Top Banner
Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013
24

Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Dec 23, 2015

Download

Documents

Neal Tyler
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Math 19a: Modeling and Differential Equations for the Life Sciences

Calculus Review

Danny KramerFall 2013

Page 2: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Derivatives

Page 3: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Point Slope Concept

𝑓 β€² (π‘₯ )= limβˆ†π‘₯β†’ 0

𝑓 (π‘₯+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯)βˆ† π‘₯

𝑑𝑑π‘₯

𝑓 (π‘₯ )=π‘ π‘™π‘œπ‘π‘’π‘Žπ‘‘ π‘Žπ‘›π‘¦ π‘π‘œπ‘–π‘›π‘‘ π‘₯

Think of , but change in y measured over infinitely small change in x

x

y

Page 4: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Solve it Out

Derivate of x2?

0

Page 5: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Derivative Rules

𝑑𝑑π‘₯

π‘˜=0

𝑑𝑑π‘₯

π‘₯𝑛=𝑛π‘₯π‘›βˆ’1

𝑑𝑑π‘₯

𝑐 π‘œπ‘ π‘₯=βˆ’π‘ π‘–π‘›π‘₯

𝑑𝑑π‘₯

𝑠𝑖𝑛π‘₯=π‘π‘œπ‘ π‘₯

𝑑𝑑π‘₯ln ∨π‘₯∨¿

1π‘₯

𝑑𝑑π‘₯

𝑒π‘₯=𝑒π‘₯

All with respect to dx, ie if you’re using 2x, then put 2x in for x and 2 in front of all derivatives.

Page 6: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Derivatives and Operations

𝑑𝑑π‘₯

( 𝑓 +𝑔)= 𝑓 β€²+𝑔 β€²

𝑑𝑑π‘₯

( 𝑓 βˆ’π‘”)= 𝑓 β€²βˆ’π‘” β€²

𝑑𝑑π‘₯

( 𝑓 βˆ—π‘”)= 𝑓 ′𝑔+ 𝑓𝑔 β€²

𝑑𝑑π‘₯

ΒΏ

π‘π‘œπ‘‘π‘’ :𝑑𝑑π‘₯

𝑓= 𝑓 β€²

Page 7: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Applications

β€’ Positionβ€’ Speed/Velocityβ€’ Acceleration

𝑣=βˆ†π‘₯βˆ† 𝑑

a=βˆ† π‘£βˆ† 𝑑

𝑣 (𝑑 )= 𝑑𝑑𝑑

π‘₯=π‘₯ β€² (t)

a (t )= 𝑑𝑑𝑑

𝑣= 𝑑𝑑𝑑 ( 𝑑𝑑𝑑 π‘₯)= 𝑑2

𝑑𝑑 2π‘₯=π‘₯ β€² β€² (𝑑)

Page 8: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Maxima and Minima

x

f(x)

f’(x)=0

f’(x)=0

Page 9: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Some Vocabulary

β€’ Continuous- no holes or jumps in the graph

β€’ Differentiable- continuous graph with a derivative at each point…no β€œcusps”

βœ“ XX

βœ“ X X

Page 10: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Sample Problem

Maximum Point?

Page 11: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Integrals and Antiderivatives

Page 12: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Area Concept

π·π‘’π‘Ÿπ‘–π‘£π‘Žπ‘‘π‘–π‘£π‘’β†’βˆ†π‘žπ‘’π‘Žπ‘›π‘‘π‘–π‘‘π‘¦βˆ† π‘‘π‘–π‘šπ‘’

=π‘Ÿπ‘Žπ‘‘π‘’

It is area under a curve, but think of it more generally as multiplying a changing rate by the elapsed time over which the rate occurs, giving you the change in quantity that the rate is measuring.

x

y

=

Page 13: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Some Notation

∫ 𝑓 (π‘₯ )=𝐹 (π‘₯)𝐹 β€² (π‘₯ )= 𝑓 (π‘₯)

Page 14: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Antiderivative Rules and Operations

What’s with the C? Disappears in derivative!

