Top Banner
IF Development, Design, and Preliminary Operation of a Resin-Feed Processing Facility for Resin-Based HTGR Fuels MASTER P. A. Haas J. P. Drago D. L. Million R. D. Spence OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION FOR THE DEPARTMENT OF ENERG'
68

MASTER J. D. L. Million R. D.

Jan 09, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MASTER J. D. L. Million R. D.

IF

Development, Design, and Preliminary Operation of a Resin-Feed Processing Facility for Resin-Based HTGR Fuels

MASTER P. A. Haas J. P. Drago D. L. Million R. D. Spence

OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION FOR THE DEPARTMENT OF ENERG'

Page 2: MASTER J. D. L. Million R. D.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: MASTER J. D. L. Million R. D.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: MASTER J. D. L. Million R. D.

Printed in the United States of America. Available from National Technical Information Service

U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161

Price: Printed Copy $5.25; Microfiche $3.00

This report was prepared as an account of work sponsored by an agency of the United StatesGovernment. Neitherthe United States Government norany qpncy thereof, nor any of their empl~yees, contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information. apparatus, product or process disclosed in this report, nor represents that its use by such third party would notbinfringe privately owned rights.

Page 5: MASTER J. D. L. Million R. D.

0~NL/TM-6061 Dis t . Category UC-77

Contract No. W-7405-eng-26

CHEMICAL TECHNOLOGY DIVISION

HTGR FUEL RECYCLE PROGRAM (189a OH045)

Refabrication Development - Task 500

DEVELOPMENT, DESIGN, AND PRELIMINARY OPERATION OF A RESIN-FEED PROCESSING FACILITY FOR RESIN-BASED HTGR FUELS

P. A. Haas J. P. Drago D. L. Million R. D. Spence

Date Published - January 1978

N U l l C t

sponsored by the United Staler Covemmnt. Neither the Unitcd Slntcs nor lhr, llnitrd Strt.. r*pzrtr!ynt ~f Enera, nor any of thcir employees, nor any of thcir contractors, subcontractors, or their employees, makes any warranty, express or implied, or anumcs any legal lhbillly or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process dkloocd. or represents that its uoc would not

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830

operated by UNION CARBIDE CORPORATION

for the DEPARTMENT OF ENERGY

DETRIBUTION Ok THIS 0OCU.MENT iS UNUMLTEQ

Y\!

Page 6: MASTER J. D. L. Million R. D.

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Page 7: MASTER J. D. L. Million R. D.

iii

CONTENTS

Page

. . . . . . . . A b s t r a c t . . . . . . . . . . . . . . . . . . . . : 1

. . 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . 2

2 . P r o c e s s Requirements and D e s c r i p t i o n . . . . . . . . . . . . . 3

2 . 1 Res in S p e c i f i c a t i o n . . . . . . . . . . . . . . . . . . . 3

2 . 1 . 1 Chemical compos i t ion and i m p u r i t i e s . . . . . . . 5

2 .1 .2 Uranium l o a d i n g c a p a c i t y . . . . . . . . . . . . . . . 5

2 . 1 . 3 S i z e . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.4 Shape . . . . . . . . . . . . . . . . . . . . . . 6

2 .1 .5 S t r u c t u r e . u n i f o r m i t y . and d e n s i t y a f t e r c a r b o n i z a t i o n . . . . . . . . . . . . . . . . . . 6

2.2 Commercial C a t i o n Exchange R e s i n s . . . . . . . . . . . . 7

2 . 3 P r o c e s s C a p a c i t y . . . . . . . . . . . . . . . . . . . . 9

2.4 O t h e r R e q u i r e m e n t s . . . . . . . . . . . . . . . . . . . 10

2.5 O v e r a l l P r o c e s s Flowsheet . . . . . . . . . . . . . . . . . 11

3 . Wet-Size C l a s s i f i c a t i o n . . . . . . . . . . . . . . . . . . . 11 /

3 . 1 . D e s c r i p t i o n o f Equipment . . . . . . . . . . . . . . . . 1 3

3.2 P rocedures f o r Wet-Size C l a s s i f i e r . . . . . . . . . . . 1 7

3 . 3 Wet-Size C l a s s i f i e r R e s u l t s . . . . . . . . . . . . . . 1 7

4 . Res in Drying and Dry S c r e e n i n g . . . . . . . . . . . . . . . . 1 8

4 . 1 Fluid ized-Bed Dryer Equipment and P r o c e d u r e s . . . . . . 22

4 .2 Fluid ized-Bed Dryer R e s u l t s . . . . . . . . . . . . . . . 24

4 . 3 Dry S c r e e n i n g . . . . . . . . . . . . . . . . . . . . . . 27

5 . S e p a r a t i o n of N o n s p h e r i c a l P a r t i c l e s from Spheres . . . . . . 29

Page 8: MASTER J. D. L. Million R. D.

CONTENTS ( con t ' d)

5 . 1 Equipment Desc r ip t ion . . . . . . . . . . 5.2 Part ic le-Shape Sepa ra t ion Procedures . . 5.3 Resul t s . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 6 . Resin Conversion

6 . 1 Batch Conversion Equipment and Procedures

. . . . 6.2 Continuous (Higgins) Column Resul t s

. . . . . . . . . . . . 6 .3 Qual i ty Assurance

7 . Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . References

9 . Appendixes . . . . . . . . . . . . . . . . . . .

rage

. . . . . . . . ' 29

. . . . . . . . 31

. . . . . . . . 35

. . . . . . . . 39

. . . . . . . . 43

. . . . . . . . 46

. . . : . . . . 50

. . . . . . . . 50

. . . . . . . . 52

. . . . . . . . 53

Page 9: MASTER J. D. L. Million R. D.

DEVELOPMENT, DESIGN, AND PRELIMINARY OPERATION OF A RESIN-FEED PROCESSING FACILITY FOR RESIN-BASED HTGR FUELS

P. A . Haas J. P. Drago D. L. Mi l l i on R. D. Spence

ABSTRACT

Fuel k e r n e l s f o r r ecyc l e of 2 3 3 ~ t o High-Temperature Gas- Cooled Reactors a r e prepared by loading ca rboxy l i c a c i d c a t i o n exchange r e s i n s wi th uranium and carboniz ing a t c o n t r o l l e d cond i t i ons . Resin-f eed was developed and a f a c i l i t y was designed, i n s t a l l e d , and opera ted t o c o n t r o l t he k e r n e l s i z e , shape, and composition by process ing t h e r e s i n b e f o r e adding uranium. The s t a r t i n g m a t e r i a l s a r e commercial c a t i o n exchange r e s i n s i n t h e sodium form. The s i z e s e p a r a t i o n s a r e made by v i b r a t o r y sc reen ing of r e s i n s l u r r i e s i n water . Af t e r drying i n a f l u i d i z e d bed, t he nonspher ica l p a r t i c l e s a r e s epa ra t ed from s p h e r i c a l p a r t i c l e s on v i b r a t o r y p l a t e s of s p e c i a l design. The s i z e d , shape-separated sphe re s a r e then rewetted and converted t o t h e hydrogen form. The process ing capac i ty of t h e equipment t e s t e d is equ iva l en t t o about 1 kg of uranium p e r hour and could m e e t commercial r e c y c l e p l a n t requirements wi thout scale-up of t h e p r i n c i p a l p rocess components.

1. INTRODUCTION

The r e f e r ence f u e l k e r n e l f o r r e c y c l e of 2 3 3 ~ t o High-Temperature Gas-

Cooled Reactors (HTGRs) is prepared by load ing ca rboxy l i c and c a t i o n

exchange r e s i n s w i th uranium and carboniz ing a t c o n t r o l l e d cond i t i ons . 1

One important advantage of t h i s p rocess i s t h a t t h e k e r n e l s i z e , shape,

i m p u r i t i e s , and perhaps o t h e r p r o p e r t i e s can be c o n t r o l l e d o r v e r i f i e d

f o r t h e r e s i n p a r t i c l e s b e f o r e uranium i s in t roduced . These ope ra t i ons

can be c a r r i e d o u t i n a nonrad ioac t ive resin-feed process ing f a c i l i t y

which would supply r e s i n t o a remotely opera ted r e f a b r i c a t i o n p l a n t . 1

Page 10: MASTER J. D. L. Million R. D.

The development o f re , s in f e e d p r o c e s s i n g o f t h i s t y p e h a s been p a r t of

t h e HTGK f u e l r e c y c l e program a t t h e Oak Ridge N a t i o n a l Labora to ry .

The p r o p e r t i e s r e q u i r e d f o r t h e feed r e s i n i n uranium l o a d i n g a r e

much d i f f e r e n t i n t y p e and degree from t h o s e u s u a l l y used i n i o n exchange

r e s i n s . The n e c e s s a r y p r o p e r t i e s f i r s t had t o be i d e n t i f i e d and measured.

S p e c i a l equipment and p rocedures were t h e n developed and t e s t e d t o g i v e

t h e r e q u i r e d c o n t r o l o f t h e s e p r o p e r t i e s . F i n a l l y , a r e s i n - f e e d p r o c e s s i n g

f a c i l i t y was des igned , i . n s t a l l e d , and o p e r a t e d t o supp ly r e s i n f o r f u e l

r e c y c l e development and ' fo r a f u t u r e remotely o p e r a t e d p i l o t p l a n t .

Both development s t u d i e s and t h e d e s i g n and p r e l i m i n a r y o p e r a t i o n

o f a r e s i n feed p r o c e s s i n g f a c i l i t y a r e r e p o r t e d h e r e . The p r o c e s s r e q u i r e -

ments and t h e o v e r a l l f l o w s h e e t a r e r e p o r t e d f i r s t . The i n d i v i d u a l p r o c e s s

o p e r a t i o n s a r e r e p o r t e d i n t h e o r d e r o f use w i t h r e s u l t s from b o t h

development t e s t s and t h e p r e l i m i n a r y o p e r a t i o n o f t h e f a c i l i t y .

The r e s i n f e e d p r o c e s s i n g f a c i l i t y was developed, d e s i g n e d , and

i n s t a l l e d as p a r t o f t h e Thorium U t i l i z a t i o n Program. J. A. C a r p e n t e r , J r . ,

and R. L. B e a t t y o f t h e Meta l s and Ceramics D i v i s i o n c o n t r i b u t e d i n f o r -

mat ion and e x p e r i m e n t a l tests f o r s e v e r a l of t h e p r o c e s s o p e r a t i o n s .

G. M. Lawson and P. . E . S t e i n o f t h e Engineer ing D i v i s i o n s u p e r v i s e d t h e

p r e p a r a t i o n o f drawings f o r t h e c o n s t r u c t i o n o f t h e f a c i l i t y . J. D. Flynn

and L. R. S u l l i v a n of t h e P l a n t and Equipment D i v i s i o n s u p e r v i s e d t h e

i n s t a l l a t i o n . R. D. A r t h u r , T. V. Dinsmore, and J. R. P a r r o t t , Jr . ,

p a r t i c i p a t e d i n development and o p e r a t i o n of t h e equipment.

Page 11: MASTER J. D. L. Million R. D.

The HTGR f u e l recyc le program has inc luded both t h e procurement and

eva lua t ion of commercial i on exchange r e s i n s and t h e process ing o f ' t h e

commercial r e s i n s t o meet t he s p e c i f i c a t i o n s f o r s i z e , shape, composition,

and q u a l i t y assurance. The resin-based f u e l concept was i n i t i a l l y t e s t e d

wi th s t r o n g a c i d ~ ( s u 1 f o n i c ) r e s i n s , b u t t h e s u l f u r remaining i n t h e

carbonized ke rne l s was a major l i m i t a t i ~ n . ~ The i n i t i a l carboxyl ic a c i d

r e s i n s t e s t e d were e i t h e r nonspher ica l o r d id not g ive high loadings of

uranium. The r e s i n s , t he s p e c i f i c a t i o n s , and the procedures descr ibed

i n t h e fol lowing s e c t i o n s a r e compromises between what would be optimum

f o r f u e l r e f a b r i c a t i o n and t h e c o s t and t echn ica l f e a s i b i l i t y of r e s t r i c t i v e

s p e c i f i c a t i o n s . A l l r e s i n s t e s t e d were developed 'by t h e r e s i n manufacturers

f o r o t h e r p o s s i b l e commercial uses. The only manufacturing v a r i a t i o n s t o

meet HTGR f u e l requirements were those needed t o improve the s i z e and shape

y i e l d of r e s i n s of an otherwise s t anda rd type.

2 .1 Resin S p e c i f i c a t i o n

The s p e c i f i c a t i o n s f o r t he product of t h e r e s i n feed process ing a r e

der ived from s p e c i f i c a t i o n s f o r carbonized r ecyc le f i s s i l e k e r n e l s and

a r e t h e r e f o r e 'dependent on the carboniza t ion behavior . These f i s s i l e

p a r t i c l e s a r e spheres wi th t h e chemical composition of %50% U02--50% UC2

i n a carbon ma t r ix and a r e . 'prepared . by con t ro l l ed carboniza t ion and con-

4 ve r s ion of the uranium-loaded r e s i n . P a r t i c l e s p e c i f i c a t i o n s impose

requirements on t h e feed r e s i n a s fol lows:

1.. The shape p e r s i s t s through carboniza t ion , and the feed r e s i n

must meet t he shape s p e c i f i c a t i o n . Also, t h e shape must n o t

Page 12: MASTER J. D. L. Million R. D.

be degraded by c rack ing , c l u s t e r i n g , o r o t h e r e f f e c t s

dur ing p roces s ope ra t i ons i nc iud ing t h e uranium loading

and ca rbon iza t ion .

