Top Banner
Introduction Optimization Math Boot Camp Part II UIC Economics Department Erik Hembre August 21st, 2015 Erik Hembre Math Boot Camp Part II UIC Economics Department
61

Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

Aug 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Math Boot Camp Part IIUIC Economics Department

Erik Hembre

August 21st, 2015

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 2: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 3: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.

Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 4: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 5: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!

It will be difficult. That’s ok.Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 6: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.

Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 7: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.Push yourself. High returns on investment.

Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 8: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.

Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 9: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.

Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 10: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Welcome!

Let’s do some quick introductions.Just a few comments/suggestions about your first year:

Get on top of things!It will be difficult. That’s ok.Push yourself. High returns on investment.Find a good study group. Learn how to learn by yourself, withother, and to others.Work on your weaknesses. Focus on your interests.Grades << Knowledge

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 11: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Today:

The purpose of today is a brief review some relevantmathematics concepts.

Again: REVIEW. Its ok if you don’t remember or haven’tlearned the material.Constrained/Unconstrained Optimization.Highly recommend: Simon and Blume: Mathematics forEconomists

Optimization: Ch: 16-19Also Consider: Ch: 1-4, 12-14, 20-22. Appendix A1.

Also consider: Real Analysis: A First Course (by RussellGordon). For an introduction to real analysis.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 12: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Today:

The purpose of today is a brief review some relevantmathematics concepts.Again: REVIEW. Its ok if you don’t remember or haven’tlearned the material.

Constrained/Unconstrained Optimization.Highly recommend: Simon and Blume: Mathematics forEconomists

Optimization: Ch: 16-19Also Consider: Ch: 1-4, 12-14, 20-22. Appendix A1.

Also consider: Real Analysis: A First Course (by RussellGordon). For an introduction to real analysis.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 13: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Today:

The purpose of today is a brief review some relevantmathematics concepts.Again: REVIEW. Its ok if you don’t remember or haven’tlearned the material.Constrained/Unconstrained Optimization.

Highly recommend: Simon and Blume: Mathematics forEconomists

Optimization: Ch: 16-19Also Consider: Ch: 1-4, 12-14, 20-22. Appendix A1.

Also consider: Real Analysis: A First Course (by RussellGordon). For an introduction to real analysis.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 14: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Today:

The purpose of today is a brief review some relevantmathematics concepts.Again: REVIEW. Its ok if you don’t remember or haven’tlearned the material.Constrained/Unconstrained Optimization.Highly recommend: Simon and Blume: Mathematics forEconomists

Optimization: Ch: 16-19Also Consider: Ch: 1-4, 12-14, 20-22. Appendix A1.

Also consider: Real Analysis: A First Course (by RussellGordon). For an introduction to real analysis.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 15: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Applications for Optimization problems are everywhere ineconomics:

Which set of goods to buy?How much/what ratio of inputs for production?How to allocate time between leisure and work?

Economics is all about solving decision problems. This isinherently linked to optimization. Typically there is a scareresource which constrains the choice set.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 16: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Introduction

Applications for Optimization problems are everywhere ineconomics:

Which set of goods to buy?How much/what ratio of inputs for production?How to allocate time between leisure and work?

Economics is all about solving decision problems. This isinherently linked to optimization. Typically there is a scareresource which constrains the choice set.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 17: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

General Problem:Maximize f (x) : x ∈ C where C is a non-empty subset of dom(f ).

Definition

A point x∗ is a maximum of f on C if f (x∗) ≥ f (x)∀x ∈ C .

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 18: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

Definition

x∗ is a critical point of f if f ′(x) = 0

The first-order condition (FOC) for x∗ to be a maximum (orminimum) of a function f (x) is that x∗ is a critical point.

x∗ must be on the interior of dom(f ).

The same FOC holds for a function F of n variables.

If ∂F∂xi

= 0∀i ∈ n, then x∗ satisfies the FOC for F .

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 19: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

To determine whether a critical value x∗ is a local minimumor local maximum (or neither), we use conditions on thesecond derivative on function f .

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 20: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

If Hess(f ) is a negative definite matrix at x∗, then x∗ is alocal maximum value for f .

In the one-dimensional case, this is the same as if f ′′(x∗) < 0.

Definition

A matrix is positive definite if xTAx > 0∀x 6= 0.

