(March 20 or 21)

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    8/17

    Sunrise and Sunset TImeSunrise (or Sunset)The condition of sunrise is the time when the height of the Sun is zero

    sin ( ) sin ( ) cos ( ) cos ( ) cos ( ) 0=

    cos s tan ( ) tan ( )( )=

    In terms of angle s acos tan ( ) tan ( )( )( )

    =

    In terms of of the 24-h solar timets 12

    12

    acos tan ( ) tan ( )( )( )

    1212

    acos tan ( ) tan ( )( )( )

    =

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    9/17

    Direct Solar Radiation on South Face of VBI BuildingGeneral Formualtion

    cos()=sin()(sin( )cos()-cos( )sin()cos())+cos()(cos( )cos()cos()

    +sin( )sin()cos()cos()+sin()sin()sin()

    SimplificationsVBI 0deg Azimuth anglecos ( ) sin .VBI PVC sin ( ) cos .VBI PVC cos ( ) cos ( )=

    PVC

    2= Polar Angle

    cos VBI cos .VBI sin ( ) sin .VBI cos ( ) cos ( )=

    Direct Daily Solar Radiation EnergyAn important application in terms of solar time is the computation of the direct solar radiation

    energy HD on a surface on a clear day.

    The effect of clouds and scattering is not considered in this case..

    On a clear day, on a surface perpendicular to the sunlight, the power is 1kW/m2 and the total

    radiation energy in an hour is 1 kWh/m2.

    When the sunlight is tilted with an angle , the radiation energy is reduced to cosx 1kWh/m2.

    Therefore, the daily direct solar radiation energy in units of kWh/m2is the integration of cosover

    24h.

    VBI Building Direct Daily Solar Radiation EnergyGlobal Position of the VBI Building[Northward Latitude ] [Eastward Longitude]

    .VBI 0.975 .VBI 0.173

    PVC

    2 Polar Angle

    VBI

    0 deg Azimuth angle

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    10/17

    Year 2013January

    D1 1 1 1

    31

    M1 1 K 2 23.44 0.409 ObliquitySun DeclinationNumber of Day

    N1D1floor

    275 M1

    9

    K floor

    M1 9

    12

    D1 30 1D1

    sin

    2 N1D180

    365.2422

    Sunset hour Angle(s)s1D1

    acos tan 1D1 tan .VBI

    Direct Daily Solar Radiation EnergyHD1D1

    24

    cos 1D1

    sin .VBI sin s1D1 s1D1

    sin 1D1 cos .VBI

    FebruaryD2 1 1 1 28 M2 2

    Number of Day Sun Declination

    N2D2floor

    275 M2

    9

    K floor

    M2 9

    12

    D2 30 2D2

    sin

    2 N2D280

    365.2422

    Sunset hour Angle(s)s2D2

    acos tan 2D2 tan .VBI

    Direct Daily Solar Radiation EnergyHD2D2

    24

    cos 2D2

    sin .VBI sin s2D2 s2D2

    sin 2D2 cos .VBI

    MarchD3 1 1 1 20 M3 3Number of Day Sun Declination

    N3D3floor

    275 M3

    9

    K floor

    M3 9

    12

    D3 30 3D3

    sin

    2 N3D380

    365.2422

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    11/17

    Sunset hour Angle(s)s3D3

    acos tan 3D3 tan .VBI

    Direct Daily Solar Radiation EnergyHD3D3

    24

    cos 3D3

    sin .VBI sin s3D3 s3D3 sin 3D3 cos .VBI

    Vernal EquinoxDVX 21 21 1 31

    Number of Day

    NVXDVXfloor

    275 M3

    9

    K floor

    M3 9

    12

    DVX 30

    Sun DeclinationVXDVX

    sin

    2 NVXDVX80

    365.2422

    Sunset hour Angle(ew)

    ewDVXacos

    tan VXDVX

    tan .VBI

    Direct Daily Solar Radiation EnergyHDVXDVX

    24

    cos VXDVX

    sin .VBI sin ewDVX ewDVX

    sin VXDVX cos .VBI

    AprilD4 1 1 1 30 M4 4

    Number of Day

    N4D4floor

    275 M4

    9

    K floor

    M4 9

    12

    D4 30

    Sun Declination4D4

    sin

    2 N4D480

    365.2422

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    12/17

    Sunset hour Angle(ew)

    ew4D4acos

    tan 4D4

    tan .VBI

    Direct Daily Solar Radiation EnergyHD4D4

    24

    cos 4D4

    sin .VBI sin ew4D4 ew4D4

    sin 4D4 cos .VBI

    MayD5 1 1 1 31 M5 5

    Number of Day

    N5D

    5

    floor275 M5

    9

    K floorM5 9

    12

    D5 30

    Sun Declination

    5D5sin

    2 N5D580

    365.2422

    Sunset hour Angle(ew)

