Top Banner
Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism
37

Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Dec 29, 2015

Download

Documents

Esther Cooper
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Mass-Spectrometric Analysis of Lipids (Lipidomics)

1. Identification

2. Quantification

3. Metabolism

Page 2: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Why to do lipidomics?

Biology: Functions of different lipids?

Medicine: Diagnostics and Therapy

Industry: Healthier food, Quality control

Page 3: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

GlyceroPhospholipids

>10 classes (PC, PE, PS, PI, PA etc)

- Each class consists of numerous species

with different fatty acid combinations

(>20 different fatty acids)

=> Thousands of different molecular

species possible

O

O

O

O

HCH2C CH2

O

PO

O

ON

H

H

H

H

HH

H

H

H

HH

H

H

Phosphatidylcholine (PC)

Page 4: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Neutral Glycerolipids

- Triacylglycerols (TG)- Diacylglycerols (DG)- Monoacylglycerols (MG)

-Each class consists of numerous species due to different fatty acid combinations

=> Hundreads of different molecular species

TG DG

O

O

O

O

HCH2C CH2

O

O

O

O

O

O

HCH2C CH2

OH

Page 5: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Lactosylceramide Ganglioside Sulfatide

O

O

HNHC

CH2

O

C O

CH

O

H

H

OH

H

O

H

H

OH

O

OH

H

H

OH

H

O

HO HH

OH

O

O

HNHC

CH2

O

C OH

CH

O

H

H

OH

H

O

H

H

OH

O

O

H

H

OH

H

O

HO HH

HO

O

COOH

O

HO

OH

AcHN

OH

HO

O

O

HNHC

CH2

O

C OH

CH

O

H

H

O

H

O

H

H

OH

H3SO3-

Sphingolipids

- Ceramides- Neutral Glycosphingolipids- Acidic Glycosphingolipids

-Each class consists of numerous species due to different fatty acid

=> Hundreads of different molecular species

Page 6: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

The complete lipidome of no cell or tissue has ever been determined

...because of technical limitations

Page 7: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Advantages of MS analysis

Sensitivity >1000-fold higher than with conventional methods

Resolution - Allows quantification of hundreds of lipid species

Speed -100 times faster

Can be automated - High troughput possible

Page 8: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Ionization methods used in lipid MS

Electrospray (ESI)– Does not cause fragmentation – Can be easily automated – Compatible with on-line LC

Matrix-assisted laser desorption (MALDI)– Less used thus far – Suppression by PC/SM > All lipids not detected– On-line LC separation not feasible

Page 9: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Electrospray ionization

Competition for charge => Suppression effects!

Page 10: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

MS spectrum of cellular lipid extract = a Mess!

700 725 750 775 800 825 850 875 m/z0

2000

4000

6000

Intens.PE 18:0/18:2

PE 16:0/18:1

PA 18:0/18:2

PE 18:0/20:4

LBPA 18:1/18:1

PE 18:0/22:5

PI !8:0/18:2

PI 18:0/20:3

PS 18:0/18:1PE 18:0/20:4

Scanning

MS1 MS2 Collision cell Detector

Page 11: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

How to improve selectivity?

A. Lipid class -specific scanning (MS/MS)

B. On-line chromatographic separation (LC-MS)

Page 12: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Lipid class -specific scanning

Phospholipid class consist of species with the same polar head-group but different fatty acids

Phospholipid class Specific scan

Phosphatidylcholines Precursors of +184

Phosphatidylinositols Precursors of -241

Phosphatidylethanolamines Neutral-loss of 141

Phosphatidylserines Neutral-loss of 87

O

O O

O

CH

CH2

H2C O P

O

O

O X

Page 13: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Precursor ion scanning

Requires a characteristic, charged product ion

PC => Diglyceride + phosphocholine (+184)

FragmentationScanning Static (+184)

MS1 MS2 Collision cell (Helium or Argon)

Page 14: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Precursors of +184 => PC + SM