Definition

A matrix is negative definite if xTAx < 0∀x 6= 0.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 21: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

If Hess(f ) is indefinite at x∗, then x∗ is a “saddle point”, meaninga maximum going in some directions, and a minimum going inothers.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 22: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

Let’s do a couple quick examples:

f (x) = −x2

f (x) = 3x + ln(x)

f (x) = 3− 4x + 2x2

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 23: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

What about in the two dimensional case?

Consider a 2x2 symmetric matrix: A =

[a bb c

]

A is positive definite if a > 0 and detA > 0⇒ ac − b2 > 0

A is negative definite if a < 0 and ac − b2 > 0.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 24: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

What about in the two dimensional case?

Consider a 2x2 symmetric matrix: A =

[a bb c

]A is positive definite if a > 0 and detA > 0⇒ ac − b2 > 0

A is negative definite if a < 0 and ac − b2 > 0.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 25: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimziation

Again, lets start with an easier example:

f (x , y) = −x2 − y2

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 26: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimization

Lets solve: f (x) = x4 + x2 − 6xy + 3y2

First lets find the critical values:

∂f

∂x= 4x3 + 2x − 6y = 0

∂f

∂y= −6x + 6y = 0

fy = 0⇒ x = y , and fx = 0⇒ 4x3 = 4x ⇒ x3 = x .Critical values: x=-1,0,1. Plug back in to get (-1,-1), (0,0), (1,1).

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 27: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimization

Lets solve: f (x) = x4 + x2 − 6xy + 3y2

First lets find the critical values:

∂f

∂x= 4x3 + 2x − 6y = 0

∂f

∂y= −6x + 6y = 0

fy = 0⇒ x = y , and fx = 0⇒ 4x3 = 4x ⇒ x3 = x .Critical values: x=-1,0,1. Plug back in to get (-1,-1), (0,0), (1,1).

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 28: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimization

Lets solve: f (x) = x4 + x2 − 6xy + 3y2

First lets find the critical values:

∂f

∂x= 4x3 + 2x − 6y = 0

∂f

∂y= −6x + 6y = 0

fy = 0⇒ x = y , and fx = 0⇒ 4x3 = 4x ⇒ x3 = x .

Critical values: x=-1,0,1. Plug back in to get (-1,-1), (0,0), (1,1).

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 29: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimization

Lets solve: f (x) = x4 + x2 − 6xy + 3y2

First lets find the critical values:

∂f

∂x= 4x3 + 2x − 6y = 0

∂f

∂y= −6x + 6y = 0

fy = 0⇒ x = y , and fx = 0⇒ 4x3 = 4x ⇒ x3 = x .Critical values: x=-1,0,1. Plug back in to get (-1,-1), (0,0), (1,1).

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 30: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimization

Hessian: Hess =

[12x2 − 2x− 6−6 6

]

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 31: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimization

Hessian: Hess =

[12x2 − 2x− 6−6 6

]

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 32: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Weierstrauss Theorem

Will every function have a maximum?

Theorem (Weierstrauss Theorem)

Let the function f : Rn → R be continuous. Let C be anon-empty, closed, and bounded subset of dom(f ). Then, ∃ amaximum for f in C.

Note that this is simply a sufficient condition (but verygeneral).

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 33: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Weierstrauss Theorem

Will every function have a maximum?

Theorem (Weierstrauss Theorem)

Let the function f : Rn → R be continuous. Let C be anon-empty, closed, and bounded subset of dom(f ). Then, ∃ amaximum for f in C.

Note that this is simply a sufficient condition (but verygeneral).

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 34: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

Definition

A set E is non-empty if it has at least one element.

Definition

A set E is open if ∀ x ∈ E∃B(x) such that B(x) ⊂ E

Definition

A set E is closed if its complement is open.

Definition

A set E is bounded if ∃k such that k ≥ s∀s ∈ E .

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 35: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

Which of these graphs has a maximum point? Whichcondition is not satisfied if not?

...................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

• • xa b

• •

x∗

(1)

..................................................................................................................................................................................................................................................................................................................................................

.

...................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

• • xa bd

................................................................................................................................◦

........................................................................................................................................

.........................

(2)

•................

.............................. ..........................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

x◦ •a b

.....................................................................................................................................................................................................................................................................................................................

(3)

...................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

• xa

........................................................................

........................................................................

........................................................................

....................

(4)

..........

.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 36: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

Which of these graphs has a maximum point? Whichcondition is not satisfied if not?

...................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

• • xa b

• •

x∗

(1)

..................................................................................................................................................................................................................................................................................................................................................

