Top Banner
Mass Spectrometric Analysis of Protein Complexes Isolated from Rhodopseudomonas palustris Gregory B. Hurst 1 , Nathan C. VerBerkmoes 3 , Trish K. Lankford 2 , Dale A. Pelletier 2 , Frank W. Larimer 2 , Robert L. Hettich 1 , Michelle V. Buchanan 1 , Michael B. Strader 1 , Yisong Wang 2 , Linda J. Foote 2 , Stephen J. Kennel 2 1 Chemical Sciences Division and 2 Life Sciences Division Oak Ridge National Laboratory 3 Genome Science and Technology Graduate School University of Tennessee
22

Mass Spectrometric Analysis of Protein Complexes Isolated ...

Feb 23, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Mass Spectrometric Analysis of Protein Complexes Isolated from Rhodopseudomonas palustris

Gregory B. Hurst1, Nathan C. VerBerkmoes3, Trish K. Lankford2,Dale A. Pelletier2, Frank W. Larimer2, Robert L. Hettich1,

Michelle V. Buchanan1, Michael B. Strader1, Yisong Wang2,Linda J. Foote2, Stephen J. Kennel2

1Chemical Sciences Division and 2Life Sciences DivisionOak Ridge National Laboratory

3Genome Science and Technology Graduate SchoolUniversity of Tennessee

Page 2: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Overview

Initial target proteins in Rhodopseudomonas palustrishave been expressed as fusions with affinity labels to enable isolation of protein complexes.

The GroELS and nitrogenase complexes have been affinity-isolated and characterized by MS.

The 70S ribosome from R. palustris has been isolated biochemically, and its subunits characterized by “bottom-up” and “top-down” MS.

Page 3: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Introduction

The bacterial species Rhodopseudomonas palustrisoccurs widely in the environment survives in a variety of conditions

light / darkaerobic / anaerobic

This species thus has the potential to express markedly different complements of proteins and protein complexes under different growth conditions.

As part of a center funded by the U.S. Department of Energy Genomes To Life program [1], we are analyzing protein complexes from R. palustris by expressing target proteins as fusions with affinity tags to allow subsequent isolation of other proteins associated with the target [2], followed by both “top-down” and “bottom-up” mass spectrometry analysis [3]. For comparison, we have isolated the 70S ribosome from R. palustris and analyzed by mass spectrometry.

Page 4: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Methods

Selected R. palustris genes were cloned with affinity tags and expressed in both E. coli and R. palustris using modified pDEST vectors (Invitrogen).

His6, His6-V5 epitope, and GST affinity tagsN- and C-terminal positions

Isolation of fusion proteins affinity purification with Ni-NTA, anti-V5 antibody, or glutathione-bearing agarosebeadsExpression confirmed using 1-D PAGE and western blots.

Isolation of 70S ribosomeSucrose density gradient fractionation [4]

“Shotgun” analysis: analysis by mass spectrometry without prior gel separation [5]“top-down” (with FTICR MS) “bottom-up”

trypsin digestionReverse-phase HPLC separation online with electrospray/quadrupole ion trap MS-MS Protein ID’s: tandem mass spectral data with sequence database using Sequest .

Page 5: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Strategy for Identification and Characterization of Protein ComplexesPCR amplification of target gene and cloning into modified expression vector

Transfer expression plasmid into R. palustris

Expression of affinity tagged proteins under various physiological conditions

capture protein complexesusing affinity tag

Characterize protein complex

ID proteins Stoichiometries Functional assays

massspectrometry

Page 6: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Results: Expression of fusion proteins in R. palustris

Plasmids encoding 22 affinity-tagged fusion proteins have been inserted into R. palustris(Table 1). Figures 2 and 3 show selected examples of western blots to confirm expression of fusion proteinsFurther confirmation of expression was by LC-MS-MS analysis and database searches (Figure 4)Several background proteins were common to numerous LC-MS-MS experiments. The use of two separate affinity isolations reduced this background [6] (Figure 5).

Page 7: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Figure 2: Anti-His Western Blot of R. palustris clones

9766

45

31

21

total pulldown total pull

down total pulldown

total pulldown

total pulldown

total pulldown

SoxB62kDa

SoxC48kDa

HupS40kDa

HupL66kDa

GroEL-258kDaWild-typeMW

Page 8: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Figure 3: Anti-V5 Western Blot of R. palustris clones

SoxB62kDa

SoxC48kDa

HupS40kDa

HupL66kDa

GroEL-258kDaWild-typeMW

9766

45

31

21

total pulldown

total pulldown

total pulldown

total pulldown

total pulldown

total pulldown

Page 9: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Table 1. R. palustris target genes PCR amplified and cloned into destination vectors

