Top Banner
Materials Design and Discovery: Catalysis and Electrical Energy Storage Presenter: Nichols A. Romero, ALCF ESP postdoc: Anouar Benali, ALCF PI: Larry CurAss, ANL MSD and CNM
21

Materials Design and Discovery: Catalysis and Electrical Energy ...

Feb 10, 2017

Download

Documents

phamxuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Materials Design and Discovery: Catalysis and Electrical Energy ...

Materials Design and Discovery: Catalysis and Electrical Energy Storage

Presenter:  Nichols  A.  Romero,  ALCF  ESP  post-­‐doc:  Anouar  Benali,  ALCF  PI:  Larry  CurAss,  ANL  MSD  and  CNM  

Page 2: Materials Design and Discovery: Catalysis and Electrical Energy ...

Comments from a reviewer on “Material Design and Discovery” from a proposal

§  How  could  this  machine  with  these  programs  be  used  to  design  a  new  solar  cell?  Or  a  new  cure  for  AIDS?  Or  a  new  high-­‐T  superconductor?  This  is  not  intended  as  a  trivial  quesAon.  The  present  method  of  DISCOVERY  relies  on  the  trained  human  mind  (insight)  and  experiment  (serendipity).  ComputaAonal  science  so  far  has  not  delivered  any  new  discoveries  because  it  lacks  the  possibility  of  serendipity.  The  greatest  success  of  computaAonal  chemistry  has  been  improved  insight  into  the  way  material  behaves  at  the  atomic  level.    

§  The  use  of  these  tools  in  DESIGN  seems  more  likely.  The  engineer  who  is  merely  trying  to  opAmize  an  established  material,  reacAon,  etc  could  well  use  a  model  where  she  could  tune  some  parameters  to  opAmize  condiAons.  In  fact,  informaAon  technology  tools  could  be  used  to  mechanically  opAmize  a  set  of  parameters  to  opAmize  a  given  response.  This  is  not  done  now  because  predicAve  computaAonal  chemistry  tools  are  too  slow  to  be  used  in  this  way  for  complex  systems  with  millions  of  atoms.  An  exascale  computer  with  soVware  that  also  has  reached  10^6  speedup  over  exisAng  methods  (and  linear  scaling  with  the  number  of  atoms!)  could  be  used  in  this  engineering  design  of  improved  energy  devices.    

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

Page 3: Materials Design and Discovery: Catalysis and Electrical Energy ...

Challenges in Atomistic Simulation, Theory, and Modeling

§  How  to  compute  macroscopic  property  Y  for  material  X?  –  “If  there  is  an  quantum  mechanical  <operator>,  there  is  a  way.”  –  Microscopic  properAes  are  moderate  (ground  state)  to  difficult  (excited  state),  e.g.  

binding  energies,  forces,  band  gap,  phonons,  etc.  –  Macroscopic  properAes  not  obvious,  e.g.  fricAon,  flammability,  detonaAon,  etc.  

§  Can  I  find  material  X  that  has  target  property  Z?  –  Inverse  design  problem  

§  Can  I  make  material  X?  –  KineAcs    –  Thermodynamics  

§  Should  I  make  the  material  X?  –  Economics  –  Safety  and  the  environment  

Problems  in  material  design,  discovery,  synthesis,  safety  (humans  and  the  environment),  and  cost  effecAve.  

 Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013    

Page 4: Materials Design and Discovery: Catalysis and Electrical Energy ...

Safety is really really important!

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

Page 5: Materials Design and Discovery: Catalysis and Electrical Energy ...

Atomic simulations methods in a nutshell

Primarily  for  ground-­‐state  simulaAons  in  material  science,  chemistry,  and  condensed  maker  physics  

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013    

computaAonal  complexity  and  accuracy  fiked  atomic  force-­‐fields    (FF)  

Density  FuncAonal  Theory  (DFT)  quantum    Monte  Carlo  (QMC)  accessible  system  sizes  

Condensed  Maker  Physics  

Chemistry  Material  Science  

DFT,  QMC,  FF  

Page 6: Materials Design and Discovery: Catalysis and Electrical Energy ...