.

...................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

• • xa bd

................................................................................................................................◦

........................................................................................................................................

.........................

(2)

•................

.............................. ..........................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

x◦ •a b

.....................................................................................................................................................................................................................................................................................................................

(3)

...................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....

• xa

........................................................................

........................................................................

........................................................................

....................

(4)

..........

.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 37: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

1) yes

2) no (not continuous)

3) no (not closed)

4) no (not bounded)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 38: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

1) yes

2) no (not continuous)

3) no (not closed)

4) no (not bounded)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 39: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

1) yes

2) no (not continuous)

3) no (not closed)

4) no (not bounded)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 40: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Optimization

1) yes

2) no (not continuous)

3) no (not closed)

4) no (not bounded)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 41: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Unconstrained Optimization Problems

For each of the following functions, find the critical points andclassify them as local max, local min, saddle point, or can’t tell(from S&B Ex. 17.1, 17.2):

1 x2 − 6xy + 2y2 + 10x + 2y − 5

2 xy2 + x3y − xy

3 3x4 + 3x2y − y3

4 x2 + 6xy + y2 − 3yz + 4z2 − 10x − 5y − 21z

5 (x2 + 2y2 + 3z2)e−(x2+y2+z2)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 42: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Now we move to constrained optimization problems, wherethe choice set becomes limited. These are much morecommon (and interesting) in economics.

Since we will generally assume utility functions are increasingfunctions, with no constraint there will be no maximum...

These can come in a variety of forms:x ≥ 0, x + y = 25, x2 − 3y + z ≤ 5, . . ..

One simple way to solve a constrained maximization problemis to solve it as if it were unconstrained and see if the answersatisfies all the constraints.

If it does, then you are done.If not, you must try something else.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 43: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Now we move to constrained optimization problems, wherethe choice set becomes limited. These are much morecommon (and interesting) in economics.

Since we will generally assume utility functions are increasingfunctions, with no constraint there will be no maximum...

These can come in a variety of forms:x ≥ 0, x + y = 25, x2 − 3y + z ≤ 5, . . ..

One simple way to solve a constrained maximization problemis to solve it as if it were unconstrained and see if the answersatisfies all the constraints.

If it does, then you are done.If not, you must try something else.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 44: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Now we move to constrained optimization problems, wherethe choice set becomes limited. These are much morecommon (and interesting) in economics.

Since we will generally assume utility functions are increasingfunctions, with no constraint there will be no maximum...

These can come in a variety of forms:x ≥ 0, x + y = 25, x2 − 3y + z ≤ 5, . . ..

One simple way to solve a constrained maximization problemis to solve it as if it were unconstrained and see if the answersatisfies all the constraints.

If it does, then you are done.If not, you must try something else.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 45: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

How to solve an optimization problem subject to a givenconstraint?

maxx ,y

f (x , y) such that x + y = Z̄

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 46: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

A convenient way to solve such problems is to use theLagrangian function:

L(x , y , λ) ≡ f (x , y)− λ(Z̄ − x − y)

We re-arranged the constraint to equal zero (in the case of anequality), then add it into the problem, multiplied by λ.

λ is known as the Lagrange multiplier.

Now we have transformed the constrained problem into anunconstrained problem.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 47: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

So again lets start with an easier example:

f (x) = −x2 such that x = −4 (1)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 48: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization Example

Now moving into two variables:

Maximize f (x1, x2) = x1x2 such that x1 + 4x2 = 16

Begin by forming the Lagrangian: L = x1x2− λ(x1 + 4x2− 16)

Then set partial derivatives to 0:

∂L

∂x1= x2 − λ = 0

∂L

∂x2= x1 − 4λ = 0

∂L

∂λ= −(x1 + 4x2 − 16) = 0

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 49: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization Example

Now moving into two variables:

Maximize f (x1, x2) = x1x2 such that x1 + 4x2 = 16

Begin by forming the Lagrangian: L = x1x2− λ(x1 + 4x2− 16)

Then set partial derivatives to 0:

∂L

∂x1= x2 − λ = 0

∂L

∂x2= x1 − 4λ = 0

∂L

∂λ= −(x1 + 4x2 − 16) = 0

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 50: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization Example

Now moving into two variables:

Maximize f (x1, x2) = x1x2 such that x1 + 4x2 = 16

Begin by forming the Lagrangian: L = x1x2− λ(x1 + 4x2− 16)

Then set partial derivatives to 0:

∂L

∂x1= x2 − λ = 0

∂L

∂x2= x1 − 4λ = 0

∂L

∂λ= −(x1 + 4x2 − 16) = 0

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 51: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Then solve the system of equations. 3 equations, 3 unknowns:

λ = x2 = 14x1

x1 = 4x2

(4x2) + 4x2 = 16

x2 = 2

Substituting, we then find the answer to be: x1 = 8, x2 = 2, λ = 2.