βˆ«π‘’π‘₯=𝑒π‘₯+πΆβˆ«π‘π‘œπ‘ π‘₯=𝑠𝑖𝑛π‘₯+𝐢∫ 𝑠𝑖𝑛π‘₯=βˆ’π‘π‘œπ‘ π‘₯+𝐢

∫( 𝑓 +𝑔)=∫ 𝑓 +βˆ«π‘” ∫( 𝑓 βˆ’π‘”)=∫ 𝑓 βˆ’βˆ«π‘”

Page 15: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

U substitution

Replace to visualize

βˆ«π‘’sin ( π‘₯)cos (π‘₯)𝑑π‘₯β†’βˆ«π‘’u𝑑𝑒=𝑒𝑒+𝐢→𝑒=sin (π‘₯)𝑑𝑒=cos (π‘₯)𝑑π‘₯

𝑒𝑠𝑖𝑛π‘₯+𝐢

Page 16: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Integration by Parts

βˆ«π‘’π‘‘π‘£=π‘’π‘£βˆ’βˆ«π‘£π‘‘π‘’ Opposite of product rule. Test it out!

What Becomes u?LogInverse Trig (the arcs)AlgebraTrigExponential

∫π‘₯ π‘’βˆ’π‘₯𝑑π‘₯𝑒=π‘₯𝑑𝑒=𝑑π‘₯𝑣=βˆ’π‘’βˆ’π‘₯𝑑𝑣=π‘’βˆ’π‘₯𝑑π‘₯

Page 17: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Taylor Series

Page 18: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Approximating Polynomial Curves

x

f(x)

x = a

f(a)

Page 19: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Taylor’s Formula

𝑓 (π‘₯ )= 𝑓 (π‘Ž)+ 𝑓 β€² (π‘Ž ) (π‘₯βˆ’π‘Ž )+ 𝑓 β€² β€² (π‘Ž)2 !

(π‘₯βˆ’π‘Ž)2+…

𝑇=βˆ‘π‘›=0

∞ 𝑓 𝑛(π‘Ž)𝑛 !

(π‘₯βˆ’π‘Ž )𝑛

Page 20: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Practicing Taylor

𝑓 (π‘₯ )=π‘₯ π‘’βˆ’π‘₯

𝑓 β€² (π‘₯ )=π‘’βˆ’π‘₯βˆ’π‘₯ π‘’βˆ’π‘₯=π‘’βˆ’π‘₯(1βˆ’x )

𝑓 β€² β€² (π‘₯ )=βˆ’π‘’βˆ’π‘₯βˆ’π‘’βˆ’π‘₯ (1βˆ’ x )=π‘’βˆ’π‘₯(xβˆ’2)

Page 21: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Practicing Taylor

𝑓 (1 )=(1 )π‘’βˆ’1=πŸπ’†

=

𝑓 β€² β€² (1 )=βˆ’π‘’βˆ’1βˆ’π‘’βˆ’1 (1βˆ’1 )=π‘’βˆ’1 (1βˆ’2 )=βˆ’πŸπ’†

𝑇= 𝑓 (π‘Ž )+ 𝑓 β€² (π‘Ž) (π‘₯βˆ’π‘Ž )+ 𝑓 β€² β€²(π‘Ž)2 !

(π‘₯βˆ’π‘Ž)2 ,π‘Ž=1

𝑇 π‘₯=πŸπ’†

+πŸŽβˆ’πŸ2𝒆

(π‘₯βˆ’1)2

Page 22: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Parametric Curves

Page 23: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Dimensions of Measurement

β€’ x(t) , y(t) x(y) / y(x) ?β€’ Match up x and y at any given time t.

t

x , yx y

5

10

x

y

5

10

5 10t0 tf

t0

tf

Page 24: Math 19a: Modeling and Differential Equations for the Life Sciences Calculus Review Danny Kramer Fall 2013.

Parametric Conversion

π‘₯=2 𝑑+1 𝑦=3 π‘‘βˆ’1

𝑑=π‘₯βˆ’12

𝑑=𝑦+13

π‘₯βˆ’12

=𝑦+13

𝑦+1=32(π‘₯βˆ’1)

𝑦=32π‘₯βˆ’

52β†’π‘₯=

23𝑦+53

𝑑π‘₯𝑑𝑑

=2 𝑑𝑑𝑦𝑑𝑑

=3 𝑑

𝑑𝑦𝑑𝑑𝑑π‘₯𝑑𝑑

=3 𝑑2𝑑

=3 /2

𝑑𝑦𝑑π‘₯

=3/2