2. The composition of t h e r e s i n must r e s u l t i n carbon and

oxygen a s t h e on ly important c o n s t i t u e n t s remaining wi th

t he uranium a f t e r high-temperature carboniza t ion . This

r c q u i r c s usc of ca rboxy l i c a c i d type c a t i o n exchange

~ e s i ~ i s . Iu~purities arc l i m i t c d by t h e i r c f f c c t o as

nuc lea r po isons (boron equ iva l en t s p e c i f i c a t i o n s ) , b y ,

unacceptable chemical r e a c t i o n s during coa t ing o r

i r r a d i a t i o n ( i r o n , c h l o r i n e , chromium, and n i c k e l must

be l i m i t e d ) , and by problems dur ing reprocess ing ( t h e

14 p r i n c i p a l sou rce of C is n i t r o g e n i m p u r i t i e s ) .

3. The s i z e a f t e r ca rbon iza t ion ( i n combination wi th t he

uranium c o n t e n t pe r u n i t volume) is a complex func t ion

of many v a r i a b l e s , b u t is p ropor t i ona l t o t h e feed

r e s i n s i z e when a l l o t h e r v a r i a b l e s a r e f i xed .

4. The uranium con ten t i n both weight pe rcen t and d e n s i t y

must exceed t h e minimum requi red t o give the f u e l

I oadings needed. S ince bo th t h e weight pe rcen t o f

uranium and t h e dens i ty show very l a r g e changes

dur ing c a r b u u l z a ~ l u u , a l ly ullLes ted resins must b e

loaded and carbonized t o check t h e a c c e p t a b i l i t y of

t h e ca rbon iza t ion behavior .

These requirements r e s u l t i n t h e proposed s p e c i f i c a t i o n f o r t h e

r e s i n t o be purchased f o r r e s i n feed process ing . The r e f e r ence Arnberlite

Page 13: MASTER J. D. L. Million R. D.

* ** IRC-72 r e s i n has met t hese s p e c i f i c a t i o n s , . b u t t h e Duol i te C-464

a l t e r n a t e r e s i n has a lower uranium capac i ty of b o r d e r l i n e a c c e p t a b i l i t y .

2.1.1 Chemical composition and i m p u r i t i e s

The r e s i n s h a l l b e the sodium form of a carboxyl ic a c i d type c a t i o n

exchange r e s i n prepared by polymerizat ion of a c r y l i c a c i d and divinylbenzene.

Conversion t o t h e hydrogen form using HNO s h a l l l eave carbon, hydrogen, 3

and oxygen a s t he only major c o n s t i t u e n t s . Impur i t i e s i n d r i e d hydrogen-

form r e s i n s h a l l n o t exceed:

Fe, C r , Ni - <20 ppm each impuri ty

To ta l equ iva l en t boron content (1 ppm

2.1.2 Uranium loading capac i ty

The uranium content of hydrogen-form r e s i n contac ted f o r - > 2 . h r wi th

0 .3 - M uranium a s uranyl n i t r a t e wi th NO - /u = 1.7 s h a l l exceed both of 3

t h e fol lowing :

1. The uranium content of r e s i n d r i e d i n air t o 120°C s h a l l

be - >45 w t %.

2. The uranium content of washed, uranium-loaded r e s i n i n

water on a bulk volume b a s i s s h a l l be 3 . 2 5 moles of

uranium,per l i t e r .

2.1.3 S i ze

The s p e c i f i c a t i o n f o r t he converted product spheres i s equ iva l en t

t o 65 x g of uranium pe r sphere i n the mean diameter , and a mean

* Trademark of t he Rohm and Haas Co. * *

Trademark of t he Diamond Shamrock Chemical Co.

Page 14: MASTER J. D. L. Million R. D.

diameter of 340 t o 380 pm. This r e q u i r e s sodium-form feed r e s i n of about

740-pm mean diameter f o r t h e two r e s i n s t e s t e d (Amberli te IRC-72 o r

D u o l i t e C-464). The s i z e range l i s t e d i n t h e converted product s p e c i f i -

c a t i o n s i s equ iva l en t t o about 40 t o 100 pg of uranium pe r sphere o r 640

t o 840 pm diam f o r t he sodium-form r e s i n . Therefore , t he r e s i n s h a l l be

>25 w t % of 640- t o 840-pm diam spheres i n t he sodium form, and t h e u n i t

p r i c e s h a l l be computed on t h e b a s i s of r e s i n w i t h i n t h i s range.

3 $ / f t f o r sodium-form r e s i n

Unit p r i c e = f r a c t i o n of 640 t o 840 pm diam

2.1.4 Shape

The r a t i o of maximum diameter/minimum diameter s h a l l be used a s a

s p e c i f i c a t i o n of shape. For t h e s i z e range s p e c i f i e d (640 t o 840 pm

diam i n t h e sodium form), - >90% of t h e p a r t i c l e s s h a l l have t h e r a t i o

c1.1. -

2.1.5 S t r u c t u r e , un i formi ty , and d e n s i t y a f t e r ca rbon iza t ion

The s t r u c t u r e , un i formi ty , and dens i ty of t h e spheres a f t e r conversion

s h a l l be a s good $s t h e lower range of va lues observed f o r t h e r e f e r ence

Amberl i te IRC-72 r e s i n a f t e r conversion. The converted product ha s a

carbon ma t r ix w i th uniformly d i s t r i b u t e d U02, UC2, and UCx02-x, and a

uniform po ros i t y and h igh s u r f a c e a r ea . The d e n s i t y of t h e converted

product should be 7 >1.9-g/cm3 - bulk d e n s i t y o r t h e mercury pycnometer

3 d e n s i t y a t 75 p s i should be - >3.0 g/cm . E i t h e r t h e r e s i n composition and

manufactur ing procedure s h a l l be i d e n t i c a l t o prev ious l o t s of r e s i n

which were shown t o meet t h e s e s p e c i f i c a t i o n s o r a t e s t l o t s h a l l be sup-

p l i e d f o r determining t h e s t r u c t u r e , un i formi ty , and d e n s i t y a f t e r carbon-

i z a t i o n .

Page 15: MASTER J. D. L. Million R. D.

2.2- Commercial Ca t ion Exchange Resins

Ion exchange r e s i n s from t h e commercial manufac tu re r s a r e p rocessed

a t ORNL t o meet t h e s p e c i f i c a t i o n s f o r s i z e , shape , compos i t ion , and

q u a l i t y a s s u r a n c e . Arnberlite IRC-72 i s b e i n g used as t h e r e f e r e n c e weak-

a c i d r e s i n . The uranium l o a d i n g b e h a v i o r of t h e D u o l i t e C-464 i s a l s o

s u i t a b l e , b u t i t shows s i g n i f i c a n t d i f f e r e n c e s from t h e Amber l i t e IRC-72.

The c o s t s o f b o t h r e s i n s a r e i n t h e range o f $0.05 t o $0.10 p e r gram of

uranium, depending on t h e a l l o w a b l e range of p a r t i c l e - s p h e r e d i a m e t e r .

Both manufa 'cturers have modi f i ed t h e i r p r e p a r a t i o n p rocedures t o

i n c r e a s e t h e p a r t i c l e s i z e and shape y i e l d s f o r our requ i rements . There-

f o r e , t h e s i z e and shape r e s u l t s r e p o r t e d a r e f o r s p e c i f i c b a t c h e s on ly

and a r e n o t t y p i c a l of t h e commercial r e s i n s . For t h e ~ m b e r l i t e IRC-72,

t h e s e changes have r e s u l t e d i n narrower p a r t i c l e - s f z e d i s t r i b u t i o n and

fewer v e r y s m a l l s p h e r e s . Apparen t ly , t h e s e changes can b e accomplished

by s m a l l p r o c e s s v a r i a t i o n s and do n o t r e s u l t i n any i n c r e a s e i n p r i c e .

For t h e D u o l i t e C-464, t h e s i z e and shape y i e l d s a r e g r e a t l y improved

by t h e manufac tu r ing changes and appear t o meet t h e c u r r e n t p r o d u c t

s p e c i f i c a t i o n s w i t h o u t any f u r t h e r r e s i n f e e d t r e a t m e n t s . S ince t h e

y i e l d f o r s t a n d a r d commercial r e s i n s is 1 5 t o 20%, t h e s i x t imes h i g h e r

u n i t p r i c e of t h e s p e c i a l l y p r e p a r e d D u o l i t e C-464 i s e q u i v a l e n t t o t h e

. . same c o s t p e r gram of uranium. These two r e s i n s do n o t have l a r g e

commercial u s e s 'and t h e r e p r o d u c i b i l i t y of t h e b e s t (most r e c e n t ) l o t s

w i l l have t o b e conf i rmed f o r f u t u r e o r d e r s .

The' two r e s i n s a r e d e s c r i b e d ' i n t h e m a n u f a c t u r e r ' s l i t e r a t u r e a s

fo l lows :

Page 16: MASTER J. D. L. Million R. D.

Amberl i te IRC-72. Acryl ic-divinylbenzene ma t r ix s t r u c t u r e ,

a weakly a c i d i c ca rboxy l i c a c i d type c a t i o n exchange r e s i n ,

sodium form, pH range of 5 t o 14, t o t a l exchange capac i ty of

2 meq/ml w e t , 43.6 k i l o g r a i n s of caco3/ f t3 , apparen t d e n s i t y

3 of 0.74 glcm , e f f e c t i v e s i z e of 0.40 t o 0.55 mm, 71 t o 73%

+ mois ture , 85% s w e l l i n g f o r H+ + Na conversion, f a s t e r

adso rp t ion , and improved h y d r a u l i c c h a r a c t e r i s t i c s a s com-

parad t o Ambarl i te IRC-,.50,

The b e s t l o t f o r HTGR f u e l p r epa ra t i on was i d e n t i f i e d a s Rohm and Haas

Lot No. ,2-6681.

Duo l i t e C-464. P o l y a c r y l i c ma t r ix , n mncroporous, weak-acid,

* ca rboxy l i c c a t i o n exchange r e s i n , hydrogen form, pH range

of 5 t o 14, t o t a l exchange capac i ty of 3.5 meqlml (wet) o r

10 meq/g ( d r y ) , s p e c i f i c g r a v i t y of 1 .15, +20 -50-mesh s i z e ,

52 t o 57% mois ture , ou t s t and ing r e s i s t a n c e t o osmotic a t t r i -

t i o n , and h igh capac i ty .

The b e s t l o r f o r HTGR f u e l p r e p a r a t i o n was i d e n t i f i e d a s Diamond Sham-

rock Lot No. 2-60.

The requirements f o r HTGR resin-based f u e l s have been reviewed

r epea t ed ly w i th s e v e r a l manufacturers of ' ion exchange r e s i n s . We now

b e l i e v e t h a t t h e r e is l i t t l e chance of any s i g n i f i c a n t o v e r a l l improvement

i n t h e c h a r a c t e r i s t i c s of t h e two r e s i n s descr ibed . The capac i ty i s l i m i t e d

by t h e chemical formula of t h e polymer. The most r e c e n t l o t s of both

r e s i n s ( a s rece ived) have contained more than 99% p e r f e c t spheres . A

* Resin purchased f o r HTGR f u e l s ha s been d e l i v e r e d i n t h e sodium form.

Page 17: MASTER J. D. L. Million R. D.

narrower s i z e range would b e p r e f e r r e d , b u t t h e development and p i l o t

p l a n t programs do n o t r e q u i r e l a r g e enough q u a n t i t i e s of r e s i n t o make

s p e c i a l manufactur ing p rocedures economical ly f e a s i b l e . E q u i v a l e n t r e s i n s

are now a v a i l a b l e from o t h e r r e s i n manufac tu re r s i n t h e Uni ted S t a t e s and

f o r e i g n c o u n t r i e s . However, t h e two d e s c r i p t i o n s g iven are not s u f f i c i e n t

t o a s s u r e e q u a l performance. Other r e s i n s w i t h t h e same a p p a r e n t d e s c r i p -

t i o n s would n o t a l l o w h i g h l o a d i n g s o f uranium, were n o t s p h e r i c a l , o r

would show l a r g e amounts of c r a c k i n g a t t h e uranium l o a d i n g and d r y i n g

c o n d i t i o n s used. 3

2 .3 Process Capaci ty

The r e s i n f e e d p r o c e s s i n g f a c i l i t y was s i z e d t o meet t h e p r e s e n t

c a p a c i t y requ i rements u s i n g par t - t ime o p e r a t i o n of t h e equipment. S ince

t h e i n s t a l l e d equipment i s s t i l l of moderate s i z e , l i t t l e s a v i n g i n t h e

i n s t a l l a t i o n c o s t would r e s u l t from t h e use of s m a l l e r equipment. I n

f a c t , t h e l a r g e r equipment r e s u l t s i n a lower o v e r a l l c o s t t o t h e

development program because of lower c o s t s f o r l a b o r . I n a d d i t i o n , t h e

requ i rements f o r a commercial r e c y c l e p l a n t would n o t requi . re sca le -up

s i n c e t h e p r i n c i p a l p r o c e s s equipment components a r e a l r e a d y f u l l - s c a l e .