3306 NirK Cu-containing nitrite reductase

2164 GroEL-2 Has ½ of CIRCE element

2165 GroES-2

1140 GroEL-1 Has CIRCE element

1141 GroES-1

4465 SoxB sulfite dehydrogenase/Mn-dep. hydrolase

4464 SoxC molybdopterin subunit sulfite oxidase

962 HupS uptake hydrogenase small subunit

963 HupL uptake hydrogenase large subunit

3147 ClpA endopeptidase

4433 ClpB Endopeptidase Clp: ATP-binding subunit B

4619 NifD Nitrogenase alpha chain

4618 NifK Nitrogenase beta chain

4644 CbbP Phosphoribulokinase

1559 CbbL RuBisCo Form I

4620 NifH nitrogenase iron-protein

4641 CbbM RuBisCo FormII

0245 Ffh signal recognition particle

176 AtpD ATP synthase beta chain

1548 PuhA H subunit of rxn center complex

3247 RplB 50S ribosomal protein L2

3248 RplW 50S ribosomal protein L23

Page 10: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Figure 4. Confirmation of Expression of Affinity-labeled Fusion Proteins by LC-MS-MS

0

25

sequ

ence

cov

erag

e * #

uniq

ue p

eptid

es

gene #6608 endopeptidase Clp: ATP-binding subunit B, clpB

6429 ribulose-bisphosphate carboxylase form II

6426 phosphoribulokinase (phosphopentokinase) (PRK)

6133 putative H+-transporting ATP synthase beta

Fusionproteins

Page 11: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Background Proteins

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

unknow n proteinputative nucleoside phosphorylase

putative ribose-phosphate pyrophosphokinaseperoxiredoxin-like protein

putative cyclohexadienyl dehydrogenase possible outer membrane lipoprotein GNA33,

50S ribosomal protein L28 possible CobW protein involved in cobalamin

possible GTP cyclohydrolase II, riboflavinconserved unknow n protein

H subunit of photosynthetic reaction centerunknow n protein

tw o-component response regulator dihydroxy-acid dehydratase

50S ribosomal protein L230S ribosomal protein S3

ribosomal protein S550S ribosomal protein L1730S ribosomal protein S2

unknow n proteinputative ribonuclease E

chaperonin GroES2, cpn10chaperonin GroEL2, cpn60

conserved unknow n proteinchaperonin GroES1, cpn10chaperonin GroEL1, cpn60

ferric uptake regulation protein possible dehydrogenase

3-isopropylmalate dehydratase putative H+-transporting ATP synthase beta

fructose-bisphosphate aldolase FeoA family

conserved unknow n proteinformyltetrahydrofolate deformylase

phosphomethylpyrimidine kinase (hmp-phosphateUDP-N-acetylmuramate-alanine ligase

Frequency of appearance in MS measurement

Ni-NTA/V5

Ni-NTA

Figure 5. Non-labeled proteins observed by LC-MS-MS in Affinity IsolationExperiments

≥1 unique peptide observed. Affinity isolation was 1-stage (Ni-NTA agarose beads) or 2-stage (Ni-NTA-agarosebeads, anti-V5 antibody-agarose beads).

Page 12: Mass Spectrometric Analysis of Protein Complexes Isolated ...

ResultsIsolation of GroELS complex

Most fusion proteins expressed to date in R. palustrisare not normally produced under the growth conditions used.

GroEL is an exception.

C-terminally His6 tagged GroEL-2 was expressed and isolated using an ATP-containing buffer in order to stabilize the GroEL-GroES interaction.

LC-MS-MS analysis of the digested isolate allowed identification of components of both versions of the GroELS chaperonin complex (Table 2).

ESI-FTICR-MS of the undigested complex shows the His6 tagged GroEL-2 and the native GroEL-1 (Figure 6).

Page 13: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Table 2. GroELS Complex ID

Locus Protein Name

distinct peptide

ID's

Peptides unique to protein

Sequence Coverage

RPA2165 GroES2 7 7 58%

RPA2164 GroEL2 + HIS6 48 44 76%

RPA1141 GroES1 2 2 32%

RPA1140 GroEL1 29 25 64%

Page 14: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Figure 6. ESI-FTMS of GroEL-histag Pulldown

ORF 2164 GroEL2-histag (Mr = 62054.402 Da)

ORF 1140 GroEL1 (Mr = 57625.733 Da)

53+ 52+ 51+

50+ 49+ 48+47+ 46+

45+

47+46+ 45+ 44+ 43+

Page 15: Mass Spectrometric Analysis of Protein Complexes Isolated ...

ResultsIsolation of Nitrogenase complex

Three proteins in a nitrogenase complex (NifD, NifH, NifK) were each cloned with both His6 and V5 epitope tags, expressed under photoheterotrophic, nitrogen-fixing conditions, and isolated.LC-MS-MS analysis of the isolate from each labeled component showed evidence for all three components of the nitrogenase complex (Figure 7).

