Top Banner
Martin Zwierlein TOPS, MIT, Cambridge, June 24 th , 2009 Pairs and Loners in Ultracold Fermi Gases Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard $$$: NSF, AFOSR- MURI, Sloan Foundation
39

Martin Zwierlein

Jan 09, 2016

Download

Documents

TOPS, MIT, Cambridge, June 24 th , 2009. Pairs and Loners in Ultracold Fermi Gases. Martin Zwierlein. Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard $$$: NSF, AFOSR- MURI, Sloan Foundation. Bosons vs Fermions. E F. Bosons. Fermions. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Martin Zwierlein

Martin Zwierlein

TOPS, MIT, Cambridge, June 24th, 2009

Pairs and Loners inUltracold Fermi Gases

Massachusetts Institute of Technology

Center for Ultracold Atoms at MIT and Harvard

$$$: NSF, AFOSR- MURI, Sloan Foundation

Page 2: Martin Zwierlein
Page 3: Martin Zwierlein

EF

Bosons vs Fermions

e.g.: 1H, 23Na, 6Li2 e.g.: e-, 3He, 6Li, 40K

CT T

CT T

0T

Page 4: Martin Zwierlein

Degenerate gases

Want lifetime > 1s Ultradilute

Ultracold

de Broglie wavelength ~ Interparticle spacing

Good news: Bosons condense at

1/3n1/3

dB n

15 310 cmn 2

2/3 1 KFB

T nk m

C FT T

Page 5: Martin Zwierlein

How to measure temperature?

Gas Effusive atomic beam

Page 6: Martin Zwierlein

How to measure temperature?

Gas Effusive atomic beam

Page 7: Martin Zwierlein

Atom cloudLens

CCDCamera

Laser beam

Observation of the atom cloud

Shadow imageof the cloud

TrappedExpanded

1 mm

Page 8: Martin Zwierlein

BEC @ MIT, 1995 (Sodium)

Page 9: Martin Zwierlein

BEC @ JILA, Juni ‘95(Rubidium)

BEC @ MIT, Sept. ‘95 (Sodium)

Superfluidity in Bosonic Gases

• BEC 1995All atoms occupy same

macroscopic wavefunction

MIT

• Phase coherence 1997

JILA

ENS

MIT• Superfluidity 1999/2000Frictionless flow,

quantized vorticity

Page 10: Martin Zwierlein
Page 11: Martin Zwierlein

Fermions – The Building Blocks of Matter

Harvard-Smithsonian Center for Astrophysics

Lithium-6

Page 12: Martin Zwierlein

Can we have superfluidityin a Fermi gas?

Page 13: Martin Zwierlein

1911: Discovery of Superconductors

HeikeKamerlingh-Onnes

• Discovery of Superconductivity in Metals

Res

ista

nce

TemperatureNobel prize 1913

Page 14: Martin Zwierlein

• No energy loss• persistent flow• Doesn’t want to rotate

• No energy loss• persistent currents• expels magnetic fields

Flow without friction Current without resistance

Onnes 1908,Kapitza, Allen & Misener 1938

Onnes 1911Müller & Bednorz 1987

SuperconductorsSuperfluids

Page 15: Martin Zwierlein

What are superconductors?

• Apparently the electrical current flows without friction

• But: Carrier of electrical current are Electrons

Electrons are Fermions

Page 16: Martin Zwierlein

What are superconductors?

• Apparently the electrical current flows without friction

• But: Carrier of electrical current are Electrons

Electrons are Fermions

L. Cooper (1956) (45 years after Onnes):

Pairing of electronsPairs are Bosons

Superconductivity: Condensation of Electron Pairs

J. Bardeen, L. Cooper, R. Schrieffer (BCS), 1957, Nobel prize 1972

Page 17: Martin Zwierlein

Fermionic Superfluidity

Superconductors: Charged superfluids of electron pairsFrictionless flow Resistance-less current

Condensation of Fermion Pairs

John Bardeen Leon N. Cooper John R. Schrieffer

Page 18: Martin Zwierlein

High-temperature Superconductors

J. Georg Bednorz K. Alex Müller

Nobel prize 1987

Critical temperature:35 K above Absolute Zero (-238 °C)

Record today:138 K (-135 °C)

Page 19: Martin Zwierlein

Room temperature superconductors?