The f u e l r e c y c l e development program, t h e h o t p i l o t p l a n t , and t h e

f i r s t commercial p l a n t are b a s e d on b a t c h o p e r a t i o n s w i t h 4 kg of uranium

a s t h e r e f e r e n c e b a t c h s i z e . The r e f e r e n c e r e c y c l e p a r t i c l e c o n t a i n s

abou t 65 x 10'~ g of 233U p e r s p h e r e ; i t r e q u i r e s wet r e s i n w i t h a n average

d iamete r of about 730,pm i n t h e sodium form, o r a n average d i a m e t e r of

570 pm i n t h e hydrogen o r t h e uranium loaded forms. T h e r e f o r e one b a t c h

6 c o n t a i n s abou t 70 x 1 0 s p h e r e s and r e q u i r e s 11 l i t e r s of wet hydrogen-form

Page 18: MASTER J. D. L. Million R. D.

r e s i n , 25 t o 30 l i t e r s of wet , sodium-form resin which goes t o t he d r y e r ,

and 150 t o 200 l i ters of wet r e s i n which goes t o s i z e s epa ra t i on . Capac i t ies

e q u i v a l e n t t o one b a t c h p e r 4 h r would al low e f f i c i e n t use of ope ra t i ng

l a b o r f o r t h e p re sen t requirements and would permit s i x ba tches p e r day

( o r 24 kg of uranium p e r day) t o m e e t t h e product ion requirement of a

commercial p l a n t . The r e s u l t i n g c a p a c i t i e s p e r u n i t t ime f o r 240 min a r e

3 3 45 cm /min f o r w e t , hydrogen-form r e s i n , 120 cm /min f o r wet , sodium-form

r e s i n which goes t o t h e d r y e r , 0.7 l i t e r l m i n f o r wet r e s i n which goes t o

s i z e s e p a r a t i o n , and 5000 sphe re s p e r second of product r e s i n .

2.4 Other Requirements

The product of r e s i n f eed process ing must be packaged i n t h e amounts

and c o n t a i n e r s r equ i r ed by t h e p i l o t p l a n t o r o t h e r 233U l oad ing f a c i l i t y .

It i s expected t h a t r e s i n t r a n s f e r con ta ine r s w i l l be charged w i t h measured

amounts ( equ iva l en t s ) of r e s i n feed. Control of t h e r e s i n l oad ing process

r e s u l t s i n r ep roduc ib l e f r a c t i o n a l load ings of uranium ( i . e . , equ iva l en t

of uranium/equivalent of r e s i n ) independent of t he v a r i a t i o n s i n t h e

amount of r e s i n p r e s e n t . However, t h e amount of r e s i n must be measured

and c o n t r o l l e d t o a s s i s t w i t h uranium a c c o u n t a b i l i t y and f o r t h e convenience

of o t h e r process ope ra t i ons .

The procedure and equipment f o r product s t o r a g e , q u a l i t y assurance

measurements, and meter ing i n t o t r a n s f e r v e s s e l s were n o t inc luded i n t he

i n i t i a l i n s t a l l a t i o n of t h e res in- feed process ing f a c i l i t y . These a d d i t i o n s

w i l l have t o be designed and i n s t a l l e d t o be compatible w i t h t h e cor res -

ponding f a c i l i t i e s of remotely opera ted 233U-loading p i l o t p l a n t s o r f u l l -

s c a l e f a c i l i t i e s .

Page 19: MASTER J. D. L. Million R. D.

2.5 O v e r a l l P r o c e s s Flowsheet

The o v e r a l l r e s i n - f e e d p r o c e s s i n g f l o w s h e e t i n v o l v e s t h r e e major t r e a t -

ments ( F i g . 1 ) . The wet-screening t r e a t m e n t de te rmines t h e s i z e o f t h e w e t ,

sodium-form r e s i n . The s h a p e - s e p a r a t i o n t r e a t m e n t r e j e c t s t h e n o n s p h e r i c a l

r e s i n p a r t i c l e s . The convers ion t r e a t m e n t rewets t h e sodium-form r e s i n

and c o n v e r t s i t t o a m e t a l - f r e e hydrogen form f o r exchange w i t h a c i d - d e f i c i e n t

u r a n y l n i t r a t e . The f l u i d i z e d - b e d d r y i n g and d r y s c r e e n i n g a r e a u x i l i a r y

pera at ions r e q u i r e d f o r t h e shape s e p a r a t i o n s . Each of t h e s e o p e r a t i o n s

w i l l b e d e s c r i b e d i n a s e p a r a t e s e c t i o n of t h i s r e p o r t , which i n c l u d e s i n f o r -

mat ion on p r o c e s s development and s e l e c t i o n of equipment. The composi t ion

and exchange c a p a c i t y a r e l i m i t e d by t h o s e . o f t h e commercial r e s i n s u p p l i e d

t o t h e r e s i n - f e e d p r o c e s s i n g f a c i l i t y . The i n t e n t i o n i s t o use on ly r e s i n

t y p e s which have been t e s t e d f o r HTGR f u e l f a b r i c a t i o n and t o r e q u i r e

d u p l i c a t i o n of t h e t e s t e d p r o p e r t i e s a s p a r t of t h e r e s i n purchase

r e q u i s i t i o n . The composi t ion and exchange c a p a c i t y of t h e hydrogen-form

r e s i n would b e checked b e f o r e i t was used f o r r e c y c l e f u e l f a b r i c a t i o n .

3. WET-SIZE CLASSIFICATION

The f i r s t t r e a t m e n t o f t h e commercial i o n exchange r e s i n i s wet

s c r e e n i n g by f e e d i n g a s l u r r y of sodium-form r e s i n i n w a t e r t o a v i b r a -

t o r y s c r e e n i n g u n i t . The removal of l a r g e amounts of o v e r s i z e and under-

s i z e r e s i n g r e a t l y reduced t h e c a p a c i t y r e q u i r e d f o r t h e subsequen t p r o c e s s

o p e r a t i o n s . The problems t h a t r e s u l t e d when u n s i z e d commercial r e s i n

was d r i e d and s c r e e n e d a r e d e s c r i b e d i n S e c t . 4 . The use o f a l a r g e volume

r a t i o of w a t e r l r e s i n p r o v i d e s a s u s p e n s i o n and removal of f i n e r e s i n

Page 20: MASTER J. D. L. Million R. D.

ORNL-DWG 76-930

F i g . 1. Res in feed p r e p a r a t i o n p r o c e s s f l o w s h e e t .

SODIUM-FORM CATION EXCHANGE

RESIN FROM ' MANUFACTURER

WET SCREEN1 NG

OFF-SIZ RESIN ' STORAGE

OR WASTE

- 2 6 + 3 0 MESH RESI N

v 4

FLUIDIZED BED

DRY1 NO b

DRY RESlN

r v

1

WASTE DRY

SCREEN l NG .+26~-50,

MESH RESlN

L w 9

NON- SHAPE SPHERICA WASTE

A

SPHERICAL RESlN BEADS

CONVERSION SUPER- TO HYDROGEN NATEb

FORM

' NEUTRALIZING

AND WASTE

HYDROGEN-FORM RESlN TO U-LOADING

v

Page 21: MASTER J. D. L. Million R. D.

p a r t i c l e s which o t h e r s i z e c l a s s i f i c a t i o n p rocedures do n o t a c h i e v e .

S i z i n g of t h e wet r e s i n g i v e s a r e p r o d u c i b l e c o n t r o l o f t h e exchange

c a p a c i t y p e r r e s i n bead. Resin beads which a p p e a r t o b e d r y show a l a r g e

change i n d i a m e t e r w i t h changes i n w a t e r c o n t e n t , and t h i s i n t r o d u c e s a

l a r g e a d d i t i o n a l v a r i a b l e w i t h r e s p e c t t o c o n t r o l l i n g t h e wet s i z e by use

of d r y s c r e e n i n g .

3 .1 D e s c r i p t i o n o f Equipment

For t h e we t - s ize c l a s s i f i c a t i o n , t h e s l u r r y of r e s i n i n w a t e r is f e d

t o a t h r e e - s c r e e n s e p a r a t o r . Three s c r e e n f r a c t i o n s a r e d i s c h a r g e d t o

c o l l e c t i o n t a n k s w i t h s m a l l e x c e s s e s of w a t e r , and a s l u r r y o f t h e s m a l l e s t

* s i z e is d i s c h a r g e d t o a s e t t l e r ( F i g . 2 ) . The s i z e s e p a r a t o r i s a SWECO

0.76-m (30-in.)-diam v i b r a t o r y s e p a r a t o r of a s t a n d a r d des ign . A l l s u r -

f a c e s t h a t c o n t a c t t h e r e s i n a r e s t a i n l e s s s teel o r po lymer ic g a s k e t s and

seals. The s c r e e n d i s c s a r e i n t e r c h a n g e a b l e ( F i g . 3 ) . The s c r e e n c l o t h s

a r e made o f - t e n s i l e b o l t i n g c l o t h (TBC) w i t h TBC-mesh s i z e s a s l i s t e d i n

Tab le 1. The f i n e s se t t ler i s a 55-gal drum w i t h welded i n l e t , e x i t , and

over f low n o z z l e s . A l l v a l v e s f o r r e s i n s l u r r i e s a r e b a l l v a l v e s . The

on ly o t h e r s p e c i a l f a b r i c a t i o n i t e m needed f o r t h e s i z e c l a s s i f i c a t i o n

system was a m o d i f i c a t i o n o f t h e p o l y e t h y l e n e r e s i n t a n k s t o r e p l a c e f l a t

bottoms w i t h c o n i c a l bot toms. The assembly d e t a i l s a r e shown by con-

s t r u c t i o n drawings (Appendix 9 . 1 ) .

* Southwestern Engineer ing Co., Model LS30S6666, Los Angeles , C a l i f . 90051.

Page 22: MASTER J. D. L. Million R. D.

'=l

I-'.

OQ

0

I-' !3

V)

V)

I-'. m

I-'. 0

e,

R

I-'. 0

3

m

P

0 S 1

(D

(D

rt

----

- 71

0 r

1 ,-,

I

,, 4

mO

C

I m

u;

1 1

1

XI

m

I '-'

0

----- J

1 I

MA

NU

AL

,

L -,---------

Page 23: MASTER J. D. L. Million R. D.

Fig. 3. Photogra2h c ? 0.76-lu-diam wet-scxen separator.

Page 24: MASTER J. D. L. Million R. D.

Table 1. Tensile bolting cloth mesh s i z e s for 0.76-rn screens

Southwestern Engineering Co, Model No. LS30Sb6bb vibratory screen separator

Screen material: TBC

Mesh (openingslin.)

Wire diameter

( in . Openings

(11)

Page 25: MASTER J. D. L. Million R. D.

3.2 Procedures f o r Wet-Size C l a s s i f i e r

Resin is fed t o the 0.76-m-diam vibra tory screening un i t by a water

* e j e c t o r (Fig. 2). The vibra tory screening un i t is located approximately

3 m above the th ree r e s i n holding tanks (110- l i ter capacity each). The

r e s i n flow t o the e j e c t o r is control led by a b a l l valve and a vacuum

pressure gage. An add i t iona l water supply l i n e t o the screening un i t is

used i n order t o obta in higher wa te r i res in flow r a t i o s . The r e s i n s l u r r y

and add i t iona l water flows e n t e r a small beaker located a t the mouth of

t h e screening un i t t o break the ve loc i ty and con t ro l the d i s t r i b u t i o n of

the r e s i n onto the screen. The water leaves the screening u n i t through

the bottom spout t o an inc l ined 55-gal tank ( f ines s e t t l e r ) . Surge

capacity f o r the recycle water stream is provided wi th an add i t iona l tank.

In-l ine f i l t e r s a r e located i n the pump discharge l i n e .

3.3 Wet-Size C l a s s i f i e r Results

The 0.76-m-diam vibra tory screening u n i t operated w e l l ; no important

problems were encountered. In order t o obta in reasonable r e s i n flow r a t e s

and s t i l l have a high (40:l) water-to-resin volume r a t i o , a bypass l i n e

was used around the jet e jec to r . The water flow was maintained a t 100%

of the rotameter capacity (32 l i t e r s /min) . The r e s i n flow t o the j e t

e j e c t o r was control led by a b a l l valve t o obta in a vacuum of 30.5 cm Hg.

A t these conditions a 40:l flow r a t i o was obtained. The r e s i n flow r a t e

was 0.82 l i t e r s /min . Screening capacity f o r each 8-hr s h i f t was 400 l i ters

(13.9 f t 3 , o r two 55-gal drums). The manufacturer's r a ted capacity i s

* Hydraulic e j e c t o r , Penberthy Model LH1.

Page 26: MASTER J. D. L. Million R. D.

200 l i t e r s / m i n and 5 l i t e r s l m i n of water and r e s i n respect ively . Motive

pressure t o the jet w a s 34 psig.

Two banks of double length (Cuno CT-102) in- l ine f i l t e r s were found

t o be unusable due t o rapid plugging. F i l t e r openings of 40 and 150 ym

were found t o c log rapidly. Currently, screenings a r e performed without

f i l t e r s and the f i n e s a r e discharged a s sett ler bottoms o r i n the overflow

of excess water.

Rra af the pnlyethylewa storage tanks f a i l e d by cracking near ahop

welds t h a t were made when t h e conical bottoms were added. The tanks were

repai red by welding and were reused.