Page 16: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Figure 7. Nitrogenase Complex 6xHis, V5 tandem purification

photoheterotrophic nitrogen fixing R.palustris

nifKnifH

0

25

sequ

ence

co

vera

ge *

#uni

que

pept

ides

gene #

nifKnifDnifHwild type

Nitrogenase components

Arrows indicate affinity-labeled protein

Page 17: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Analysis of the 70S Ribosome

from R. palustris [4]

The 70S ribosome from R. palustris was isolated using sucrose density gradient fractionation [4].We successfully identified 52 out 54 total orthologues to E. coli ribosomal proteins based on tandem mass spectra of 2 or more unique tryptic peptides per ribosomal protein (Table 3). We used FT-ICR MS to measure accurately the intact masses of ribosomal proteins, including several with post translational modifications (PTM) (Table 4).For several of these PTMs we were able to locate the modification position by searching MS/MS fragmentation spectra of tryptic peptides (Figure 8).

Page 18: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Figure 8. Ribosomal Protein L7/L12 (RRP-L7)-ADLQKIVDDLSSLTVLEAAELAKLLEEKWGVSAAAAVAVAAAPGAGGAAAPAEEKTEFTVVLASAGDK*K*IEVIKEVRAITGLGLK*EAKDLVEGAPKPLKEGVNKEEAEKVKAQLEKAGAKVELK

1 2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

2 methylations

Xcorr = 4.6 +2 charge

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

2 methylations

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

2 methylations

Xcorr = 4.6 +2 charge

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

1 methylation

Xcorr = 5.01 +3 charge

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

1 methylation

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

200 300 400 500 600 700 800 900 1000

m/z200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

1 methylation

Xcorr = 5.01 +3 charge

12,76512,76012,75512,75012,745

1009080706050403020100

Calculated massspectrum 12754.070

12755.07312753.067

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

L7/L12-Met + 3 Methyl

12,76512,76012,75512,75012,745

1009080706050403020100

12,76512,76012,75512,75012,745

1009080706050403020100

Calculated massspectrum 12754.070

12755.07312753.067

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

L7/L12-Met + 3 Methyl

0

10

20

30

40

50

60

70

80

90

100

12743 12748 12753 12758 12763 12768

ESI-FTICR-MSMeasured mass spectrum (decon) 12754.089

12753.045

12755.101

L7/L12-Met + 3 Methyl Mr = 12754.070 Da

L7/L12-Met + Acetyl. Mr = 12754.035 Da

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

0

10

20

30

40

50

60

70

80

90

100

12743 12748 12753 12758 12763 12768

ESI-FTICR-MSMeasured mass spectrum (decon) 12754.089

12753.045

12755.101

L7/L12-Met + 3 Methyl Mr = 12754.070 Da

L7/L12-Met + Acetyl. Mr = 12754.035 Da

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

A

B

1

2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

2 methylations

Xcorr = 4.6 +2 charge

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

2 methylations

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

50

55

60

65

70

75

80

85

90

95

1001269.6

1270.7

1222.0

1670.91600.81441.8

1442.71512.6

1671.81513.81213.21113.6 1784.01717.8 1883.01348.6985.5

872.6 1565.3542.0 1384.81347.3 1786.81115.7912.3836.4 1076.5743.5700.2 1929.81044.1659.1 1272.7 1816.2

y10+

m/z

Rel

ativ

e A

bund

ance

y6+

y7+

b*222+

b11+

b222+

y12+

y11+

y13+

y14+

y15+

y17+

y16+

b16+y8

+

-TEFTVVLASAGDK*K*IEVIKEVR-

2 methylations

Xcorr = 4.6 +2 charge

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

1 methylation

Xcorr = 5.01 +3 charge

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

1 methylation

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+

200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

200 300 400 500 600 700 800 900 1000

m/z200 300 400 500 600 700 800 900 1000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100466.1