-Alkaline hydrolysis can be used to remove PCs

SM-16:0

Page 15: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Neutral-loss scanning

Scanning Fragmentation Scanning

MS1 MS2 Collision cell(Helium or Argon)

Mass interval = 141

..when the characteristic fragment is uncharged

PE => Diglyceride (+) + phosphoethanolamine (141)

Page 16: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Neutral-loss of 141 (= PE)

700 725 750 775 800 825 850 875 m/z0

2000

4000

6000

Intens.PE 18:0/18:2

PE 16:0/18:1

PA 18:0/18:2

PE 18:0/20:4

LBPA 18:1/18:1

PE 18:0/22:5

PI !8:0/18:2

PI 18:0/20:3

PS 18:0/18:1PE 18:0/20:4

MS-scan

700 750 800

Page 17: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

MS analysis of Sphingolipids

Page 18: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Sphingosine Ceramide Lactosylceramide Ganglioside Sulfatide

O

O

HNHC

CH2

O

C O

CH

O

H

H

OH

H

O

H

H

OH

O

OH

H

H

OH

H

O

HO HH

OH

O

O

HNHC

CH2

O

C OH

CH

O

H

H

OH

H

O

H

H

OH

O

O

H

H

OH

H

O

HO HH

HO

O

COOH

O

HO

OH

AcHN

OH

HO

O

O

HNHC

CH2

O

C OH

CH

O

H

H

O

H

O

H

H

OH

H3SO3-

OOH

O

COOH

O

HO

OH

AcHN

OH

HO

H3SO3-

OO

HNHC

CH2

C OH

CH

OH

HHNHC

CH2

C OH

CH

OH

Page 19: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Ceramide and Neutral Glycosphingolipids

- Precursors of sphingosine (m/z +264)

Ceramides

Glucosylceramides

24:1

Page 20: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Sulfatides

- Precursors of Sulfate (m/z -97)

Page 21: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Liquid chromatography-MS (LC-MS)

Advantages - Increased sensitivity due to diminished suppression of minor species by

- Major species - Impurities

Disadvantages– Takes more time (not UPLC)– Data analysis more complex (?)

Page 22: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

LC-MS analysis of mouse brain lipids

TimeHermansson et al. (2005) Anal Chem.77:2166-75

Page 23: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Data analysis => software

A. Processing of the data => Identification

=> Concentrations

B. Bioinformatics => Biomarkers?

=>Biological significance?

Page 24: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Quantification not simple

Signal intensity depends on:

• Lipid head-group• Acyl chain length• Acyl chain unsaturation• Ions present (adduct formation)• Detergent and other impurities (suppression)• Solvent composition and instrument settings

=> Internal standards necessary!

Page 25: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

LIMSA

Excel add-on for Quantitative Analysis of MS data (Haimi et al. .2006. Anal Chem. 78:8324-31)

LIMSA does:

Peak picking and fitting

Peak overlap correction

Peak assignment (database of >3000 lipids)

Quantification with internal standards

Batch analysis

Page 26: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

MS-imaging of Lipids by MALDI

PI 38:4 Sulfatide 24:1 Hydroxy-Sulfatide 24:1

Page 27: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Analysis of Lipid Metabolism by MS

Adds another, dynamic dimension to lipidomics

Labeled lipids can be selectively detected!

D9-PC => +193 (Unlabeled PC => +184)

D4-PE => 145 (Unlabeled PE => 141)

D4-PS => 90 (Unlabeled PS => 87)

D6-PI => -247 (Unlabeled PI => -241)

Precursors

Water soluble precursors (D9-choline etc) Exogenous lipids

Page 28: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Phospholipid Remodeling: Exchange of acyl chains

Glycerol

Fa

tty a

cid

Fa

tty a

cid

Alc

oh

olP

O4

Fa

tty a

cid

Glycerol

Fa

tty a

cid

Fa

tty a

cid

Alc

oh

olP

O4

Fa

tty a

cid

PLA2

GlycerolF

atty

aci

d

Alc

oh

olP

O4

OH

Acyl transferase

Page 29: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Analysis of phospholipid remodeling using soluble precursor is problematic