3 A 200-l i ter (7 f t ) batch of Amberlite IRC-72, l o t No. 2-6681, was

screened wi th 18, 22, and 38-mesh screens, and t h e 22/38 f r a c t i o n was

rescreened with 26, 30, and 34-mesh screens. The s i z e d i s t r i b u t i o n f o r

t h i s batch (Fig, 4) showed a mean p a r t i c l e s i z e of 720 pm, and the y i e l d

of t h e p re fe r red material (-26 +30 mesh o r 730 ym + 50 ym) was 18-112

vo l %. A photograph of the as-received r e s i n and t h e w e t c l a s s i f i e d

product (-26 +30 mesh) is shown i n Fig. 5. Also shown i n t h i s f i g u r e is

t h i s s i z e d mate r i a l a s i t leaves the f l u i d i z e r dryer. Other s i z e sepa-

r a t i o n r e s u l t s are tabula ted i n Table 2.

4 . RESIN DRYING AND DRY SCREENING

The w e t , a ized, r e s i n must be d r i ed t o give free-flowing individual

beads f o r t h e part icle-shape separa t ion described i n Sect. 5. Damp

r e s i n is s t i c k y , while completely d r i ed r e s i p shows s t a t i c charge e f f e c t s

which r e s u l t i n unacceptable part icle-shape separa to r operation. Therefore,

t h e dryer must give acceptable control of the amount and uniformity of

Page 27: MASTER J. D. L. Million R. D.

ORNL DWG. 76-20991

VOLUME PERCENT SMALLER THAN Dp

I I I I I I I I I I I I I I

NUMBER ADJACENT TO DATA POINT IS MESH SIZE II -

- - - a - - - - L a

I - - 38 - -

- MEAN PARTICLE SIZE:720pm

II a

I I I L I I I I I I I I I I

Fig. 4. S i ze d i s t r ibut ion o f Amberlite IRC-72, l o t 2-6681.

A

Page 28: MASTER J. D. L. Million R. D.

II ; Commercial Resin As-Received Dried -26 +30 Mesh I

Fig. 3 . Feed and product photographs for s i ze sqaration of M e r l i t e IRC-72.

Page 29: MASTER J. D. L. Million R. D.

Table 2. S i z e d a t a f o r c a t i o n r e s i n s i n t h e sodium form

Me a n Y i e l d s ( v o l %) Manufacturer ' s Nominal d i a m e t e r 26/30 TBC 24/32 TBC 30134 TBC

l o t No. s i z e ( 735 - + 50 pma 735 - + 130 pmb 620 - + 60 pmC

I. Arnberlite IRC-72 ( r e s u l t s from wet s c r e e n i n g )

2-5612 20150 mesh 8 20 24

2-599O(I) 20150 mesh 640 15 30

2-5990 (11) 20150 mesh 6 80 14 34

2-6633 20150 mesh 7 70 11 2.8

. 2-3947 ' 20150 mesh 710 16 31

2-66 8 1 20150 mesh 720 1 8 4 0

11. D u o l i t e C-464 (most r e s u l t s from microscop ic examinat ion)

05-03-4H 20150 mesh 8 30 10 20

1-43 720 urn . 720 >90 >9 5

5-4H 800 pm 800 . . >95 ,.

-- 700 pm 700 >9 5

2-60 730 pn 7 30 >90 ' >95

3-61 730 pn 740 >90. . >95

.9

s m a l l

s m a l l .

~ --

a - 6 Uranium c a p a c i t i e s o f (52 t o 78) x 10 g / s p h e r e .

b -6 Uranium c a p a c i t i e s o f 136 t o 1.00) x 1 0 g l s p h e r e .

c - 6 Uranium c a p a c i t i e s o f (28 t o 52) x 10 g l s p h e r e .

Page 30: MASTER J. D. L. Million R. D.

'e . dry ing . S t i c k i n g t o g e t h e r o r c l u s t e r i n g of two o r more sphqg3:is a l s o

troublesome i f t h e r e s i n is n o t a g i t a t e d . The maximum temperature must

b e l i m i t e d t o prevent thermal degrada t ion . A s a r e s u l t of t he se requi re -

ments, d ry ing i n a rotary-drum vacuum d r y e r , wi th microwave h e a t i n g , and

i n a f i x e d bed were a l l unacceptable . The LOD ( l o s s on drying) of t h e

r e s i n must be lowered t o approximately 20% o r less, b u t t he r e s i n must

n o t be d r i e d t o t h e p o i n t of excess ive s t a t i c charge development o r r e s i n

damage. The w e t , d r a ined r e s i n has a moisture conten t of approxi.mately

3.8 l b of water pe r pound of dry resin o r an T,,T)1) nf 792. Tn t-epc1.1 an

LOD of 20%, 3.6 l b of wa te r p e r pound of dry r e s i n must be removed.

Fluidized-bed d ry ing w a s s e l e c t e d a s a method o f f e r i n g accep tab l e

c o n t r o l of d ry ing temperature and . product d ryness , a s w e l l a s main ta in ing

an a g i t a t e d bed t o keep t h e p a r t i c l e s from forming c l u s t e r s . The s u i t -

a b i l i t y of f lu id ized-bed d ry ing was confirmed us ing a r e n t a l l abo ra to ry

5 ' u n i t . The ca rboxy l i c a c i d r e s i n s i n t h e sodium form were d r i e d t o

100°C and rewet ,wi th no d e t e c t a b l e change i n exchange capac i ty ; hydrogen-

form r e s i n s show a l o s s of capac i ty .

4 . 1 Fluidized-Bed Dryer Equipment and Procedures

The f lu id ized-bed dry ing i s performed i n a commercial, '

* dry ing u n i t a s shown schema t i ca l l y i n F ig . 6 . The product con ta ine r ,

3 w i t h a capac i ty of 2.9 f t , is f i l l e d w i t h w e t resin and s e a l e d pneu-

m a t i c a l l y i n t o t h e d rye r . The e l e c t r i c a l l y d r iven blower p u l l s room

a i r through t h e bed a t 800 t o 1200 cfm, and t h e a i r i s hea ted a t t h e i n l e t

* Model FA-75 F i t z a i r e Fluid-Bed Dryer, t h e F i t z p a t r i c k Company, Elmhurst, Ill.

Page 31: MASTER J. D. L. Million R. D.

ORN L- DWG' 76- 570

A I R . OUTLET

Fig . 6 . Fluidized-bed d r y e r used f o r i o n exchange r e s i n .

Page 32: MASTER J. D. L. Million R. D.

by t h e f inned-tube s team h e a t e r . The i n l e t a i r temperature can range

from ambient t o 230°F. The temperature is c o n t r o l l e d w i th a p ropor t i ona l

c o n t r o l l e r and a n a i r - a c t u a t e d va lve on t h e steam i n l e t . Air flow and

f l u i d i z a t i o n a r e c o n t r o l l e d by a damper d i r e c t l y preceding t h e blower.

A t y p i c a l d ry ing run begins w i th t h e load ing of t h e wet r e s i n i n t o

t h e bed. A f t e r t h e product con ta ine r is s e a l e d i n t o the d rye r , t h e a i r

f low beg ins and t h e i n l e t a i r temperature i s set. While dry ing can be

done at orher t empera tures , b S J C i s p r e i e r r e d f o r t h e i n l e t a i r because

i t r e s u l t s i n a r ea sonab le dry ing t i m e wi th no damage t o t h e r e s i n . The

damper i s manipulated t o .p roduce a we l l - ag i t a t ed bed, a s observed through

v iewpor t s . Due t o t h e s t i c k y n a t u r e of t he w e t r e s i n , a smoothly f l u i d i z e d

bed cannot be achieved a t t h e beginning of t h e run. There is always a

good d e a l of s l ugg ing , channel ing, and expuls ion of m a t e r i a l f r o m > t h e

bed.

Condi t ions and procedures f o r use of t h e p i l o t - p l a n t s c a l e f l u i d i z e d -

bed d r y e r were t e s t e d a s a problem f o r t h e MIT School of Chemical Engi-

nee r ing P r a c t i c e a t Oak Ridge. (S

4.2 Fluidized-Bed Dryer Resul t s

Three dry ing pe r iods can be observed. A t f i r s t , t h e bed is merely

warmed t o equ i l i b r ium w i t h t h e f l u i d i z i n g a i r . I n t h e second pe r iod ,

t h e d ry ing reaches a cons t an t r a t e , and t h e o u t l e t a i r temperature remains

cons t an t a t about 40°C. F i n a l l y , a f a l l i n g r a t e per iod is en t e r ed . The

r e s i n s h r i n k s i n volume by a f a c t o r of 4 .3 and begins t o f l u i d i z e more

evenly . Th i s shr inkage i s apparen t i n photographs of t h e r e s i n (F ig . 5 ) .

The o u t l e t temperature beg ins t o climb, and, a t an o u t l e t temperature of

Page 33: MASTER J. D. L. Million R. D.

about 60°C, t h e d r y e r i s s h u t down and t h e p r o d u c t removed. A t t h i s

p o i n t , t h e r e s i n h a s an LOD of 1 0 t o 20%. The e l a p s e d t ime of d r y i n g . .

ranges from 1 t o 3 h r depending on t h e b a t c h . s i z e , a t m o s p h e r i c c o n d i t i o n s ,

and t h e i n i t i a l we tness o f t h e r e s i n .

The i n i t i a l d r y i n g t e s t s were made w i t h i n l e t a i r t empera tu res o f

90 t o 95OC and a f i n a l e x i t t empera tu re of abou t 80°C. These t e s t b a t c h e s

showed a few c racked s p h e r e s a f t e r uranium l o a d i n g , b u t t h e r e was no

d e t e c t a b l e c r a c k i n g a t lower d r y i n g t empera tu res . Resin b a t c h e s d r i e d

t o 63OC e x i t a i r t empera tu res showed 14-to 16-wt % LOD f o r Amber l i t e

IRC-72, and 21-and 14-wt % LOD f o r D u o l i t e C-464 .(Table 3 ) . The a l t e r n a t e

D u o l i t e C-464 r e s i n showed s u r f a c e c r a c k s when i t was d r i e d . Shape

s e p a r a t i o n does n o t . r e j e c t s p h e r e s w i t h s u r f a c e c r a c k s , and- t h e s e D u o l i t e

b a t c h e s showed s p h e r e f ragments of up t o 30% a f t e r r e w e t t i n g , convers ion

t o t h e hydrogen form, and uranium l o a d i n g . Apparen t ly , t h e D u o l i t e C-464

cannot s u r v i v e o u r p r o c e s s i n g f o r shape s e p a r a t i o n and w i l l have t o meet

t h e shape s p e c i f i c a t i o n as purchased. ,

Tho d r y e r runs were made w i t h uns ized Amberl i te IRC-72 r e s i n . The

e f f e c t of t h e wide range o f r e s i n s i z e was v e r y t roublesome. The f i l t e r

bag f o r t h e e x i t gas became c o a t e d and plugged, t h u s r e s t r i c t i n g t h e

g a s f low. When d r y i n g s i z e d r e s i n , t h e t h a t r eached t h e f i l t e r

dropped o f f w i t h o u t c a u s i n g any d i f f i c u l t y . The' uns ized r e s i n p e n e t r a t e d

and adhered t o t h e f i l t e r e i t h e r because of t h e f i n e s p r e s e n t o r because

of t h e l a c k o f washing which o c c u r r e d d u r i n g wet s c r e e n i n g . Large amounts

of r e s i n f i n e s a l s o dropped through t h e s u p p o r t s c r e e n and c o l l e c t e d i n

t h e bottom of t h e d r y e r e n t r y plenum. This d i f f i c u l t y cou ld b e c o n t r o l l e d

by changing t h e s u p p o r t s c r e e n t o a f i n e r mesh. The o v e r a l l y i e l d of

Page 34: MASTER J. D. L. Million R. D.

.Table 3. Fluidized-bed dry ing and par t ic le -shape s e p a r a t i o n r e s u l t s f o r r e s i n feed process ing f a c i l i t y

Drying r e s u l ~ s Dry sc reen ing Shape Paximum r e s u l t s (wt %) Shape r e j e c t

e x i t a i r W t Volume +26 - 0 s e p a r a t i o n a f t e r U02 2+ Resin name t e u p e r a t u r e l o s s l o s s L O D ~ TB C TB C r e j e c t load ing

and ba t ch No. ("0 ( %)I (2) (wt %) mesh mesh (kit %) (wt %)

Amberlite 63 1 6 8 14 5.6 1 . 5 3.40 0.47, 0.49 IRC-72 NO. 2-6681 6 3 7.1 0 . 8 1.38 0.41

Duoli te 6 3 C-464 NO. 3-61

a Loss on drying eo 120°C i n sir. - - -

Page 35: MASTER J. D. L. Million R. D.

s ize-and-shape-separated r e s i n was reduced as some r e s i n f i n e s adhered

t i g h t l y t o l a r g e r e s i n s p h e r e s and caused them t o b e r e j e c t e d d u r i n g

p a r t i c l e - s h a p e s e p a r a t i o n . None o f t h e s e t h r e e problems was s i g n i f i c a n t

f o r t h e r e f e r e n c e d r y i n g c o n d i t i o n s o f -26 +30 mesh r e s i n .

4 .3 Dry Screen ing

The c l u s t e r s and f i n e s which a r e p r e s e n t a f t e r t h e d r y i n g o p e r a t i o n

* a r e removed by d r y s c r e e n i n g u s i n g a 0.46-m-diam v i b r a t o r y s c r e e n u n i t .

