Top Banner
Multi-level modeling of gas-fluidized beds Mao Ye, Renske Beetstra, Chris Zeilstra Chemical Reaction Engineering Department of Science & Technology University of Twente Hans Kuipers Martin van der Hoef
39

Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Feb 09, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Multi-level modeling of gas-fluidized beds

Mao Ye, Renske Beetstra, Chris Zeilstra

Chemical Reaction Engineering Department of Science & TechnologyUniversity of Twente

Hans Kuipers

Martin van der Hoef

Page 2: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Outline

I. Overview of the modelsII. Lattice Boltzmann simulationsIII. Discrete particle simulationsIV. Two-fluid simulationsV. Outlook and challenges ahead

Page 3: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

I. Overview of the models

Lattice Boltzmann model

Discrete particle model

Two fluid model

Page 4: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Gas phase:

Solid phase:

Two Fluid Model

Solid: Gas: CFD CFD

Page 5: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Gas phase:

Solid phase:

Discrete Particle Model

Particle-particle interactions (Collision forces)

Particle-gas interactions (gas-solid drag)

(low resolution)

Gas: “molecular dynamics”Solid: CFD

Page 6: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Drag coefficient β : empirical relations

Other relations:

Most popular in chemical engineering

Page 7: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Gas phase:

Solid phase:

Particle-particle interactions (Collision forces)

Particle-gas interactions (gas-solid drag)

(high resolution)

“boundary conditions”

Gas: Solid: “molecular dynamics”Lattice Boltzmann

Lattice Boltzmann Model

Page 8: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Model Type Scale Closures

Two Fluid Euler Euler

2 meter

Discrete Particle Euler Lagrange 106particles

Lattice Boltzmann Euler Lagrange

103particles

Kinetic theory of granular flow

Pressure drop experiments

Page 9: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

II. Gas-solid drag force from lattice Boltzmann simulations

A. Low Reynolds numbersB. High Reynolds numbersC. Binary systems

Page 10: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

A. Drag force for low Reynolds numbers

Darcy (1856):

Force Balance:

Page 11: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Carman-Kozeny approximation:

Carman equation

Page 12: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...
Page 13: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Lattice Boltzmann Simulations

Page 14: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...
Page 15: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Pressure drop measurements

Wil Paping, Masters Thesis dec. 2004

Liquid: glycerineBed: glass spheres (ε = 0.365)

Page 16: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...
Page 17: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

B. Drag force for 10 < Re < 1000

Ergun:

Page 18: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Best fit to LBM data for arbitrary Re numbers

NB: Ergun equation:

Page 19: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

C. Drag force in binary systems

Carman-Kozeny:

Page 20: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Re = 0Re = 100

VDH, Beetstra & Kuipers, J. Fluid Mech. 528 (2005)

Page 21: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Model Type Scale Closures

Two Fluid Euler Euler

2 meter

Discrete Particle Euler Lagrange 106particles

Lattice Boltzmann Euler Lagrange

103particles

Kinetic theory of granular flow

Pressure drop experiments

Page 22: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

III. Discrete particle simulations

A. Discrete particle modelB. Segregation: effect of the drag modelC. Simulation of fine powdersD. Pressure from DPM simulations

Page 23: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Gas phase:

Solid phase:

A. Discrete Particle Model

Particle-particle interactions

Page 24: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

• Collision forces : spring-dashpot model

• Electrostatic force

• Cohesive force

Particle-particle interaction force Fij

spring constant damping coefficient

Page 25: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

B. Effect of drag on segregation

Red: 1.5 mm Umf = 0.9 m/s

Blue: 2.5 mm Umf = 1.3 m/s

Binary mixture of 40 000 particles:

Fluidized at U = 1.3 m/s

Page 26: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

S

Page 27: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Intermezzo: Segregation in vibro-fluidized systems

No air Air

N. Burtally, P.J. King and Michael Swift

Science 2002

Bronze and glassspheres of the same size (100 µm)

Simulation:

Page 28: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

C. Simulation of fine powders (group A)

Geldart classification:

Page 29: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Abrahamsen en GeldartSimulations

Page 30: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

D. Solids pressure from DPM simulations

Elastic spheres in vacuum: Carnahan & Stirling (1969)

Low density:

High density:

Page 31: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Inelastic spheres in vacuum:

Simulations:

Page 32: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Model Type Scale Closures

Two Fluid Euler Euler

2 meter

Discrete Particle Euler Lagrange 106particles

Lattice Boltzmann Euler Lagrange

103particles

Kinetic theory of granular flow

Pressure drop experiments

Page 33: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Summary Lattice Boltzmann simulations: drag force

•Monodisperse: significant deviations with Ergun & Wen/Yu

•Bidispersity has a much larger effect than currently assumed

Discrete particle simulations

•Segregation: good agreement with experiments

• A powders: qualitative agreement with the Geldart correlation

• Pressure: excellent agreement with kinetic theory

Two fluid simulations

•Coefficient of restitution gives rise to heterogeneous structures

•Reasonable agreement with the experiments for the bubble size

Page 34: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

IV. Outlook & Challenges ahead

A. Drag force

• Bidisperse polydisperse

• Mobility

• Heterogeneity

Page 35: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

B. Closures in two-fluid model (monodisperse)

Drag coefficient Lattice Boltzmann

Solids pressure

Solids viscosity

Page 36: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Elastic spheres:

Inelastic spheres:

No simulation data available

• Effect surrounding gas

• Particle friction

• Cohesive forces

• Polydispersity

Page 37: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

C. Two-fluid simulations of Geldart A particles

Page 38: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

D. Simulations of industrial scale fluidized beds

real two fluid model

discrete bubble model Van Sint Annaland,

Bokkers & Kuipers,

Page 39: Martin van der Hoef Mao Ye, Renske Beetstra, Chris ...

Industrial scale column:• Dimensions: 4 m x 4 m x 8 m• Gas velocity: 2.5Umf=0.25 m/s

Emulsion phase properties:• Density: 400 kg/m3

• Viscosity: 0.1 Pa.s

Bubble properties:• Initial bubble size: 8 cm• Maximum bubble size: 80 cm• Typically ~ 5000 bubbles