100

100

100

100

680 700 720 740 760 780 800

100

16:0/17:1

24h

unlabeled

0h

1h

5h

16:0/18:1

18:1/18:1

18:0/18:1

16:0/16:1

Rel

ativ

e in

tens

ity (

%)

m/z

0 5 10 15 20 25

0

25

50

Rel

ativ

e ab

unda

nce

(%)

Chase time (h)

16:0/16:1 16:0/17:1 16:0/18:1 16:1/18:1 18:0/18:1 18:1/18:1 18:1/18:2 18:0/20:4 18:1/20:4 18:0/22:6

D4-ethanolamine => cells => D4-PE species

Kinetics

Page 30: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Our approach: Use intact exogenous phospholipids with a deuterium-labeled head-group

PROTOCOL

• Synthesize a phospholipid with a deuterium-labeled head group

• Make vesicles containing the labeled phospholipid • Incubate cells with these vesicles and β-cyclodextrin

(carrier)• Extract and analyze lipids using MS/MS scans showing

the labeled (or unlabeled) lipid only• Determine the pathways and kinetics of remodeling

Page 31: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

100%

100%

100%

100

700 750 800 850

100%

14:0/14:0

0h

18:0/20:4

18:0/18:114:0/20:4

14:0/18:1

16:0/14:0

3h

18:1/20:4

18:1/18:1

16:0/18:1

7h

Rel

ati

ve

Inte

ns

ity

24h

Endogenous

m/z

Unnatural 14:0/14:0-PE is remodeled very rapidly

14:0/14:0-D4-PE

0 5 10 15 20 25

0

25

50

14:1/14:1 16:0/14:1 18:0/14:1 18:1/14:1 16:0/18:1 14:1/20:4 18:0/18:1 18:1/18:1 18:0/20:4 18:1/20:4

KINETICS

Page 32: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

”Natural” 18:1/18:1-PE is hardly remodeled

100%

100%

100%

100%

100%

700 750 800

100%

0 h

18:1/18:1

1 h

3 h

5 h

Re

lativ

e a

bu

nd

an

ce

24 h

endogenous

Page 33: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Positional isomers are remodeled with very different kinetics

14:0/18:1 18:1/14:0

700 750 800

100%

700 750 800

100%

700 750 800

100%

700 750 800

100%

700 750 800

100%

700 750 800

100%

700 750 800

100%

700 750 800

100%

0h18:1/18:1

14:0/18:1

18:1/18:1 3h18:1/18:2

16:0/18:116:1/18:17h

endogenous

Rel

ativ

e ab

unda

nce

m/z

16:1/16:10h

18:1/16:1

18:1/18:218:1/22:6

18:1/20:4

18:1/18:1

18:1/14:0

3h

7h

endogenous

m/z

Page 34: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Pathways of 14:0/14:0-PE remodeling

14:0/14:0

14:0/ 18:2 14:0/ 16:1 14:0/ 18:1 14:0/ 20:4 14:0/ 22:6

16:1 /18:2

16:0 /18:2 18:1 /18:2 18:1 /16:1 16:0 /18:1 16:1 /18:1 18:1 /20:4 18:1 /22:6

18:1 /18:1 18:0 /20:4

Kainu et al. (2008) J Biol Chem. 283:3676-87

Page 35: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Studies with >50 phospholipid species (and PLA inhibitors) indicate that

=> Multiple acyl chain specific PLAs are involved

in remodeling of phospholipids in mammalian cells

BUT which PLAs? ..and what determines their specificity?

..and which acyltransferases are involved?

Page 36: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Conclusions

MS-based lipidomics is highly usefull in – Biology– Medicine– Food industry

....but needs to be integrated with other “omics” and functional assays

Heavy isotope –labeling adds an important extra dimension to lipidomics

Page 37: Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism.

Contributors

• Martin Hermansson• Ville Kainu• Perttu Haimi