§  Mul/-­‐method  approach  with  respect  to  level  of  theory:  –  Empirical  force-­‐field  based  molecular  dynamics  (number  of  atoms  ~  1,000,000,000  –  

1,000,000,000,000)  –  Density  FuncAonal  Theory  (number  of  valence  electrons  ~  10,000  )  

•  Much  more  with  an  O(N)  method,  but  with  lots  of  caveats  

–  quantum  Monte  Carlo  (number  of  valence  electrons  ~  1,000)  

§  Mul/-­‐method  approach  to  modeling  :  –  High-­‐throughput  (using  “brute  force”  approach  or  more  sophisAcated  machine  learning)  –  Thermodynamic  sampling  (i.e.  NVT,  NPT)  –  Image  methods  (e.g.  nudge  elasAc  bands,  phonons)  –  Geometry  relaxaAon  and  non-­‐equilibrium  molecular  dynamics  

Atomistic simulation methods for advancing materials discovery

ESP  

Page 7: Materials Design and Discovery: Catalysis and Electrical Energy ...

§  People  do  not  understand  how  computaAonal  expensive,  it  is  really  expensive.  Consider  a  rather  simple  system,  32-­‐water  molecules  in  a  box  with  p.b.c.  –  Classical  MD  needs  an  iPhone5  (~1  Gflop)  –  Density  FuncAonal  Theory  needs  a  few  nodes  of  a  commodity  cluster  (~1  TFlop)  –  Quantum  Monte  Carlo  needs  JaguarPF  (~1  PFlop)  

§  Simple  reason  for  needing  exascale,  more  accurate  quantum  Monte  Carlo  (QMC)  –  Another  10X  in  flop  rate  to  calculate  forces  –  Another  10X  in  flop  rate  to  calculate  include  effects  of  core  electrons  (e.g.,  projector  

augmented  wave  method)  –  Another  10-­‐100X  in  flop  rate  to  study  real  materials  

§  QMC  will  need  exascale  resources  for  high  accuracy  calculaAons  on  real  materials  –  Is  this  over  kill  or  are  there  real  applicaAons?  Consider  defect  migraAon  in  UO2.  –  Spin-­‐polarized  +  QMC  +  projector  augmented  wave  method  +  forces  +  linear  scaling  +  

beyond  scalar  relaAvisAc  ?    +  (probably  some  type  of  sampling  or  image  method)  •  Theory  not  there  yet  •  May  need  beyond  exascale  

Quantum Monte Carlo needs petascale and beyond

Page 8: Materials Design and Discovery: Catalysis and Electrical Energy ...

Who is involved?

§  ScienAfic  leads:  –  Larry  CurAss,  ANL  –  Jeff  Greeley,  Purdue  University  

§  Catalyst:  Nichols  A.  Romero,  ANL  §  Post-­‐docs:    

–  ANL:  Anouar  Benali  (LCF),  William  Parker  (LCF),  K.  C.  Lau  (MSD)  –  Stanford  University/SLAC:    Lin  Li    

§  Code  developers:  –  GPAW,  DFT  code  using  projector  augmented  wave  method  on  real-­‐space  grids  

•  Jens  Jørgen  Mortensen,  Center  for  Atomic-­‐scale  Molecular  Design  (CAMd)  •  Jussi  Enkovaara,  CSC,  the  Finnish  IT  Center  for  Science,  Ltd.  

–  QMCPACK,  QMC  code  using  B-­‐spline,  plane  waves,  and  localized  orbitals    •  Jeongnim  Kim,  Oak  Ridge  NaAonal  Laboratory  

§  Performance  engineers:  –  Vitali  Morozov,  ANL  –  Lee  Killough  ,  now  at  Appro  

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

Page 9: Materials Design and Discovery: Catalysis and Electrical Energy ...

