Top Banner
meinschaft er Helmholtz-Gem Mitglied d Association EURATOM – FZJ Material challenges for plasma facing components in future fusion reactors C. Thomser , A. Buerger, J. Linke, T. Loewenhoff, G. Pintsuk, M. Roedig, A. Schmidt, M. Wirtz, L. Singheiser Institute of Energy and Climate Research (IEK) 5th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA PHYSICS AND TECHNOLOGY 18-22 April 2011, Singapore
29

Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Jan 04, 2019

Download

Documents

tranthien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

mei

nsch

aft

er H

elm

holtz

-Gem

Mitg

lied

d

Association EURATOM – FZJ

Material challenges for plasma facing components in future fusion reactors

C. Thomser, A. Buerger, J. Linke, T. Loewenhoff, G. Pintsuk, M. Roedig, A. Schmidt, M. Wirtz, L. Singheiser

p

Institute of Energy and Climate Research (IEK)

5th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA PHYSICS AND TECHNOLOGY

18-22 April 2011, Singapore

Page 2: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...
Page 3: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Research Centre JülichResearch & Development on 2 2 km2Research & Development on 2.2 km

Research AreasHealth

Energy & Environment

Information

Key technologiesKey technologiesTotal budget: 532 million €

Employees: 4 608

Page 4: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

mei

nsch

aft

er H

elm

holtz

-Gem

Mitg

lied

d

C Thomser: “Material challenges for plasma facing components in future fusion reactors”

Association EURATOM – FZJ

C. Thomser: Material challenges for plasma facing components in future fusion reactors

Outline

A Wall loading conditions & materialsB Quasi-stationary loads & thermal fatigue behaviourC Intense transient loads & thermal shock resistanceD Neutron induced material degradation

Page 5: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

AWall loading conditionsWall loading conditions

& materials

Page 6: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

fusion devices:Plasma facing components

fusion devices:

TEXTOR JET ITER DEMO

heat removal:actively cooled PFCspassively cooled PFCs

t H li id t l

heat removal:

water He, liquid metal

tritium fuel: increased T inventory

neutrons

n-induced material degradation

10-9 dpa 1 dpa 102 dpa0 dpa

neutronslife time fluence:

Page 7: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Plasma facing materials in ti fi t i tmagnetic confinement experiments

medium sizeconf. experiments JET ITER DEMO commercial

reactorsconf. experiments reactors

steel

graphite

CFC

beryllium (FW)

CFC

W / W alloys

other PFMs ???

Page 8: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Plasma facing materials for ITER

Advantages DisadvantagesBe • low Z

• no chemical sputtering

hi h th l

• low melting point• toxicity• short erosion lifetime

• high thermal conductivity

• low neutron radiation resistance

W • high melting point • good thermal conductivity

• high Z• high DBTT• neutron embrittlement

• low tritium retention

CFC • low Z • high erosion rate at highCFC• high thermal shock

resistance• high thermal

temperatures• tritium retention• reduction of thermal

conductivity• no melting

conductivity after neutron irradiation

Page 9: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Wall loads on plasma facing components in ITER

105

irreversible material104

Wm

-2 disruptionsneutron irreversible material

degradation103

nsity

/ M

W

VDEs

inducedmaterial

degredation g102

101ower

den

ELMs: 1 GWm-2, 500 µs, n>106

101

100

po divertor: 5 MWm-2, 450 s, n ~ 3000

10010-4 10-3 10310210110-2 10-1

pulse duration / soff-normal

normal

Page 10: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Components for fusion devices

material fusion reactor wallfusion reactor wall

Pl ll i t tierosion (chem. and phys. sputtering), redeposition, material mixing fuel retention

thermal fatigue, thermal shock (ELM-induced transients) neutron induced

Plasma wall interaction High heat flux performance

material mixing, fuel retention transients), neutron induced degradation

Page 11: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

BQuasi-stationary loads &Quasi stationary loads &thermal fatigue behaviourg

Page 12: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

JUDITH

J li h Di t T t

JU

Juelich Divertor Test Facility Hot Cells (JUDITH)

Judith was an Old Testament Jewish heroine. In the Apocryphal 'Book of Judith', she is portrayed as a widow who made her way into the tent of Holofernes, general of Nebuchadrezzar, cut off his head, and so saved her native town of Bethulia.

Gustav Klimt, Judith I, 1901

Page 13: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

JUDITH 1 in JuelichJUDITH 1 in JuelichElectron beam test facility

Page 14: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Simulation of ITER relevant thermal loads

HV (150 kV)

cathode e-beamtypical beam mode for

thermal fatigue test

diagnostics:infrared camerapyrometer

beam generator

pyrometervideo

x-y deflectioncoils

vacuum camber

doorvacuum system:turbomolec. pump

electronbeam

x / mmclampingholder

cooledsample

coolingcircuit

free air capacity:2200 l/s

10

20

x / mm

cross table0

10

0 10 20 30 40 50 60 70

/y / mmfatigue testing: up to 20 MWm-2

10 s on / 10 s off

Page 15: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Fatigue testing on plasma facing components for ITER