The r e s i n f e e d r a t e t o t h e s c r e e n is c o n t r o l l e d by a b a l l v a l v e and i s

a d j u s t e d t o s u p p l y approx imate ly 112 kg of r e s i n p e r minute . The

s c r e e n e d m a t e r i a l is c o n t i n u o u s l y removed from t h e u n i t . The u n i t is

equipped w i t h 26- (785-vm openings) and 50- (370-vm openings) mesh

s c r e e n s t o remove t h e c l u s t e r s and f i n e s , r e s p e c , t i v e l y . The dry

s c r e e n i n g of r e s i n is s a t i s f a c t o r y f o r t h e s e s c a l p i n g c o n d i t i o n s i n

which most of t h e p a r t i c l e s a r e much s m a l l e r t h a n t h e l a r g e s c r e e n and

much l a r g e r t h a n t h e s m a l l s c r e e n .

The amounts o f o v e r s i z e and u n d e r s i z e m a t e r i a l have been t y p i c a l l y

2 t o 1 5 and 0 t o 3 wt %, r e s p e c t i v e l y . The u n d e r s i z e i n c l u d e s v e r y

s m a l l s p h e r e s t h a t were a t t a c h e d t o l a r g e r s p h e r e s d u r i n g t h e wet

s c r e e n i n g , and t h e amount o f u n d e r s i z e depends on t h e wet s c r e e n i n g

c o n d i t i o n s . The o v e r s i z e i s c l u s t e r s and can b e most ly r e c l a i m e d a s

u s a b l e s p h e r e s i f t h e c l u s t e r s a r e broken up by tumbling o r some o t h e r

mi ld mechanical t r e a t m e n t . The q u a n t i t y o f such c l u s t e r s i s decreased

t o t h e lower end o f t h e range l i s t e d f o r good wet s c r e e n i n g and d r y e r

o p e r a t i n g c o n d i t i o n s (Tab le 3 ) .

- -

Jb KASON Corp., Model K18-3-SS.

Page 36: MASTER J. D. L. Million R. D.

Screening of dry r e s i n was t e s t e d a s a primary means of s i z e c o n t r o l

i n p l a c e o f wet s c r een ing . Since t h e r e s i n is d r i e d f o r shape s e p a r a t i o n ,

i t appears t h a t d ry s c r een ing might r e s u l t i n fewer process ope ra t i ons .

Dry s c r e e n i n g i s l e s s s a t i s f a c t o r y than wet s c r een ing f o r two major and

s e v e r a l minor reasons.

1. Operat ion of t h e f lu id ized-bed d rye r was u n s a t i s f a c t o r y

(see Sec t . 4.1) when l a r g e quaaLiLies of r e s i n f i n e s

were p r c s e n t . 2. The d iameter of "dry" resin varies g r e a t l y w i th the

r e s i d u a l wa te r con ten t s o t h a t uniform and c o n t r o l l e d

dry ing i s necessary i f ~ h t ! dry s i z i n g is t o r e s u l t

i n good c o n t r o l of t h e exchange capac i ty p e r p a r t i c l e .

3. Drying of a l l t h e r e s i n r e q u i r e s a much l a r g e r d r y e r ,

and t h i s i s more expensive t o i n s t a l l and o p e r a t e than

is the wet s c r e e n i n g equipment.

4. Dry r e s i n b l i n d s t h e u sua l v i b r a t o r y s c r een s e p a r a t o r s ,

and s p e c i a l types of s c r een ing equipment o r accessory

equipment a r e r equ i r ed ( s e e Sec t . ' 9 .2 ) .

5. Dry sc r een ing abrades t h e s u r f a c e of t h e r e s i n ( t h e

s i g n i f i c a n c e of t h i s change i n appearance is no t known) . 6 . The a l t e r n a t e Duo l i t e C-464 r e s i n canno't s u r v i v e dry ing

' ( s e e YecL. 4.2) .

The cond i t i ons and r e s u l t s f o r t h e most promising dry s c r een ing tests

a r e i n Appendix 9.2.

Page 37: MASTER J. D. L. Million R. D.

5. SEPARATION OF NONSPHERICAL PARTICLES FROM SPHERES

The s e p a r a t i o n o f s p h e r i c a l from n o n s p h e r i c a l p a r t i c l e s i s accomplished

on t h e smooth s u r f a c e o f a n a lmos t h o r i z o n t a l v i b r a t o r y f e e d e r . The

s p h e r i c a l p a r t i c l e s r o l l r a p i d l y downhi l l w i t h l i t t l e e f f e c t from t h e

v i b r a t i o n . The n o n s p h e r i c a l p a r t i c l e s cannot r o l l and are moved s lowly

by t h e v i b r a t i o n t o a d i f f e r e n t e x i t s l o t from , t h e s p h e r e s . The v i b r a t i o n

a l s o p r o v i d e s a c o n t r o l l e d flow of p a r t i c l e s through a f e e d s l o t t o t h e

s e p a r a t o r . This s h a p e - s e p a r a t o r concept h a s been a p p l i e d t o HTGR f u e l

7 p a r t i c l e s s i n c e 1966, b u t u n i t s o f h i g h e r c a p a c i t y and improved repro-

d u c i b i l i t y have been developed f o r a r e s i n - f e e d p r e p a r a t i o n f a c i l i t y .

The f low r a t e t o a s i n g l e feed p o i n t i s l i m i t e d s i n c e t h e s p h e r i c a l

and n o n s p h e r i c a l p a r t i c l e s must have room t o move p a s t each o t h e r t o

t h e i r s e p a r a t e e x i t p o i n t s ; t h u s , on ly a s m a l l f r a c t i o n o f t h e p l a t e

s u r f a c e i s covered by p a r t i c l e s . The ampl i tude o f t h e v i b r a t i o n i s a n

impor tan t o p e r a t i n g v a r i a b l e ; t h e r e f o r e , m u l t i p l e feed p o i n t s t o a s i n g l e

p l a t e a r e p r a c t i c a l on ly i f t h e p l a t e h a s a uniform ampl i tude o v e r t h e

e n t i r e s u r f a c e a r e a b e i n g used. V i b r a t o r y f e e d e r s f o r normal uses do

n o t have such u n i f o r m i t y . The ampl i tude o f v i b r a t i o n and t h e two a n g l e s

( t o t h e h o r i z o n t a l ) a r e t h e t h r e e pr imary v a r i a b l e s f o r c o n t r o l l i n g

t h e shape s e p a r a t i o n .

5 . 1 Equipment D e s c r i p t i o n

S t e e l p l a t e s , 1 8 x 76 x 1 . 2 7 cm, were machined t o a l l o w f i v e f e e d

p o i n t s ( F i g . 7 ) . These p l a t e s were s e n t t o a manufac tu re r of v i b r a t o r y

* f e e d e r s who was c o n t r a c t e d t o mount and a d j u s t v i b r a t o r y u n i t s which

* E r i e z Magnet ics , E r i e , Penn. 16512.

Page 38: MASTER J. D. L. Million R. D.

SHAPE REJECT \TROUGH

0 .4

MILLED SLOT FEED NOtZLE

GROUND SLRWCE 16 - mrcroinch % lo*

I 4- SHAPE ACCEPT

? / / f / / / / / / f / / f /

AXIAL

Fig . 7 . P r i n c i p a l s h a p e s e p a r a t o r d e t a i l s .

Page 39: MASTER J. D. L. Million R. D.

could provide a useful range of uniform amplitudes of v ibra t ion. Although

a s i n g l e v i b r a t o r f o r each un i t was proposed i n i t i a l l y , the manufacturer

recommended and delivered each u n i t with two v ib ra to r s on a s ingle-control

* rheos ta t .

The v ib ra to r s with the p l a t e were mounted on a s tand designed t o

s a t i s f y th ree requirements (Fig. 8). The s lope may be adjus ted by th ree

screws ac t ing a s a t r ipod. This s lope is most conveniently measured a s

the angles of the two p l a t e axes t o the hor izonta l . The two e x i t streams

w e r e co l l ec ted i n separa te containers. The f i v e feed po in t s were fed by

gravi ty from a s i n g l e vesse l with feed nozzles (described i n Sect . 5 . 2 ) .

Three i d e n t i c a l u n i t s w e r e i n s t a l l e d a s p a r t of the resin-feed f a c i l i t y .

The dry screening and shape separa to r s were i n s t a l l e d i n a room with

o l l e d humidity t o prevent excessive changes i n moisture content of

e s i n during these operat ions (Fig. 9 ) .

5 . 2 Particle-Shape Separat ion Procedures

The opera t ing procedures f o r the part icle-shape separa to r s a r e easy

t o teach and optimize by v i s u a l observation, bu t cannot be reduced t o

q u a n t i t a t i v e formulas. The control led va r iab les cannot be measured

with accuracy. The e f f e c t s of t h e p a r t i c l e p roper t i e s ( s i z e , densi ty ,

su r face texture) a r e a l s o va r iab les . The performance of the f ive-

u n i t shape separa to r s was reproducible and did not normally vary with

t i m e nor wi th overnight shutdowns of the un i t s . The i n i t i a l adjustments

do not r e s u l t i n any l o s s of mate r i a l s because any poorly separa ted

mate r i a l s a r e simply returned t o t h e feed vesse l .

* Eriez Model 4511-2 with 6s-115 Control Unit. (Each vibratory: 115 V, 60 Hz, 30 W, 1.75 A).

Page 40: MASTER J. D. L. Million R. D.

Fig. 8 . Photograph of five-unit shape separator.

Page 41: MASTER J. D. L. Million R. D.

F i g . 4 . Dry screening equipment.and shape separators i n a controlled humidity room.

Page 42: MASTER J. D. L. Million R. D.

The capacity and the s e n s i t i v i t y of the separation can be changed

by varying the power input t o the v ibra to rs and the inc l ina t ion of the

two p l a t e axes t o t he horizontal . The v ibra t ion power must be s u f f i c i e n t

t o move t h e nonspherical p a r t i c l e s t o the discharge s l o t , bu t excessive

power bounces t h e s l i g h t l y nonspherical pa r t i c l e s so t ha t they may r o l l

and be discharged with the spher ica l pa r t i c l e s . The discharge of non-

spher ica l p a r t i c l e s is a s s i s t e d by s e t t i n g the p l a t e a t a s l i g h t a x i a l

angle downhill toward the r e j e c t discharge s l o t . The cross angle is r-. I - . ,

- i . .I -. adjusted so t h a t the spher ica l p a r t i c l e s r o l l across the p l a t e a t an B%- - 3 k.. - L , '

approximate 45' angle. Typical values f o r good particle-shape separation

of the ion exchange r e s i n were: 1' a x i a l angle, 1.5' cross angle, and

60% on the control rheos ta t ( f u l l power is 30 Wlvibrator). The amplitude

of the v ibra t ion appeared t o be about 0.2 nnn. Increasing the angles o r

t he vibrat ion amplitude increases t he capacity with some l o s s of separat ion

eff ic iency. The r e s i n p a r t i c l e s separa te i n t o two d i s t i n c t streams, with

some near ly spher ica l p a r t i c l e s following intermediate paths between the

two streams. By-, observation, the angles and vibrat ion can be adjusted t o &+;- L&e -y-;-m-:A, ;

, , 7.t--n,:; . maximize t h i s separation.

The e f f e c t s of extreme values of the three control var iables are

pr imari ly as follows:

1. High-power input (high amplitude of v ibrat ion) bounces the

p a r t i c l e s so that the separation hempen the .3tr~amn nf

spheres and nonspheres is less d i s t i n c t .

2. Low-power inpu t (low amplitude of v ibrat ion) r e s u l t s i n

inadequate o r no movement of nonspherical pa r t i c l e s so

t ha t t h e p l a t e surface becomes overloaded.

Page 43: MASTER J. D. L. Million R. D.

3. High a x i a l angle r e s u l t s i n poorer s e p a r a t i o n of the

s t reams of spheres and nonspheres.

4 . Low a x i a l angle r e s u l t s i n inadequate o r no movement of

nonspher ica l p a r t i c l e s s o t h a t t h e p l a t e s u r f a c e becomes

overloaded and a l s o reduces t h e feed r a t e .

5 . High c r o s s angle a l lows more c ros s movement of nonspher ica l

p a r t i c l e s and thus r e s u l t s i n l e s s e f f e c t i v e s e p a r a t i o n

o r acceptance of s l i g h t l y nonspher ica l p a r t i c l e s .

6 . Low c r o s s angle r e s u l t s i n a change i n ang le of t he . .

s t ream of spheres s o t h a t t h e s t ream i s n e a r e r t h e shape

r e j e c t s l o t and some s p h e r i c a l p a r t i c l e s a r e r e j e c t e d .

5.3 Resu l t s

These u n i t s provided a s a t i s f a c t o r y and reproducib le shape s e p a r a t i o n .

The f i v e s e p a r a t i o n ' a r e a s on a s i n g l e p l a t e a r e usab le f o r a range of

ope ra t i ng cond i t i ons which a r e e a s i l y i d e n t i f i e d by obse rva t ion of t he

p a r t i c l e behavior . Although t h e r e a r e d i f f e r e n c e s between the t h r e e

u n i t s and between t h e end and c e n t e r a r e a s of a s i n g l e u n i t , t h e s e d i f -

f e r ences a r e w i t h i n t h e range of accep tab l e condi t ions and do n o t compromise

t h e ope ra t i on .