Original Early Science Plans

§  InvesAgate  Materials:  (depicted  below,  leV  to  right)  –  Biomass  energy  conversion  –  Electrical  energy  interfaces  –  Lithium-­‐air  bakeries  –  Catalysis  with  transiAon  metal  nanoparAcles  

§  DFT  calculaAons  on  systems  containing  >  10,0000  valence  electrons:  –  GPAW  code  used  on  up  to  32-­‐racks  on  Blue  Gene/P  for  single  point  energy  calculaAons  –  Geometry  opAmizaAon  and  MD  needed  

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013    

Page 10: Materials Design and Discovery: Catalysis and Electrical Energy ...

Revised Early Science Plans

§  GPAW-­‐based  calculaAons  would  encounter  non-­‐trivial  algorithmic  difficulAes:  –  Impacts  all  O(N3)  DFT  codes,  not  just  GPAW  –  Canonical  DFT  has  a  number  issues,  arises  from  non-­‐local  representaAons  of  Ψ:

•  Dense  diagonalizaAon  exhibits  poor  performance  (see  hkp://arxiv.org/pdf/1205.2107v1)      •  InstabiliAes  in  SCF  algorithms  (see  Phys.  Rev.  B  64,  121101(R)  (2001))  •  O(N3)  “wall”  

–  Reduce-­‐scaling  methods  are  needed  in  quantum  mechanical  approaches:  •  Fragment-­‐type  methods  (GAMESS,  LS3DF)  or  localizaAon  methods  (CONQUEST,  MADNESS,  

SIESTA,  and  many  others)  •  Lots  of  progress,  but  also  many  remaining  challenges  (metals  vs.  insulators,  precision,  etc.)  

§  MulA-­‐method  approach  with  mulAple  codes:  –  Explore  use  of  quantum  Monte  Carlo  for  materials  problems  (QMCPACK)  –  Other  DFT  codes  for  use  large  DFT  calculaAons  (sAll  an  open  issue,  use  CPMD  and  GPAW  

to  the  extent  that  the  computaAon  is  tractable)  –  Force-­‐field  based  molecular  dynamiacs  (LAMMPS)  

 

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

Page 11: Materials Design and Discovery: Catalysis and Electrical Energy ...

Revised Early Science Plans (cont’d)

§  Broad  scienAfic  goals  mostly  unchanged,  but  focus  on  fewer  problems.  §  InvesAgaAon  of  vdW-­‐dominated  systems  (completed,  paper  in  preparaAon)  

–   Anouar  Benali  (ALCF,  ESP)  in  collaboraAon  with  O.  Anatole  von  Lilienfeld  (ALCF)  and  Luke  Shulenburger  (SNL)  

–  QMC  calculaAon  using  QMCPACK  –  Nobel  gases  and  anA-­‐cancer  agent  

§  Catalysis  with  transiAon  metal  nanoparAcles  (early  stages)  –  ALCC  proposal  and  BES  funding  (PI:  Greeley)  –  Catalysis  study  using  QMCPACK    –  Work  by  William  Parker  (ALCF)  in  collaboraAon  with  Jeongnim  Kim  (ORNL)  –  Also  invesAgate  catalysis  on  transiAon  metal  oxides  surface  (e.g.  ZnO2)  as  part  

collaboraAve  INCITE  work  

§  Lithium-­‐air  bakeries  (early  stages)  –  lNCITE  proposal  and  EFRC  funding  (PI:  CurAss)  –  Bakery  work  using  DFT  and  FF  MD  calculaAons  –  Lithium  peroxide  growth  at  cathode  (porous  carbon)  

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

Page 12: Materials Design and Discovery: Catalysis and Electrical Energy ...