Today:• ~5-10% energy loss only due to transport of energy

The problem:High-temperature superconductivity not really understood

Electrons interact so strongly that it’s hard to model

The hope:• Superconducting cables• No resistance No energy loss during transport

We need:A model system for superconductors

Ultracold atomic gases

Page 20: Martin Zwierlein

Can we do this with atoms?YES! The ultracold Fermi gas at MIT:• Lithium-6 (3p, 3n, 3e-) is a fermion

• The atoms form pairs likeelectrons in a superconductor

• Size of pairs isfreely controllable

• The gas becomes superfluid

Page 21: Martin Zwierlein

How can you distinguish a superfluid from a normal one?

Page 22: Martin Zwierlein

Rotating bucket

Normal Super

Fluid Fluid

Page 23: Martin Zwierlein

Rotating superfluid

Superfluids are described by matter wave

The wave has to close in itself(Example: Vibrating rubber band)

Superfluid does not want to rotate Only possibility:

Vortices, “Mini-Tornados”, “Quantum whirlpools”

Only full wavelengths are allowed

Circulation is only possible in certainunits (“Quanta”), carried by the Vortices

Page 24: Martin Zwierlein

Look from top into the bucket

Page 25: Martin Zwierlein

Abrikosov lattice (honeycomb lattice)

Look from top into the bucket

Aleksei A.Abrikosov

Nobel prize2003

Page 26: Martin Zwierlein

Vortex latticesVortex latticesin bosonic gases/fluidsin bosonic gases/fluids

ENSENS(J. Dalibard, 2000)(J. Dalibard, 2000)

Rubidium BECRubidium BEC

BerkeleyBerkeley(R.E. Packard, 1979)(R.E. Packard, 1979)

Helium-4Helium-4

Page 27: Martin Zwierlein

U. Essmann and H. Träuble,Physics Letters A, 24, 526 (1967)

Rotation of a neutral Fluid

Coriolis Force

Superconductor in a magnetic field

Lorentz Force

2F mv

F qv B

Page 28: Martin Zwierlein
Page 29: Martin Zwierlein

Demonstration of superfluidity in a Fermi gas

Ultracold gas

Page 30: Martin Zwierlein

Vortex lattices

M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle,Nature 435, 1047-1051 (2005)

- 0.7

B

• Demonstration of superfluidity in a gas of atom pairs• A high-temperature superfluid

Pair size

Scaled to the density of electrons in a metal, the gaswould become superfluid far above room temperature

Page 31: Martin Zwierlein

What if there are too many singles?

Fermionic Superfluidity withImbalanced Spin Populations

Page 32: Martin Zwierlein

94%90%56%30%22%12%6%

Fermionic Superfluidity with Imbalanced Spin Populations

|2>

0%

|1>

Page 33: Martin Zwierlein

What is the Nature of theImbalanced State?

Page 34: Martin Zwierlein

Cooling Down

Direct observation of the density difference

Y. Shin, M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle,PRL 97, 030401 (2006)

SuperfluidNormal

Page 35: Martin Zwierlein

Reconstruction of 3D density profile

Only assumption: cylindrical symmetry

Phase Separation !

= 0.6

Fermionic Superfluidity does not tolerate loners

Page 36: Martin Zwierlein

Atomic Bose-EinsteinCondensates (Sodium)

Molecular Bose-EinsteinCondensates (6Li2)

Pairs of fermionic atoms(6Li)

Gallery of superfluid Gases

Page 37: Martin Zwierlein

Ultracold Atoms

As Model systems:• How does matter work?

new quantum states, development of new materialsQuantum computer, Quantum simulators (Bose and Fermi gases)

As measuring device:• Development of highly sensitive sensors

gravitational gradient sensors (important for mining, geophysics),sensors for navigation

• New highly accurate atomic clocks as time standardbasis of all GPS-systems, more accurate positioning, faster telecommunication requires accurate clocks

Page 38: Martin Zwierlein

The teamBEC 1:

Andre SchirotzekAriel Sommer

Fermi 1:Cheng-Hsun Wu

Ibon SantiagoDr. Peyman Ahmadi

Undergraduates:Caroline FiggattJacob SharpeSara CampbellKevin Fischer

39K 40K 6Li

Page 39: Martin Zwierlein