CFC armour tungsten armourde

sign

CFC flat tile W macrobrush

lat t

ile d

Silicon doped CFC NS31, active metal WLa2O3 tiles with OFHC-Cu, fn

1000 cycles @ 19 MWm-2 1000 cycles @ 18 MWm-2casting, e-beam welding to CuCrZr heat sink e-beam welding to CuCrZr heat sink

k de

sign

CFC monoblock W monoblock

nobl

ock

drilling of CFC tiles (NB31) active metal l ll t h i d illi f WL O

mon

1000 cycles @ 25 MWm-2 1000 cycles @ 20 MWm-2

drilling of CFC tiles (NB31), active metal casting (AMC®) low temperature HIPing

lamellae technique, drilling of WLa2O3blocks, casting with OFHC-Cu, HIPing

Page 16: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

CIntense transient loads &

CIntense transient loads &thermal shock resistance

Page 17: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

JUDITH 1: Electron beam test facility

Acceleration voltage: 120 kVLoaded area: 4 x 4 mm2

Pulse duration: 1 msInter pulse time: 2 sNumber of pulses: 100Electron absorption coefficient: 0.46Absorbed power densities: 0 16 – 1 28 GW/m2Absorbed power densities: 0.16 – 1.28 GW/mBase temperatures: RT - 600 °CScanning frequencies: 31 kHz, 40 kHz (x/y)

Page 18: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Transient heat load tests on tungstenElectron beam simulation of ELM-specific thermal loads (Δt = 1 ms; n = 100)

0.63 GW/m² at RTW-UHP

p ( ; )

0 63 GW/m² at 400°C0 16 GW/m² at 400°C 0.63 GW/m at 400 C0.16 GW/m at 400 C

Page 19: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Transient heat load tests on tungstenW-UHP

hres

hold

rack

ing

thcr

damage threshold

100 cycles with a duration of 1 ms; absorption coefficient: 0.46

Page 20: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

W-UHP pure W (double forged)

Transient heat load tests on tungsten

WTa1 WTa5

WVMW

Page 21: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Tungsten coatings on CFC substrate

WW

Mo

MoW

CFC substrate

25 µm

Page 22: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Damage typesg yp

Surface modification CrackingSurface modification Cracking

Cracking / delamination Cracking / delamination / melting

Page 23: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Tungsten coatings - test results

500m2 ] No damageSurface modification

400

450

500[M

W/m

2 Surface modificationCrackingDelamination and crackingD l i ti ki d lti

300

350

ensi

ty Delamination, cracking and melting

200

250

ower

d

50

100

150

orbe

d p damage threshold

0

50

0 100 200 300 400 500Abs

o

Base temperature [°C]

Page 24: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

DNeutron induced materialNeutron induced material

degradationg

Page 25: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Neutron irradiation effect on thermal conductivity

250

300

350

un-irradiated

0.2 dpa

1 dpay (W

m-1

K-1

)

100

150

200 1 dpa

cond

uctiv

ity

CFC (SepCarb NB31)

0

50

0 200 400 600 800 1000

ther

mal

c

temperature (°C)

m-1

K-1

)

300

350

un-irradiated

0 1 dpa

temperature ( C)

tungsten

uctiv

ity (W

m150

200

250

y

0.1 dpa

0.6 dpatungsten

herm

al c

ondu

0

50

100

Laser-flash-apparatus (schematic)

th

temperature (°C)

00 250 500 750 1000 1250 1500

Page 26: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

High heat flux performance of neutron irradiated divertor modulesirradiated divertor modules

3000CFC monoblock design / CuCrZr, Tirr = 350°C / 0.3 dpa

2500

3000IR - 551_11~1.IMG

2100,0 °C

1500

2000 bestrahltunbestrahlt

2000

re/°

C

25:09:97 09:59:34

400,0500

1000

1500

mpe

ratu

r

IR - DZ150SS.IMD

500

1000tem 2100,0 °C

1000

1500

2000

0

500Zykliertests an CFC-Modulen vom Type N07.08.96

400,0500

0 10 20 30thermal load / MWm-2

Page 27: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

Fatigue testing on plasma facing componentsCFC armour tungsten armour

desi

gn

CFC flat tile W macrobrush

lat t

ile d

0 dpa: 1000 cycles @ 19 MWm-2 0 dpa: 1000 cycles @ 18 MWm-2

fn

p y @1 dpa: 1000 cycles @ 15 MWm-2

(no degradation)

p y @0.6 dpa: 1000 cycles @ 10 MWm-2

(increasing of Tsurf)

k de

sign

CFC monoblock W monoblock

nobl

ock

0 d 1000 l @ 25 MW 2 0 d 1000 l @ 20 MW 2

mon 0 dpa: 1000 cycles @ 25 MWm-2

1 dpa: 1000 cycles @ 12 MWm-2

(substancial evaporation @ 14 MWm-2)

0 dpa: 1000 cycles @ 20 MWm-2

0.6 dpa: 1000 cycles @ 18 MWm-2

(no degradation)

Page 28: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

particle trajectories of eroded carbon particles during the 10th shotThermal-shock tests: C-based materials

EK98particle trajectories of eroded carbon particles during the 10 shot

NB31 NS31nc

eef

ere

rpa

1 dp

Page 29: Material challenges for plasma facing components in future ... · p divertor: 5 MWm-2, 450 s, n ~ 3000 10-4 10-3 10-2 10-1 100 101 102 103 off-normal pulse duration / s normal. ...

SummarySummaryMaterials characterization

• an extensive data base is required including microstructure and all physical properties (mechanical, thermal, electrical, optical etc.)

• these parameters are required for monolithic materials coatings and• these parameters are required for monolithic materials, coatings and interlayers for a wide temperature range & different material treatment

Thermal fatigue and thermal shockThermal fatigue and thermal shock • technical solutions for cyclic thermal loads up to ~20 MWm-2 are available

(CFC- or W-monoblocks represent a very robust design solution)• effect of ELMs needs further analyses

Material degradation by energetic neutrons

• the surface temperature of carbon based high heat flux components is significantly increased after neutron irradiation

• the thermal conductivity is decreased significantly (e.g. graphite / CFC)

significantly increased after neutron irradiation