Top Banner
Derivatives of the Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018
27

MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Mar 16, 2018

Download

Documents

tranduong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Derivatives of the Trigonometric FunctionsMATH 161 Calculus I

J. Robert Buchanan

Department of Mathematics

Summer 2018

Page 2: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Background

We can establish formally the limits of the trigonometricfunctions using circles, angles, and geometry.

Recall:I The length s of the arc of a circle of radius r which

subtends a central angle θ is s = r θ.I The area A of a sector of a circle of radius r subtended by

a central angle θ is A = 12 r2θ.

I The coordinates of the point on the circle of radius rcentered at the origin at the intersection of a ray making anangle θ with the positive x-axis are

(x , y) = (r cos θ, r sin θ).

Page 3: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Limits and TrigonometryWe can establish formally the limits of the trigonometricfunctions using the unit circle and geometry.

θ

θ

sin θ

(cos θ,sin θ)

x

y

Page 4: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Basic Limits (1 of 2)

Lemmalimθ→0

sin θ = 0.

Proof.If 0 < θ < π

2 then

0 ≤ sin θ ≤ θlimθ→0

0 ≤ limθ→0

sin θ ≤ limθ→0

θ

0 ≤ limθ→0

sin θ ≤ 0

and use the Squeeze Theorem.

Page 5: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Basic Limits (2 of 2)

Lemmalimθ→0

cos θ = 1.

Proof.If 0 < θ < π

2 then

limθ→0

cos θ = limθ→0

√1− sin2 θ

=

√1−

(limθ→0

sin θ

)2

=√

1− 02 = 1.

Page 6: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Justification of a Common Limit (1 of 3)

θ

R(1,0)O

P(cos θ,sin θ)

Q(1,tan θ)

x

y

4OPR =12

(1) sin θ

4OQR =12

(1) tan θ

OPR =12

(12)θ

Page 7: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Justification of a Common Limit (2 of 3)

Lemma

limθ→0

sin θ

θ= 1

Page 8: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Justification of a Common Limit (3 of 3)

Proof.

0 < area ∆OPR < area OPR < area ∆OQR

0 <12

sin θ <θ

2<

12

tan θ

0 < sin θ < θ < tan θ

0 < 1 <θ

sin θ<

tan θ

sin θ=

1cos θ

cos θ <sin θ

θ< 1

limθ→0

cos θ < limθ→0

sin θ

θ< lim

θ→01

1 ≤ limθ→0

sin θ

θ≤ 1

and use the Squeeze Theorem.

Page 9: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Limit Involving cos θ

Lemma

limθ→0

1− cos θ

θ= 0

Proof.

limθ→0

1− cos θ

θ= lim

θ→0

(1− cos θ)

θ

(1 + cos θ)

(1 + cos θ)

= limθ→0

1− cos2 θ

θ(1 + cos θ)

= limθ→0

sin2 θ

θ(1 + cos θ)

= limθ→0

sin θ

θ

sin θ

1 + cos θ= (1)(0) = 0

Page 10: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Limit Involving cos θ

Lemma

limθ→0

1− cos θ

θ= 0

Proof.

limθ→0

1− cos θ

θ= lim

θ→0

(1− cos θ)

θ

(1 + cos θ)

(1 + cos θ)

= limθ→0

1− cos2 θ

θ(1 + cos θ)

= limθ→0

sin2 θ

θ(1 + cos θ)

= limθ→0

sin θ

θ

sin θ

1 + cos θ= (1)(0) = 0

Page 11: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Sum of Angles Formulas

We will need the following trigonometric identities known as thesum of angles formulas:

sin(A + B) = sin A cos B + cos A sin Bcos(A + B) = cos A cos B − sin A sin B

Page 12: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Basic Derivatives (1 of 2)

Theorem

ddx

[sin x ] = cos x

Page 13: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Proof

ddx

[sin x ] = limh→0

sin(x + h)− sin xh

= limh→0

sin x cos h + cos x sin h − sin xh

= limh→0

(sin x cos h − sin x) + cos x sin hh

= limh→0

sin x(cos h − 1) + cos x sin hh

= (sin x) limh→0

cos h − 1h

+ (cos x) limh→0

sin hh

= (sin x)(0) + (cos x)(1)

= cos x

Page 14: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Basic Derivatives (2 of 2)