659.4

897.4

930.5

829.5

660.4218.1

931.4

772.4641.3 713.4

325.0968.4415.5 969.4830.6784.4343.2 548.9

531.3 602.4

Rel

ativ

e A

bund

ance

y9+2

y6+

y8+2

y2+

y*6+ y7

+

y8+

b9+

b11+2

b4+

b10+

y9+-AITGLGK*EAK-

1 methylation

Xcorr = 5.01 +3 charge

12,76512,76012,75512,75012,745

1009080706050403020100

Calculated massspectrum 12754.070

12755.07312753.067

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

L7/L12-Met + 3 Methyl

12,76512,76012,75512,75012,745

1009080706050403020100

12,76512,76012,75512,75012,745

1009080706050403020100

Calculated massspectrum 12754.070

12755.07312753.067

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

L7/L12-Met + 3 Methyl

0

10

20

30

40

50

60

70

80

90

100

12743 12748 12753 12758 12763 12768

ESI-FTICR-MSMeasured mass spectrum (decon) 12754.089

12753.045

12755.101

L7/L12-Met + 3 Methyl Mr = 12754.070 Da

L7/L12-Met + Acetyl. Mr = 12754.035 Da

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

0

10

20

30

40

50

60

70

80

90

100

12743 12748 12753 12758 12763 12768

ESI-FTICR-MSMeasured mass spectrum (decon) 12754.089

12753.045

12755.101

L7/L12-Met + 3 Methyl Mr = 12754.070 Da

L7/L12-Met + Acetyl. Mr = 12754.035 Da

Molecular mass (Da)

Rel

ativ

e Ab

unda

nce

A

B

1

2

Page 19: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Table 4. “Top-Down” ResultsR. palustris Ribosome

ribosomal protein post translational modification calc. mass meas. mass

bottom-up conf.*

L1 none 23877.832 23877.449 yesL6 loss of Met 19272.408 19272.674 yes

L7/L12 loss of Met + 3 Methyl 12754.07 12754.089 yesL9 none 21178.022 possible? yes

L11 loss of Met + Methyl + N-ter Acetyl 15507.107 15507.246 yesL14 none possible? 13487.589L15 none 16836.243 16836.259 yesL17 3 Methyl 15716.353 15716.056 noL18 loss of Met 12904.93 12905.157 noL19 none 14296.764 14296.899 yesL21 possible?L23 none 10907.949 10908.021 yesL24 loss of Met 10998.226 10998.231 yesL24 loss of Met + Methyl 11012.241 11012.146 yes?L25 possible??L27 none 9580.016 possible? yesL28 none 10978.073 10978.075 yesL29 loss of Met 7849.213 7849.239 noL30 loss of Met 7092.967 7092.988 yesL31 none 8566.315 8566.334 yesL32 loss of Met 6860.73 6860.636 noL33 loss of Met + Methyl 6248.504 6248.45L34 possible?L35 loss of Met 7415.278 7415.278 yesL36 none 5063.971 5063.952 yesS4 loss of Met + Methyl 23439.59S5 loss of Met 20522.086 20522.411 noS7 loss of Met 17556.27 17556.629 noS8 loss of Met 14477.6316 14477.683 yesS8 loss of Met+Acet+4Met 14575.704 14575.619S9 loss of Met 17368.561 yes

S10 none 11667.363 11667.404 yesS12 none 13874.799 13875.167S13 loss of Met 14343.596 noS14 loss of Met 11331.399 11331.9 noS15 loss of Met 10010.563 10010.562 yesS16 loss of Met 12017.595 12017.575 yesS17 loss of Met 9553.253 9553.316 yesS18 possible??S19 loss of Met 10087.371 10087.379 yesS20 none 9708.365 9708.281 yesS20 loss of Met 9577.324 9577.387 yesS21 none 10062.669 10062.722 yes

* intact mass with PTM have been validated by fragmentation spectra of tryptic peptides

Page 20: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Conclusions

Fusion proteins with affinity tags can be expressed in R. palustris

The GroELS and nitrogenase complexes were isolated using affinity-labeled subunits.

The 70S ribosome was analyzed in detail using “bottom-up” and “top-down” methods, verifying expected post-translational modifications.

We are implementing higher-throughput production and analysis of fusion proteins in R. palustris.

Page 21: Mass Spectrometric Analysis of Protein Complexes Isolated ...

References

1. http://www.genomestolife.org

2. (a) Gavin, A.-C. et al., "Functional organization of the yeast proteome by systematic analysis of protein complexes," Nature 2002, 415, 141-147.

(b) Ho, Y. et al., "Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry," Nature 2002, 415, 180-183.

3. Verberkmoes, N.C., et al., “Integrating “top-down” and “bottom-up” mass spectrometric approaches for proteomic analysis of Shewanella oneidensis,” J. Proteome Res. 2002, 1, 239-252.

4. Strader, M.B., et al., “Analysis of the 70S ribosome from Rhodopseudomonas palustris using integrated top-down and bottom-up mass spectrometric approaches.” Sixth International Symposium on Mass Spectrometry in the Health and Life Sciences: Molecular and Cellular Proteomics, San Francisco, CA, Aug. 24-28, 2003.

5. Link, A.J. et al., "Direct analysis of protein complexes using mass spectrometry," Nature Biotech. 1999, 17, 676-682.

6. Puig, O. et al., "The tandem affinity purification (TAP) method: a general procedure of protein complex purification," Methods 2001, 24, 218-229.

Page 22: Mass Spectrometric Analysis of Protein Complexes Isolated ...

Acknowledgements

This research sponsored by the Office of Biological and Environmental Research, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.