I r r e g u l a r shapes (ha lves of sphe re s , fragments, c l u s t e r s , extruded

shapes) a r e s epa ra t ed from s p h e r i c a l p a r t i c l e s very e f f i c i e n t l y . For

rounded p a r t i c l e s , t h e degree of nonsphe r i c i t y can be measured a s the

r a t i o of maximum diameter t o minimum diameter . Even when t h i s r a t i o i s a s

smal l as 1.111, p a r t i c l e s t h a t a r e chipped, egg-shaped, o r have smal l

t e a t s can be . r e j e c t e d wi th h igh e f f i c i e n c y . Sphe r i ca l p a r t i c l e s wi th

Page 44: MASTER J. D. L. Million R. D.

s u r f a c e c racks a s t h e on ly d e f e c t a r e n o t s epa ra t ed e f f e c t i v e l y . I f

t h e accepted m a t e r i a l from good o p e r a t i o n i s sepa ra t ed a second t ime,

t h e second-pass r e j e c t f r a c t i o n w i l l g e n e r a l l y be <1/10 of t h e f i r s t

p a s s , and n e a r l y a l l t h e p a r t i c l e s w i l l con t a in very smal l d e f e c t s

(Table 4 ) .

The movement of nonsphe r i ca l p a r t i c l e s i s much s lower than t h a t of

s p h e r i c a l p a r t i c l e s . As a r e s u l t , t h e capac i ty of t he shape s e p a r a t o r s

dec reases a s t h e f r a c t i o n of nonspher ica l p a r t i c l e s i n c r e a s e s . Using

t h e t h r e e u n i t s i n t h e r e s i n feed f a c i l i t y , shape s e p a r a t i o n performance

was e x c e l l e n t f o r a f eed r a t e of 2.5 kg p e r hour of r e s i n conta in ing

less than 1% nonspher ica l p a r t i c l e s b u t was no more than adequate f o r

1 . 4 kg p e r hour of r e s i n con ta in ing about 30% nonspher ica l p a r t i c l e s .

These f eed r a t e s were about 8000 and 5000 p a r t i c l e s / s e c , r e s p e c t i v e l y

( t h e t o t a l f o r 1 5 feed p o i n t s ) .

Some a l t e r n a t i v e s were t e s t e d f o r f a b r i c a t i o n o r des ign v a r i a b l e s .

The f i n i s h of t h e s e p a r a t i o n s u r f a c e must be good. For t h e i o n exchange

r e s i n , a 32-win. ground f i n i s h was n o t adequate , whereas a f i n i s h of

about 16 p i n . was accep tab l e . The p l a t e w i th t he 32-pin. f i n i s h was

made ac 'ceptable by c o a t i n g i t wi th a s t anda rd automobile p a i n t . The

most s a t i s f a c t o r y f eed arrangement was a sma l l block clamped' t o t h e

p l a t e w i t h a rubber l i n e to the feed v e s s e l and a n apprnxim;rt~.ly S ~ I I R I - P

p o r t operi t o ' the s e p a r a t i o n a r e a (F ig . 1U) . Development u n i t s were fab-

r i c a t e d w i t h an a d j u s t a b l e s p r i n g t o vary t h e opening s i z e , b u t t h e f i n a l

t h r e e u n i t s were f i t t e d w i th f i x e d 1.6-mm-high by 3-mm-wide openings.

The openings must be a t l e a s t t h r e e t i m e s . t h e average p a r t i c l e d iameter

Page 45: MASTER J. D. L. Million R. D.

Table 4. b s u l t s f o r re run of shape-separat ion product f r a c t i o n s

Resin: Amberli te IRC-72, Batch 2-6681

Shape . s e p a r a t i o n Product Yield feed s t ream s t ream (wt % of feed) Appearance ( v i s u a l )

26/50 Dry sc reen ing

Accept 98.6 . A l l p e r f e c t spheres . No cracks .

Re jec t 1 .38 Mostly c l u s t e r s . No cracks .

F i r s t shape Accept >99.8 A l l p e r f e c t spheres . s e p a r a t i o n accep t f r a c t i o n Reject Nearly a l l would 'meet

shape-accept s p e c i f i c a t i o n s ; spheres wi th smal l t e a t s .

F i r s t shape Accept 4 7 Mostly good spheres ; some s e p a r a t i o n r e j e c t spheres w i th t e a t s . f r a c t i o n

Reject 5 3 Nearly a l l c l u s t e r s o r t e a t s , on spheres .

+26 Dry screening Accept 7.1 Nearly a l l c l u s t e r s .

Page 46: MASTER J. D. L. Million R. D.

ORNL- DWG 76- 14632A

TUBING

.7 mm 0 D x 1.6 mm DEEP.

Fig. 10. Feed nozzle f o r shape fieparator.

Page 47: MASTER J. D. L. Million R. D.

. . t o avoid flow stoppages from b r idg ing , and any g ros s ly ove r s i zed p a r t i c l e s

must be removed by p r e s i z i n g . F l e x i b l e rubber l i n e s were used, and the

. . . . weights. of , t he feed b locks were k e p t t o a minimum i n o r d e r t o avoid

a f f e c t i n g t h e v i b r a t i o n c h a r a c t e r i s t i c s of t he p l a t e . The s l o t ang le

shown i n Fig. 7 r e s u l t e d i n b e t t e r d i scharge of nonspher ica l p a r t i c l e s

than d i d a s l o t a t a r i g h t angle t o t h e p l a t e a x i s .

. . Some shape s e p a r a t i o n r e s u l t s f o r d i f f e r e n t r e s i n ba tches a r e tabu-

l a t e d (Tables 4 and 5). The shape d e f e c t s t y p i c a l of t h e two r e s i n s

a r e shown by photographs of Amberli te IRC-72 (F ig . 11) and Duol i te C-464

(Fig. 1 2 ) . This uranium-loaded Duol i te C-464 does n o t show t h e c r ack ing

which occurs when Duol i te C-464 i s d r i e d i n t h e sodium form.

6. RESIN CONVERSION

The condi t ion$ f o r t h i s r e s i n conversion have n o t been opt imized. . . .

The res in- feed p repa ra t i on f a c i l i t y was designed f o r a ba t ch conversion

because t h e remainder of t h e feed p repa ra t i on i s ba tch . The conversion

is done i n ' t h r e e s t e p s :

1 . The r e s i n volume i s measured. About 1 . 8 moles of HN03 . .. ,

p e r l i t e r of r e s i n i s c i r c u l a t e d f o r about 30 min and

then decanted t o waste . For r o u t i n e ope ra t i on , t h i s

a c i d would be t h e s t o r e d a c i d from t h e second s t e p of a

. . . . , ,p,revious conversion.

. . 2. . A second a c i d a d d i t i o n i s made w i t h c i r c u l a t i o n f o r . , . .

. . , more than 3 h r wi th pH less than 0.5. For r o u t i n e

ope ra t i on , t h i s ba tch of a c i d i s s t o r e d f o r use i n t h e

f i r s t s t e p of t he next conversion; a l a r g e excess of

a c i d can thus be used wi thout be ing wasted.

Page 48: MASTER J. D. L. Million R. D.

Table 5. Summary of shap? s e p a r a t i o n r e s u l t s vs r e s i n Pots ~ n d t rea tments

S ize range Fonn when M f g 1 s 1 3 t o f w e t , ~ a + shape Re jec t s Fsed . r e s i n p i e t r ea tmen t s

Resin No. f orrn s epa ra t ed (wt %) o r remarks

2€/30 "C +

Amberlite 2-0681 Na 0.56, 0.65 No pre t rea tment

Dr52d 1 6 0 ~ ~ ~ shape sepa ra t ed '2+

U02 3.33 Dried 200°F, shape sepa ra t ed

Duoli te 2-60 C-464

1--4~

740 pn mean

72D pn mean " 2+ uo,

15.8 No pre t rea tment '

1 . 5 Dri.=d 230°F, shape sepa ra t ed

28.6 - No pre t rea tment

9 .9 , 6.5 No pre t rea tment

24.3 No pre t rea tment

10 t o 1 5 M&C Div is ion r e s u l t s

0.27; 0.46 . Dri4ed and shape sepa ra t ed

8 No 'p re t rea tment

c0.1 No, pre t rea tment

0.25 No pre t rea tment

14 .1 No pre t rea tment

9 .3 . M&C Divis ion r e s u l t s .

Page 49: MASTER J. D. L. Million R. D.

Fig. 11

arlup nbwp

classi f icat ion or Amberlite IRC-72.

Page 50: MASTER J. D. L. Million R. D.

Fig. 12. Shape classification of uranium-loaded DuoIite C-464.

Page 51: MASTER J. D. L. Million R. D.

3 . The converted r e s i n i s washed wi th demineral ized wa te r

t o a pH above 3.

6.1 Batch Conversion Equipment and Procedures

The r e s i n condi t ion ing p a r t of t h e r e s i n process ing f a c i l i t y (F ig . 13)

+ was manifolded t o a l low f l e x i b i l i t y of ope ra t i on . The use of t h r e e (Na

+ + + t o H t o Na t o H ) o r more conversions was considered a p o s s i b i l i t y , b u t

i s now be l i eved unnecessary. The r e s i n cond i t i on ing tank (F ig . 13 , T-1)

has a cone-bottom s c r e e n wi th a c e n t e r d i scharge opening t o a b a l l va lve .

.The d r i e d , shape-accept r e s i n i s added t o water i n tank T-1. The ope ra t i ons

l i s t e d i n Sec t . 6 ' a r e c a r r i e d ou t a s needed by us ing f l u i d i z i n g cond i t i ons

i n T-1 t o provide mixing and good s o l u t i o n - r e s i n con tac t . The f i r s t a c i d

. a d d i t i o n is normally t h e s o l u t i o n i n tank T-5 remaining from a previous

conversion, and t h e deple ted acid-NaN03 s o l u t i o n is s e n t t o tank T-3 f o r

n e u t r a l i z a t i o n and d ischarge . The new a c i d used t o complete t h e conversion

is s t o r e d i n tank T-5 f o r use i n t h e next conversion run. 'Washing i s by

f l u i d i z a t i o n wi th demineral ized water . The 'condi t ioned r e s i n i s d ischarged

through t h e bottom va lve f o r s t o r a g e o r t r a n s f e r .

Three spectrochemical ana lyses of ba tch converted r e s i n s show 2 , 5,

and 40-ppm sodium (Table 6 ) , a l though chemical ana lyses have more commonly

+ shown 20 t o 80 ppm sodium. Any exchangeable Na remaining i n t h e r e s i n

should exchange w i t h ~ 0 ~ ~ ' du r ing r e s i n load ing and l a r g e amounts would

accumulate i n t h e uranyl n i t r a t e s o l u t i o n b e f o r e t he equ i l i b r ium amount

i n t h e r e s i n was s i g n i f i c a n t . Such accumulations could r e s u l t i n i nc reased

r ecyc l e of uranium a s waste s o l u t i o n s , b u t i t provides p r o t e c t i o n a g a i n s t . ,

exces s ive sodium contamination of t he uranium-loaded r e s i n .

Page 52: MASTER J. D. L. Million R. D.

ORNL D W G 7 6 - 9 2 7

-

Fig. 13. Resin cond i t i on ing system f l a - s h e e t .

Page 53: MASTER J. D. L. Million R. D.

Table 6. Spec t rochemica l a n a l y s e s of r e s i n ,by t h e ORNL Spec t rochemica l Labora to ry a t t h e Y-12 P l a n t

Resin name

- -- - - - - -

Amberl i te D u o l i t e D u o l i t e Arnberli te

Resin type No. IRC- 72 C-464 C-464 IRC-72

Batch No. 2-5612, 2-5990 5-4H 1-4 J 2-5612

Resin form

Concen t ra t ion u n i t s

Hydrogen Hydrogen

Rare e a r t h s A l l (1

Page 54: MASTER J. D. L. Million R. D.

Duol i t e C-464, which was d r i e d i n t h e sodium form and shape sepa-

r a t e d , showed l a r g e amounts of f i n e fragments of sphe re s dur ing conversion.

6.2 Continuous (Higgins) Column Resu l t s

A cont inuous , 2-in.-ID con tac to r o f t he Higgins type was t e s t e d f o r

cont inuous r e s i n conversions i n p i ace of t h e r e f e r ence ba tch conversions.

Resu l t s ob t a ined f o r t h e conversion of Amberli te IRC-72 from t h e sodium

t o rhe hydrogen fom a r e e x c e l l e n t . An i n - l i n e pH measurement f o r t h e

e f f l u e n t NaNO? s o l u t i o n a l l ows easy adjustment and c o n t r o l of t h e r e s i n /

HNO r a t i o . For about 10% excess HN03, t he washed product r e s i n showed 3

0 . 5 . t o 5.0-ppm sodium. The b e s t i n i t i a l charge procedure i s t o f i l l t h e

column w i t h sodium-form r e s i n , then s t a r t t h e normal a c i d f eed r a t e , and

f i n a l l y s t a r t t he r e s i n f eed when the s o l u t i o n e f f l u e n t drops t o t h e

s e l e c t e d c o n t r o l pH. The r e s i n remaining i n t h e column when a l l of a

ba t ch of r e s i n has been f e d can be ea s i l y . -p roces sed t o completion. Acid

flow i s stopped when t h e e f f l u e n t pH i n d i c a t e s low u t i l i z a t i o n of a c i d .

Wash w a t e r i s cont inued u n t i l t h e , e f f l u e n t pH i n d i c a t e s good washing, and

t h e r e s i n i s then d ischarged completely us ing the va lve s e t t i n g s f o r t h e

r e s in -pu l se p a r t of t h e o p e r a t i n g cyc le . The l a r g e volume change (hydrogen-

form r e s i n has h a l f t h e volume of sodium-form r e s i n ) causes no d i f f i c u l t y . 8

More d e t a i l e d r e s u l t s are r epo r t ed elsewhere.