QMCPACK in a nutshell

§  VariaAonal  Monte  Carlo  (VMC)  and  Diffusion  Monte  Carlo  (DMC).  –  Supports  many  basis:  PW,  B-­‐splines,  LCAO  –   Supports  many  boundary  condiAons  

§  Programming  languages:  C  and  C++  §  Parallelism:  MPI  and  OpenMP  parallelism  §  When  to  use  QMC  instead  of  DFT:  

–  vdW-­‐dominated  systems  –  Strong-­‐correlated  systems    –  Chemical  accuracy  is  needed  

§  Performance  characterizaAon:  –  Many  kernels  are  memory  bandwidth  limited  (?)  –  Ideal  OpenMP  scaling  –  Ideal  MPI  scaling  –  Minimal  I/O  –  Replicated  data  

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

Page 13: Materials Design and Discovery: Catalysis and Electrical Energy ...

QMCPACK – performance on Blue Gene/Q

ApplicaAon  speed-­‐up  using  QPX  and  prefetching  is  2.68X  from  original  Algorithm.        

Anouar  Benali  –  MiraCon  ESP  March  4-­‐7th  2012  

1   1   1  

2.08  

1.01   1.1  

2.68  

1.09   1.21  

0  

0.5  

1  

1.5  

2  

2.5  

3  

COMPLEX   REAL  -­‐  Double  Precision   REAL  -­‐  Single  Precision  

Original   NoQPX   QPX  

Page 14: Materials Design and Discovery: Catalysis and Electrical Energy ...

QMCPACK – current status and future developments

§  Current  status:  –  ProducAon  science  is  already  underway  –  QMCPACK  has  been  scaled  to  all  96-­‐racks  of  Sequoia  as  proof-­‐of-­‐principle  in  the  near  

future  (group  from  Livermore  and  Sandia)  –  Single  precision  working  allows  storage  of  wave  funcAons  for  larger  simulaAons  –  Double  grid  technique  allows  addiAonal  memory  savings  in  cases  with  vacuum  

§  Future  work  (first  two  are  short  term,  last  two  are  long  term)  –  Percentage  of  peak  is  low  5%,  other  systems  is  about  10%.  –  Presently  not  compeAAve  with  GPU  version  of  the  code:  

•  OpAmize  single  precision  version  of  Einspline  •  nested  OpenMP  parallelism  

–  More  compact  representaAons  of  the  wave  funcAon  needed  •  LAPW  (in  progress)  •  Distribute/tessellate  wave  funcAon  without  a  performance  hit  

–  Trial  wave  funcAon  currently  opAmized  with  serial  LAPACK  (general  non-­‐symmetric  EVP)  

 Blue  Gene/Q  Summit  -­‐  Oct.  2,  2012  

Page 15: Materials Design and Discovery: Catalysis and Electrical Energy ...

vdW-dominated systems

§  Benali  in  collaboraAon  with  O.  A.  von  Lillenfeld  (ALCF)  and  L.  Shulenburger  (SNL)  §  Pure  and  hybrid  DFT  is  useless  for  vdW  interacAons.    

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

uterine  cancer  drug  

0

0.2

0.4

0.6

0.8

1

1.2

4.5 5 5.5 6 6.5 7 7.5 8

Ener

gy (e

V)

Lattice constant (angstrom)

QMC FCC energies for 108 atom supercell of Ar, Xe and Kr

dmc - Ardmc - Xedmc - Kr

Ar (Expt.)Xe (Expt.)Kr (Expt.)

method   Δebind  (kCal/mol)  

DFT +5.2

vdW –TS -36.6

vdW-TB -39.1

vdW-MB -50.7

QMC-DMC -33.6 +/- 0.98

Page 16: Materials Design and Discovery: Catalysis and Electrical Energy ...

Catalysis on transition nanoparticles

§  Synthesis  of  industrial  chemical  §  PolluAon  remediaAon  (carbon  monoxide  (poisonous)  to  carbon  dioxide  (harmless))  §  Three  papers  based  on  GPAW  calculaAons  on  Intrepid  over  3  years  of  INCITE  §  Gold  behaves  as  expected  in  the  limit  of  infinite  clusters,  but  not  plaAnum  §  Will  conAnue  to  explore  on  Mira  with  QMC            

Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

DFT  on  Intrepid  

QMC  on  Mira  

QMC  on  Intrepid  

Page 17: Materials Design and Discovery: Catalysis and Electrical Energy ...