λ can have some interpretation, though we won’t talk about ittoday.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 52: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Then solve the system of equations. 3 equations, 3 unknowns:

λ = x2 = 14x1

x1 = 4x2

(4x2) + 4x2 = 16

x2 = 2

Substituting, we then find the answer to be: x1 = 8, x2 = 2, λ = 2.λ can have some interpretation, though we won’t talk about ittoday.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 53: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Note that the previous example could have been the answer tothe following set up:

Suppose a consumer is deciding how much peanut butter (P)and jelly (J) to purchase.She has $16 to spend. Peanut Butter costs $1/jar and Jellycosts $4/jar.Her utility from consuming Peanut Butter and Jelly isu(P, J) = P ∗ J.How much of each should she purchase?

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 54: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

If given several equality constraints, the process is similar:

maxx ,y ,z

f (x , y , z) such that h(x , y) = A, g(y , z) = B

Again form a Lagrangian, but add separate multipliers for eachconstraint:

L(x , y , z , λ1, λ2) ≡ f (x , y , z)− λ1(A− h(x , y))− λ2(B − g(y , z))

Now we solve a 5-variable optimization problem (Luckily we knowhow to solve for N variables)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 55: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

If given several equality constraints, the process is similar:

maxx ,y ,z

f (x , y , z) such that h(x , y) = A, g(y , z) = B

Again form a Lagrangian, but add separate multipliers for eachconstraint:

L(x , y , z , λ1, λ2) ≡ f (x , y , z)− λ1(A− h(x , y))− λ2(B − g(y , z))

Now we solve a 5-variable optimization problem (Luckily we knowhow to solve for N variables)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 56: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

If given several equality constraints, the process is similar:

maxx ,y ,z

f (x , y , z) such that h(x , y) = A, g(y , z) = B

Again form a Lagrangian, but add separate multipliers for eachconstraint:

L(x , y , z , λ1, λ2) ≡ f (x , y , z)− λ1(A− h(x , y))− λ2(B − g(y , z))

Now we solve a 5-variable optimization problem (Luckily we knowhow to solve for N variables)

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 57: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Some more problems taken from S& B:

Maximize f (x1, x2) = x21x2 such that 2x2

1 + x22 = 3.

Maximize f (x , y , z) = yz + xz such that y2 + z2 = 1; xz = 3.

Maximize U(x1, x2) = kxa1x1−a

2 such that p1x1 + p2x2 = I .

Maximize f (x , y , z) = x2y2z2 such that x2 + y2 + z2 = c .

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 58: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Inequality constraints become more complicated. But alsomore common:

You don’t have to spend ALL your money...You can’t hire negative people...

We will cover an example here. I encourage you to read S& BChapter 18 for more.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 59: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

An inequality gives us two possibilities.

Either the inequality is binding, which results in the sameproblem that we had with and equality constraint.Or the inequality is non-binding, which means we should beable to find the answer as an unconstrained problem.

What to do? Basically we will add in extra constraints on theFOC to make sure we allow for either possibility.

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 60: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Consider the problem of maximizing:

f (x , y) = xy such that g(x , y) = x2 + y2 ≤ 1 (2)

Solve for the critical values of f :

This only one occurs at the origin: (x∗, y∗) = (0, 0), which isfar away from the constraint (and is a minimum).

Erik Hembre Math Boot Camp Part II UIC Economics Department

Page 61: Math Boot Camp Part II UIC Economics Departmentssc.wisc.edu/~hembre/wp-content/uploads/2015/04/MathCamp_Part… · Plug back in to get (-1,-1), (0,0), (1,1). Erik Hembre Math Boot

IntroductionOptimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization

Consider the problem of maximizing:

f (x , y) = xy such that g(x , y) = x2 + y2 ≤ 1 (2)

Solve for the critical values of f :

This only one occurs at the origin: (x∗, y∗) = (0, 0), which isfar away from the constraint (and is a minimum).

Erik Hembre Math Boot Camp Part II UIC Economics Department