For t h e s e t e s t s , t h e flow r a t e s were 0 . 1 t o 0 .2 l i t e r / m i n of 1 .24 o r

1.30 - N HN03y 0.2 l i t e r l m i n of wash wa te r , and 0.025 t o 0.12 l i t e r p e r

minute of hydrogen-form r e s i n product . The e f f e c t s of p rocess c n n t r n l

p rocedures , s t a r t u p and shutdown procedures , and r e s i n volume changes

were examined.

Page 55: MASTER J. D. L. Million R. D.

I n theory , e i t h e r t he r e s i n r a t e o r t he a c i d r a t e could be v a r i e d

t o c o n t r o l t he conversion opera t ion . The concen t r a t i ons of t h e feed a c i d

and feed r e s i n a r e p r e s e t cons t an t s . The pH of t he e f f l u e n t s o l u t i o n is

easy t o measure b u t t he pe rcen t conversion of t h e r e s i n i s n o t . The load

time d i r e c t l y c o n t r o l s thes r e s i n r a t e , and c o n t r o l l i n g t h e e f f l u e n t pH by

varying t h e load t i m e i s very l o g i c a l and e f f e c t i v e .

The t r a d i t i o n a l method of process c o n t r o l i s t o measure and c o n t r o l

t h e s o l u t i o n flow r a t e s and c o n t r o l t he r e s i n r a t e by va ry ing t h e l oad

t i m e and the pu l se time by s e t t i n g timers. The load time c o n t r o l s t he

number of pu l se s pe r hour, and t h e pu l se t i m e c o n t r o l s t h e s i z e of each

pu l se ( s e e Fig. 1 4 f o r t h e e f f e c t on e f f l u e n t pH t h a t r e s u l t s from vary ing

these two p l u s t h e a c i d f eed r a t e ) . The product of t he se two y i e l d s t h e

r e s i n r a t e . ' The t imers r equ i r ed f r equen t ad jus tments t o main ta in t h e

e f f l u e n t pH w i t h i n des i r ed l i m i t s . With exper ience t h e c o r r e c t t i m e r

s e t t i n g s could be determined. Since t h e e f f l u e n t pH was t h e v a r i a b l e of

concern, swi tch ing t o manual c o n t r o l of load time based on obse rva t ion

of e f f l u e n t pH was a l o g i c a l a l t e r n a t i v e . This a l t e r n a t i v e method r equ i r ed

t he ope ra to r t o observe t h e e f f l u e n t pH and t o i n i t i a t e a pu l se when t h e

pH reached a c e r t a i n va lue ( t y p i c a l l y 1 . 0 ) . This manual feedback c o n t r o l

proved e f f e c t i v e and provided c o n s i s t e n t and reproducib le ope ra t i on . The

t r a d i t i o n a l c o n t r o l method r e q u i r e s .damping a c t i o n from t h e o p e r a t o r . The

amount of damping would be h igh ly dependent on t h e s k i l l and exper ience

of t h e ope ra to r .

The second method, a l though t e s t e d f o r manual c o n t r o l on ly , r equ i r ed

on ly an automatic response. An automatic feedback c o n t r o l system would

d u p l i c a t e t he manual feedback c o n t r o l and would main ta in good ope ra t i ng

Page 56: MASTER J. D. L. Million R. D.

ORNL DWG. 77-164

I I I

I feed tlow 2 0 4 cc/min I I I I

feec flow 102 cc/min I feed flow 2 0 4 cc/min Resin :Noe1RC -72 ~ m b e r l i t e ( ~ ~ / 3 4 m e r h ) I _I_

I -+c ~ c c d : 1.3 4 w o 3 I I .

12.9 cyclesf i r 13.1 cycles/hr I 25:s .cycles/hr Wash : 2 0 0 cc/min ~~6 I

I . I * , IZO cc resin (H*) I 120 cc reli:i (He) pF check': Not used

I I cycle I . 1 cycle

ob o i'o ;o 4'0 .b Qo ;o sb 40 160 ilo l i b i;o A o 1;o ;o IX l;o l;o 2 A 0 210 2:0 2;0 2:o

Time (min)

F i g . 14. Exit.so1utic.n pH for sodium to hydrogen-form conversion of kmberlite IXC-72 using EN0

3'

Page 57: MASTER J. D. L. Million R. D.

cond i t i ons unat tended. For example, i f t h e a c i d throughput suddenly

decreased o r i nc reased , t h e o r i g i n a l system would n o t respond au toma t i ca l l y ; I

however, t h e proposed system would au toma t i ca l l y decrease o r i n c r e a s e t h e

r e s i n throughput t o match t h e new a c i d throughput. The e f f i c i e n c y of a c i d

u t i l i z a t i o n was 79 to 99% f o r t h e s e tests b u t was n o t of primary concern.

The proposed c o n t r o l procedure from t h e e f f l u e n t pH can e a s i l y be used t o

ach ieve a h igh e f f i c i e n c y .

The Amberl.ite IRC-72 r e s i n undergoes a volume r educ t ion of about 50%

upon conversion from sodium form t o a c i d form. This phenomenon d i d no t

h inde r cont inuous a c i d conversion.

S t a r t u p presen ted no problem and i s mentioned only because one of

t h e two methods used was more d e s i r a b l e f o r a c i d conversion than t h e

o t h e r . One method began wi th t h e con tac to r f u l l ( t o t h e feed po in t ) of

sodium-form r e s i n . Acid was f ed through the r e s i n bed u n t i l t h e e f f l u e n t

pH reached a c e r t a i n va lue ; then normal ope ra t i on was s t a r t e d . The o t h e r

method began wi th a column f u l l of a c i d and r e s i n was g radua l ly in t roduced

i n t o t h e column. Once enough r e s i n was p re sen t , normal ope ra t i on was

s t a r t e d . It was noted t h a t a l a r g e r q u a n t i t y of a c i d was l o s t (some a c i d

was pushed o u t t h e r e s i n e x i t ) w i th t h i s second method, thus making the

f i r s t method t h e p re fe r r ed s t a r t u p procedure.

Completion of t h e cbnversion' a t t h e end of a' ba t ch of r e s i n was a l s o

s imple t o accomplish. The a c i d flow was cont inued u n t i l t h e e x i t s o l u t i o n

was a c i d i c (pH <0 .7) , a t which p o i n t t h e a c i d was s h u t o f f and wash water

cont inued u n t i l a pH >3.5 was reached. The r e s i n was then f lushed from

t h e column by a cont inuous pu l se flow of s e v e r a l minutes du ra t i on .

Page 58: MASTER J. D. L. Million R. D.

6 . 3 Qual i ty Assurance

Measurements must b e made t o v e r i f y t h a t t h e product of t h e res in- feed

p roces s ing f a c i l i t y meets t h e s p e c i f i c a t i o n s f o r r ecyc l e f u e l p r epa ra t i on .

The purchase r e q u i s i t i o n f o r r e s i n w i l l r e q u i r e t h a t t h e manufacturer

c e r t i f y t h a t the composition and manufacturing procedures d u p l i c a t e those

of a p r ev ious l o t of accep tab l e r e s i n . The only measurements planned f o r

t h e r e s i n a s purchased a r e t h e c a t i o n exchange c a p a c i t y and a microscopic

comparison of s i z e and shape.

The converted hydrogen-form r e s i n product w i l l b e sampled and stored

whi l e q u a l i t y a s su rance measurements a r e completed. These q u a l i t y assurance

procedures have n o t y e t been s p e c i f i e d . The importance of some p r o p e r t i e s

are p r e s e n t l y be ing determined by i r r a d i a t i o n t e s t s . Examples of spec t ro-

chemical ana lyses a r e shown i n Table 6 .

It i s probable t h a t one q u a l i t y assurance t e s t f o r processed r e s i n

w i l l b e a load ing of a small ba t ch w i t h n a t u r a l o r dep le ted uranium followed

by ca rbon iza t ion , convers ion , and measurements of t h e converted r e s i n .

The commercial r e s i n is produced i n l o t s which w i l l provide s p e c i f i c a t i o n

r e s i n f o r 150 kg o r more of uranium p e r l o t , and one test wi th dep le t ed

o r n a t u r a l uranium s h o u l d ' q u a l i f y a complete l o t .

Process development was completed and a f a c i l i t y was designed, pro-

cured , and i n s t a l l e d f o r res in- feed process ing t o meet HTGR recyc l e f u e l

s p e c i f i c a t i o n s . The c a p a c i t y of t h e i n d i v i d u a l p rocess components a r e

e q u i v a l e n t t o about 1 kg of uranium pe r hour. This a l lows e f f i c i e n t use

Page 59: MASTER J. D. L. Million R. D.

of ope ra t i ng l abo r t o meet p r e s e n t requi rements , . and a commercial r e c y c l e

p l a n t w i l l r e q u i r e ' l i t t l e scale-up of t h e p r i n c i p a l c'omponents.

The s p e c i f i c a t f o n s f o r t h e r e s i n s a r e der ived from those f o r carbon-

i zed , r e c y c l e f i s s i l e k e r n e l s . ,The r e s i n s a r e commercial c a rboxy l i c

a c i d c a t i o n exchange r e s i n s i n t h e sodium form, b u t t h e s u i t a b i l i t y of a

s p e c i f i c brand and type number must be demonstrated exper imenta l ly . The

' compositions, m ic ros t ruc tu re , and loading behaviors of a s p e c i f i c commercial

r e s i n appear t o be reproducib le . The r e s i n feed process ing inc ludes '

ope ra t i on t o c o n t r o l t he r e s i n s i z e , t o remove nonspher ica l p a r t i c l e s ,

and t o conver t t o the hydrogen form.

The sodium-form r e s i n i s fed a s a s l u r r y ( w a t e r l r e s i n volume r a t i o of

40) t o a 0.76-m-diam v i b r a t o r y s c r een s e p a r a t o r . The uranium c a p a c i t y p e r

sphere of about 65 x g of uranium r e q u i r e s w e t sodium-form r e s i n of

730 pm f o r e i t h e r Amberli te IRC-72 o r Duol i te C-464.. Drying of unsized

r e s i n followed by d r y , s c r e e n i n g i s much l e s s s a t i s f a c t o r y wi th d i f f i c u l t i e s

f o r d ry ing , b l i n d i n g of s c r eens , and v a r i a b l e shr inkage du r ing dry ing .

The s e p a r a t i o n of s p h e r i c a l from nonspher ica l p a r t i c l e s i s accomplished

on the smooth s u r f a c e of a lmost h o r i z o n t a l v i b r a t o r y f eede r s . The capac i ty

and s e n s i t i v i t y of t h e shape s e p a r a t i o n a r e changed by vary ing t h e power

i npu t and t h e i n c l i n a t i o n (two angles ) of t h e v i b r a t o r y p l a t e s . Three

u n i t s of f i v e feed p o i n t s each gave t h e des i r ed shape s e p a r a t i o n c a p a c i t y

(5000 sphe re s / s ec ) . A s a p re l iminary t o t h i s shape s e p a r a t i o n , t h e s i z e d

sodium-form r e s i n is d r i e d i n a f luidized-bed d rye r . The Duol i te C-464

r e s i n shows exces s ive c rack ing from dry ing i n t h e sodium form and w i l l

have t o m e e t t h e shape s p e c i f i c a t i o n s a s purchased.

Page 60: MASTER J. D. L. Million R. D.

The s i z e d and shape-separa ted sodium-form r e s i n i s rewet w i t h w a t e r

and c o n v e r t e d t o t h e hydrogen form u s i n g a n i t r i c a c i d s o l u t i o n . The

f a c i l i t y was des igned f o r b a t c h convers ion , b u t a con t inuous convers ion

and washing column (Higg ins type) was a l s o t e s t e d . The p r o d u c t q u a l i t y

a s s u r a n c e , s t o r a g e , m e t e r i n g and packaging p r o c e d u r e s , and equipment t o

m e e t t h e r e q u i r e m e n t s o f a 2 3 3 ~ - r e c y c l e f a c i l i t y h a v e n o t y e t been s e l e c t e d

and i n s t a l l e d .

8. REFERENCES

1. J. D. Sease and A. L. L o t t s , Development o f P r o c e s s e s and Equipment f o r t h e R e f a b r i c a t i o n o f HTGR F u e l s , O R N L / T M - ~ ~ ~ ~ ( June 1976) .

2. C. B. P o l l o c k , J. L. S c o t t , and J. M. L e i t n a k e r , "Recent Developments i n Pyrolytic-Carbon-Coated Fue l s , " Trans . Am. Nucl. Soc. - 14 ( I ) , 139-40 (1971) .

3. P. A. Haas, HTGR F u e l Development: Use o f UO? t o Load Ca t ion Exchange Res in f o r Microsphere P r e p a r a t i o n , ORNL/TM-3817 (September 1972) .

4. G. W. Weber e t a l . , P r o p e r t i e s o f Ca-rbonized and Converted Uranium- Loaded Weak-Acid R e s i n s , ORNL-5201 (February 1977) .

5 . P. A. Haas e t a 1 , S e c t 3 4 in X~~~~um.Vti1~-z.at.~~_"_"_"P,r,o~~,a_"_"..An~~a_1- P r o g r e s s Report f o r P e r i o d Ending June 30, 1975, OWL-5128.

6 . J. N. Vora, S. L. Michae l s , and P. S t i r o s , Development o f Optimum C o n d i t i o n s f o r Drying I o n Exchange Resin i n a F l u i d i z e d Bed Dryer, ~KNL/Ml'l'-224 ( ~ e b r u a r y 19 76) .