Theorem

ddx

[cos x ] = − sin x

Page 15: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Proof

ddx

[cos x ] = limh→0

cos(x + h)− cos xh

= limh→0

cos x cos h − sin x sin h − cos xh

= limh→0

(cos h − 1) cos x − sin x sin hh

= limh→0

cos xcos h − 1

h− lim

h→0sin x

sin hh

= cos x(0)− sin x(1)

= − sin x

Page 16: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Derivatives of the Remaining Trigonometric Functions

ddx

[tan x ] = sec2 x

ddx

[cot x ] = − csc2 x

ddx

[sec x ] = sec x tan x

ddx

[csc x ] = − csc x cot x

Page 17: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Justification

We can find the derivative of the function f (x) = tan x using thequotient rule:

ddx

[tan x ] =ddx

[sin xcos x

]

=cos x cos x − sin x(− sin x)

cos2 x

=cos2 x + sin2 x

cos2 x

=1

cos2 x= sec2 x .

Page 18: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Justification

We can find the derivative of the function f (x) = tan x using thequotient rule:

ddx

[tan x ] =ddx

[sin xcos x

]=

cos x cos x − sin x(− sin x)

cos2 x

=cos2 x + sin2 x

cos2 x

=1

cos2 x= sec2 x .

Page 19: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Examples

Find the derivatives of the following functions.I y = x sin xI y = x2 + sin2 xI y = 4x3 − cos(x2)

I y =√

tan x + 1I y = x3 sec2(4x)

I y = sin(cos x)

Page 20: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Solutions (1 of 3)

y = x sin xy ′ = (1) sin x + x cos x

= sin x + x cos x

y = x2 + sin2 xy ′ = 2x + 2 sin x(sin x)′

= 2x + 2 sin x cos x

Page 21: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Solutions (1 of 3)

y = x sin xy ′ = (1) sin x + x cos x

= sin x + x cos x

y = x2 + sin2 xy ′ = 2x + 2 sin x(sin x)′

= 2x + 2 sin x cos x

Page 22: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Solutions (2 of 3)

y = 4x3 − cos(x2)

y ′ = 12x2 − (− sin(x2))(x2)′

= 12x2 + 2x sin(x2)

y =√

tan x + 1

y ′ =12

(tan x + 1)−1/2(tan x + 1)′

=(tan x + 1)′

2(tan x + 1)1/2

=sec2 x

2√

tan x + 1

Page 23: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Solutions (2 of 3)

y = 4x3 − cos(x2)

y ′ = 12x2 − (− sin(x2))(x2)′

= 12x2 + 2x sin(x2)

y =√

tan x + 1

y ′ =12

(tan x + 1)−1/2(tan x + 1)′

=(tan x + 1)′

2(tan x + 1)1/2

=sec2 x

2√

tan x + 1

Page 24: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Solutions (3 of 3)

y = x3 sec2(4x)

y ′ = 3x2 sec2(4x) + x3(2 sec(4x))(sec(4x))′

= 3x2 sec2(4x) + 2x3 sec(4x)(sec(4x))′

= 3x2 sec2(4x) + 2x3 sec(4x)(sec(4x) tan(4x))(4x)′

= 3x2 sec2(4x) + 8x3 sec2(4x) tan(4x)

y = sin(cos x)

y ′ = cos(cos x)(cos x)′

= cos(cos x)(− sin x)

= − sin x cos(cos x)

Page 25: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Solutions (3 of 3)

y = x3 sec2(4x)

y ′ = 3x2 sec2(4x) + x3(2 sec(4x))(sec(4x))′

= 3x2 sec2(4x) + 2x3 sec(4x)(sec(4x))′

= 3x2 sec2(4x) + 2x3 sec(4x)(sec(4x) tan(4x))(4x)′

= 3x2 sec2(4x) + 8x3 sec2(4x) tan(4x)

y = sin(cos x)

y ′ = cos(cos x)(cos x)′

= cos(cos x)(− sin x)

= − sin x cos(cos x)

Page 26: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Applications

The trigonometric functions arise naturally in many mechanicaland electrical systems.

Suppose s(t) = a sin(ωt) + b cos(ωt) then

v(t) = aω cos(ωt)− bω sin(ωt)a(t) = −aω2 sin(ωt)− bω2 cos(ωt)

anda(t) + ω2s(t) = s′′(t) + ω2s(t) = 0.

Page 27: MATH 161 Calculus I - Millersville University of …banach.millersville.edu/~bob/math161/derivtrig/main.pdfLimits and Trigonometry We can establish formally the limits of the trigonometric

Homework

I Read Section 2.6I Exercises: 1–35 odd