    ew5D5acos

    tan 5D5

    tan .VBI

    Direct Daily Solar Radiation EnergyHD5D5

    24

    cos 5D5

    sin .VBI sin ew5D5 ew5D5

    sin 5D5 cos .VBI

    JuneD6 1 1 1 30 M6 6

    Number of Day

    N6D

    6

    floor275 M6

    9

    K floorM6 9

    12

    D6 30

    Sun Declination

    6D6sin

    2 N6D680

    365.2422

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    13/17

    Sunset hour Angle(ew)

    ew6D6acos

    tan 6D6

    tan .VBI

    Direct Daily Solar Radiation EnergyHD6D6

    24

    cos 6D6

    sin .VBI sin ew6D6 ew6D6

    sin 6D6 cos .VBI

    JulyD7 1 1 1 30 M7 7

    Number of Day

    N7D

    7

    floor275 M7

    9

    K floorM7 9

    12

    D7 30

    Sun Declination

    7D7sin

    2 N7D780

    365.2422

    Sunset hour Angle(ew)

    ew7D7acos

    tan 7D7

    tan .VBI

    Direct Daily Solar Radiation EnergyHD7D7

    24

    cos 7D7

    sin .VBI sin ew7D7 ew7D7

    sin 7D7 cos .VBI

    AugustD8 1 1 1 31 M8 8

    Number of Day

    N8D

    8

    floor275 M8

    9

    K floorM8 9

    12

    D8 30

    Sun Declination

    8D8sin

    2 N8D880

    365.2422

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    14/17

    Sunset hour Angle(ew)

    ew8D8acos

    tan 8D8

    tan .VBI

    Direct Daily Solar Radiation EnergyHD8D8

    24

    cos 8D8

    sin .VBI sin ew8D8 ew8D8

    sin 8D8 cos .VBI

    SeptemberD9 1 1 1 22 M9 9

    Number of Day

    N

    9D9floor

    275 M9

    9

    K floor

    M9 9

    12

    D

    9

    30

    Sun Declination

    9D9sin

    2 N9D980

    365.2422

    Sunset hour Angle(ew)

    ew9D9acos

    tan 9D9

    tan .VBI

    Direct Daily Solar Radiation EnergyHD9D9

    24

    cos 9D9

    sin .VBI sin ew9D9 ew9D9

    sin 9D9 cos .VBI

    Autumn EquinoxDAX 23 23 1 30

    Number of Day

    NAXDAXfloor

    275 M9

    9

    K floor

    M9 9

    12

    DAX 30

    Sun Declination

    AXDAXsin

    2 NAXDAX80

    365.2422

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    15/17

    Sunset hour Angle(ew)sDAX

    acos tan AXDAX tan .VBI

    Direct Daily Solar Radiation EnergyHDAXDAX

    24

    cos AXDAX

    sin .VBI sin sDAX sDAX

    sin AXDAX cos .VBI

    OctoberD10 1 1 1 31 M10 10

    Number of Day

    N10D10floor

    275 M10

    9

    K floor

    M10 9

    12

    D10 30

    Sun Declination10D10

    sin

    2 N10D1080

    365.2422

    Sunset hour Angle(s)

    s10D10acos tan 10D10

    tan .VBI

    Direct Daily Solar Radiation EnergyHD10D10

    24

    cos 10D10

    sin .VBI sin s10D10 s10D10 sin 10D10 cos .VBI

    NovemberD11 1 1 1 30 M11 11

    Number of Day

    N11D11floor

    275 M11

    9

    K floor

    M11 9

    12

    D11 30

    Sun Declination

    11D11sin

    2 N11D1180

    365.2422

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    16/17

    Sunset hour Angle(s)s11D11

    acos tan 11D11 tan .VBI

    Direct Daily Solar Radiation EnergyHD11D11

    24

    cos 11D11

    sin .VBI sin s11D11 s11D11

    sin 11D11 cos .VBI

    DecemberD12 1 1 1 31 M12 12

    Number of Day

    N12D12floor

    275 M12

    9

    K floor

    M12 9

    12

    D12 30

    Sun Declination

    12D12sin

    2 N12D1280

    365.2422

    Sunset hour Angle(s)s12D12

    acos tan 12D12 tan .VBI

    Direct Daily Solar Radiation EnergyHD12D12

    24

    cos 12D12

    sin .VBI sin s12D12 s12D12

    sin 12D12 cos .VBI

    Daily Solar Radiation on a Vertical Surface Facing South

  • 8/13/2019 Mathcad - Tracking Sunlight Analysis

    17/17

    0 100 200 3000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    VBI Direct Daily Solar Radiation Energy(HD(kWh/m^2))

    Months

    kWh/m^2