§  potenAal  for  much  larger  energy  densiAes  than  current  bakeries  

§  many  challenges  §  long-­‐term  research  is  essenAal  

to  provide  the  breakthroughs  needed  for  this  new  technology  

§  High  performance  compuAng  is  needed  to  provide  insight  into  the  complexiAes  of  the  li-­‐air  bakery  at  the  molecular  level  and  help  design  new  materials  for  electrolytes  and  electrodes  

Lithium-­‐air  ba<ery  

dendrites   clogging  breakdown  

Page 18: Materials Design and Discovery: Catalysis and Electrical Energy ...

§  DFT  simulaAons  on  Mira  will  be  used  to  model  various  processes  on  in  the  lithium  bakery  §  NucleaAon  and  growth  of  lithium  peroxide  at  interfaces  §  Effect  of  electrolyte  on  the  growth  process  §  Electrocatalysts  §  Larger  models  for  nanoparAcles  

§  MD  simulaAons  will  be  used  to  simulaAon  nanocrystalline  lithium  peroxide  

IllustraAon  of  processes  occurring  at  Li-­‐air  interfaces  –  to  be  modeled  using  Mira    

Page 19: Materials Design and Discovery: Catalysis and Electrical Energy ...

Size  evolu/on  of  (Li2O2)N  nanopar/cles  extend  to  several  thousand  atom  systems  

19  K.  C.  Lau  

Page 20: Materials Design and Discovery: Catalysis and Electrical Energy ...

Summary

§  IBM  early  access  system  was  very  helpful.  §  AllocaAon:  50  million  core  hours  §  Used:  -­‐  5  million  core  hours  §  Miscellaneous:  0.5  million  core  hours  §  GPAW  calculaAons:  4.5  million  core  hours  

–  Relaxed  923  plaAnum  nanoparAcle  

§  QMCPACK  calculaAons:  50  million  core  hours  –  EOS  Ar,  Kr,  Xe  –  Two  and  three-­‐body  contribuAons  to  the  many  body  energy  of  Ar  –  Pt13  nanoparAcle  –  Bulk  Pt  

§  Largest  producAon  calculaAon:  –  GPAW  –  8-­‐racks  –  QMCPACK  –  32-­‐racks  

§  Papers  (in  preparaAon):  1  Early  Science  Program  InvesAgator  MeeAng,  May  15  –  16,  2013  

Page 21: Materials Design and Discovery: Catalysis and Electrical Energy ...

Acknowledgements

§  Technical  University  of  Denmark  (DTU),  Center  for  Atomic-­‐scale  Molecular  Design  (CAMd)  –  Jens  Jørgen  Mortensen  (lead  developer  of  GPAW)  

§  CSC,  the  Finnish  IT  Center  for  Science,  Ltd.  –  Jussi  Enkovaara  

§  Argonne  NaAonal  Laboratory  –  Anouar    Benali,  Vitali  Morozov,Lee  Killough    (now  at  Appro)  

§  Oak  Ridge  NaAonal  Laboratory:  –  Jeongnim  Kim  (lead  developer  of  QMCPACK)  

§  IBM  (Rochester,  Watson,  Sweden,  Toronto)  –  Paul  Coffman,  Bob  Walkup,  Basil  Kenneth,  Wang  Chen  

This  research  used  resources  of  the  Argonne  Leadership  CompuAng  Facility  at  Argonne  NaAonal  Laboratory,  which  is  supported  by  the  Office  of  Science  of  the  U.S.  Department  of  Energy  under  contract  DE-­‐AC02-­‐06CH11357.    

Blue  Gene/Q  Summit  -­‐  Oct.  2,  2012