7. R. G. Wymer and A. L. L o t t s , S t a t u s and P r o g r e s s Report f o r Thorium F u e l Cycle Development f o r P e r i o d Ending December 31, 1966, OKNL-4275 ( J a n u a r y 1969) .

8. R. D. Spence and P. A. Haas, T e s t s of a Higg ins Contac to r f o r t h e Engineer ing-Sca le Res in Loading of Uranium, OWLITM-5973 ( i n p r e p a r a t i o n ) .

Page 61: MASTER J. D. L. Million R. D.
Page 62: MASTER J. D. L. Million R. D.

9 . 1 Appendix A: Drawings of t h e HTGR Subtask 210 Resin P repa ra t i on

Engineer ing f lowsheet

Equipment l ayou t

Resin p repa ra t i on tank T-1

Resin p repa ra t i on tank T-4

Tank T-1 suppor t and o p e r a t o r p l a t fo rm

Sertling and surge tank

HN03 & NaOH tanks T-1OA & B

Surge tank f-f 2

T-9 r e s i n condi t ion ing tank

Waste n e u t r a l i z a t i o n tank T-11

Equipment e l e v a t i o n

Tank suppor t s

Resin shape, s e p a r a t o r room, p l a n s , s e c t i o n , and e l e v a t i o n

Resin p repa ra t i on room environmental c o n t r o l diagram

Vacuum t r a n s f e r tank T-6

Vacuum t r a n s f e r t ank T-6, d e t a i l s /I1

Vacuum t r a n s f e r tank T-6, d e t a i l s /I2

Resin p repa ra t i on power p l a n ( e l e c t r i c a l )

Page 63: MASTER J. D. L. Million R. D.

9 . 2 Appendix B : S i z e S e p a r a t i o n o f Dry Resin

The problems and d i s a d v a n t a g e s o f d r y s c r e e n i n g as t h e pr imary s i z e

s e p a r a t i o n p rocedure were d i s c u s s e d i n S e c t . 4 . 3 . One r e s i n l o a d i n g r u n

was made w i t h r e s i n p rocessed by d ry s i z e s e p a r a t i o n . The uranium l o a d e d

r e s i n d i d n o t show any d e t e c t a b l e c r a c k i n g o r o t h e r changes i n b e h a v i o r

o t h e r t h a n a n abraded s u r f a c e appearance . The b e h a v i o r d u r i n g d r y i n g

i s r e p o r t e d i n S e c t . 4 . 2 . The s i z e s e p a r a t i o n was c a r r i e d o u t i n t h e

* Metals and Ceramics D i v i s i o n l a b o r a t o r i e s and t h e r e s u l t s r e p o r t e d

i n c l u d e d t h e f o l l o w i n g :

I n i t i g k tests have been completed t o de te rmine whe ther o u r Sweco Turbo-Screen P a r t i c l e C l a s s i f i e r c o u l d b e used f o r upgrading unloaded a s - r e c e i v e d r e s i n . There was n o t h i n g i n t h e r e s u l t s t o i n d i c a t e t h a t i t cou ld n o t .

The t e s t s were conducted i n t h e f o l l o w i n g manner. The r e s i n i n one o f t h e two b a r r e l s you s u p p l i e d was f e d i n t o t h e machine r i g g e d w i t h t h e Sweco 'NO. 32 s c r e e n . The o v e r s i z e d m a t e r i a l was g i v e n r e p e a t e d p a s s e s u n t i l . on ly a s m a l l change i n t h e we igh t was observed. The t o t a l u n d e r s i z e m a t e r i a l was weighed and a s m a l l p o r t i o n was r i f f l e d from i t and shape ana lyzed . The remaining.undersize.materia1 was t h e n used a s f e e d t o t h e m a c h i n e . r i g g e d w i t h t h e No. 38 s c r e e n and s o on w i t h t h e No. 46 and 5 0 s c r e e n s . The numer ica l r e s u l t s are p r e s e n t e d i n t h e a t t a c h e d t a b l e a l o n g w i t h some p e r t i n e n t t e s t pa ramete rs . These were s e l e c t e d from o u r e x p e r i e n c e w i t h Ni-loaded r e s i n . There was no o p p o r t u n i t y t o d e t e r m i n e optimum c o n d i t i o n s . Except f o r t h e

I i n i t i a l p a s s e s w i t h t h e No. 32 s c r e e n t h e f e e d i n g was done a t a c o n s t a n t r a t e o f a b o u t 270-280 g/min by means o f a

I v i b r a t o r y f e e d e r . Feeding i n t h e c a s e o f t h e p a s s e s w i t h I t h e No. 32 s c r e e n was done by hand ~ o u r i n g t h e r e s i n a t a

more o r less c o n s t a n t , b u t unknown, .rate.

You may n o t e t h a t we worked down i n s c r e e n s i z e , c o n t r a r y t o your s u g g e s t i o n . T h i s was done f o r two r e a s o n s . F i r s t , i t was n o t i c e d . t h a t t h e as - rece ived r e s i n c o n t a i n e d a l a r g e

* J. F. Carpen te r , Jr . , i n t e r n a l memo t o P. A . Haas, Nov. 11, 1976. **

Southwestern Engineer ing Company.

Page 64: MASTER J. D. L. Million R. D.

number of clumps and c l u s t e r s and i t was f e l t b e s t t o s t a r t w i t h No. 32 s c r e e n i n o r d e r t o remove these . It was because of t h e s e t h a t t h e v i b r a t o r y f eede r could no t be used on t h e f i r s t passes . Second, ou r exper ience w i th s c r een ing Ni-loaded Amberl i te IRC-72 had shown t h a t t h e e f f i c i e n c y of s e p a r a t i n g unders ize from a g iven f eed decreases a s t he percentage of t he unders ize i n t h e f eed decreases . By working down, t h e r e f o r e , we could main ta in cond i t i ons i n which most of t he feed was ove r s i zed and, t hus , h igh e f f i c i e n c i e s of unders ize removal could be achieved. This i s apparent from t h e weights of t h e o v e r s i z e a f t e r t h e s e v e r a l passes us ing sc r eens No. 38, 46, and 50. I b e l i e v e t h e corresponding r e s u l t s f o r t he No. 32 s c r e e n a r e n o t t h e r e s u l t s of an e f f i c i e n c y phenomenon b u t , r a t h e r , a m a n i f e s t a t i o n of t he machine's a b i l i t y t o break the clumps and c l u s t e r s .

Because of t h e i n h e r e n t n a t u r e of the a c t i o n of t h i s dev ice , p a r t i c u l a r a t t e n t i o n was pa id t o t he p o s s i b i l i t y of p a r t i c l e breakage i n t he se p r e s e n t t e s t s and e a r l i e r ones w i t h N i - loaded r e s i n . As s een i n the t a b l e , shape r e j e c t s of 2-4% by weight were observed. For comparison, t he shape r e j e c t i n your l oad ing ba t ch S51 was measured t o be 0.14%. You s t a t e d t h a t S51 used r e s i n from t h e same supply l o t a s t h e r e s i n used i n t h e p r e s e n t t e s t s b u t t h a t t h e r e s i n used i n S51 had been w e t sc reened . C lea r ly t h e r e j e c t appears h ighe r i n t h i s p r e s e n t case. However, microscopic exami- n a t i o n of t h e r e j e c t i n t he p re sen t tests showed t h a t i t was n o t , i n f a c t , broken p a r t i c l e s b u t mostly very smal l whole microspheres such a s a r e sometimes seen a s " s a t e l l i t e s " adher ing t o l a r g e r microspheres . Such smal l p a r t i c l e s were observed i n t h e clumps and c l u s t e r s of t h e as-received m a t e r i a l . From t h i s I presume t h a t t h e machine's a b i l i t y t o break up these clumps and c l u s t e r s i s t h e major reason f o r t h e appearance of t h e smal l microspheres. The reason why they appear a s shape r e j e c t i s probably . t h a t t h e neck where t h e p a r t i c l e was a t t a c h e d t o a l a r g e r microsphere c o n s t i t u t e s a f a i r l y ex t ens ive f l a t a r e a on t h e s u r f a c e of t h e sma l l p a r t i c l e . I suspec t t h a t your w e t s c r een ing h e l p s d i s p e r s e t h e clumps and t h a t t h e s e very small micro- sphe re s appear i n your f i n a l unders ize c u t .

The good m a t e r i a l from t h e shape ana lyses was a l s o inspec ted . The major f e a t u r e s observed were a gene ra l e r o s i o n of t he s u r f a c e s of t h e microspheres w i t h exposure t o t he machine and t h e presence of i r r e g u l a r l y shaped p a r t i c l e s of "dust" on the s u r f a c e s . Some cracks i n the s u r f a c e and volume of some of t h e p a r t i c l e s were observed b u t were r a r e . It is no t c l e a r whether t h i s d u s t i s c r e a t e d by t h e machine o r is a l r eady p r e s e n t i n t h e as - rece ived r e s i n .

Page 65: MASTER J. D. L. Million R. D.

a Assessment of Sweco Turbo-Screen P a r t i c l e C l a s s i f i e r f o r Upgrading As-Reci,eved Unloaded Resin

Test Parameters:

Fan Speed : 1600 rpm (2.0 s e t t i n g ) Wand Pressure : 20 p s i Secondary Air Valve : Ful ly open Oversize Chute Cover: Removed

Sweco S t a r t i n g Feed Weight Weight Shape Analysis of Undersized Screen S i ze Weight Rate Oversized Undersized Weight Good Weight Rejec t Rejec t Nxmber (pm) (g) ( g ) (8) (8) (8) (g) (%I

F i r s t Fass t oo coarse t o use feeder ; merely poured i n .

6184.6 ( 1 s t pass) '

4399.8 (2nd pass) 3867.4 (3rd pass ) 3565.7 (4 th pass) 3149.3 (5 th pass) 12,385.6

503 12,006 273 4761.2 ( 1 s t pass) 4509.4 (2nd pass) 4440.0 (3rd pass) 7527.7

412 15,609.7 275 2646.2 ( 1 s t pass ) 2503.1 (2nd pass ) 2468.3 (3rd pass) 4135.5 501.3

36 8 3,617.5 278 1052.9 ( 1 s t pass ) 975.6 (2nd pass ) 948.2 (3rd pass ) 2674.1 310

a J. F. C a r p e n ~ e r , Jr . , i n t e r n a l memo t o P. A. Haas, Nov. 11, 1976.

Page 66: MASTER J. D. L. Million R. D.

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Page 67: MASTER J. D. L. Million R. D.

ORNLITM-6061 D i s t . Category UC-77

INTERNAL DISTRIBUTION

1. P. A n g e l i n i 2. D. E. B a r t i n e 3. B. J. B a x t e r 4. R. L. B e a t t y 5. R. A. Bradley 6 . A. J. Caputo 7. J . A. Carpen te r 8. W . L. C a r t e r 9. H. E. Cochran

10 . D. A. Costanzo 11. B. F. Crump 12. F. L. Daley 13. R. G . Donnelly 14. J. P. Drago 15. W . P. E a t h e r l y 16. D. E . Ferguson 17. U r i Gat

18-23. P. A. Haas 24. R. L. Hamner 25. F. E. H a r r i n g t o n 26. C. C.Haws 27. L. C. Hensley 28. R. F. Hibbs 29. R. If. H i l l 30. F. J. Homan 31. J . D. J e n k i n s 32. D. R. Johnson

33-38. P. R. Kas ten 39. J. J. Kur tz 40. W . J . Lackey 41. G. M. Lawson 42. R. E. Leuze 43. K. H . L i n 44. T. B . Lindemer 45. E. L. Long, Jr.

46-47. A. L. L o t t s 48. J . E . Mack 49. A. P. Malinauskas

S. R. McNeany L. E . McNeese D. L. M i l l i o n F. H. N e i l 1 K. J. Notz A. R. Olsen H. Postma R. H . Rainey D. P. Reid H . D. R inge l J. M. Robbins J. E. Rushton A. D. Ryon C. D. S c o t t J. H. S h a f f e r W. D. Simpson J. W . S n i d e r R. D. Spence P. E. S t e i n D. P. S t i n t o n R. R. Suchomel T. N . T iegs D . B. Trauger v.' C . A. Vaughen D. C. Watkin R. P . Wichner R. G . Wymer G . R. Choppin ( c o n s u l t a n t ) E. L. Gaden, Jr. ( c o n s u l t a n t ) C. H . I c e ( c o n s u l t a n t ) L. E . Swabb, Jr. ( c o n s u l t a n t ) K. D. Timmerhaus ( c o n s u l t a n t ) C e n t r a l Research L i b r a r y ~ o c u m e n t Refe rence S e c t i o n Labora to ry Records Labora to ry Records - RC ORNL P a t e n t O f f i c e

Page 68: MASTER J. D. L. Million R. D.

EXTERNAL DISTRIBUTION

93. Research and Technical Support Division, DOE, ORO, P. 0. Box E, Oak Ridge, TN 37830

94. Director, Reactor Division, DOE, ORO, P. 0. Box E, Oak Ridge, TN 37830

95. Chief, Technology Branch, Division of Waste Management, Production, and Reprocessing,'DOE, Washington, D.C. 20545

96. Chief, Industrial Programs Branch, Division of Waste Management, Production, and Reprocessing, DOE, Washington, D.C. 20545

97-98. Director, Division of Reactor Devel.opment and Demonstration, DOE, Washingtcn, D.C. 20545

99-275. Given distribution as shown in TID-4500 under Gas-Cooled Reactor Technology category (25 copies - NTIS)