Top Banner
m.apollonio am041207 1 M. Apollonio University of Oxford update on STEP III
15

M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 1

M. Apollonio University of Oxford

update on STEP III

Page 2: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 2

the case for STAGE III

first demonstration of cooling with solid absorber(s) ?

Page 3: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 3

Matching Coils currents

Set up a procedure to find the right MC currents for a matched beam:a) (trk1-2)=1/, =0b) fix (min)

Z (m)

Chosen configuration must comply with coil/physics constraints:1- max current2- temp. margin3- (min) minimise m.s.

B (

T)

(m

)

Page 4: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 4

800 mm

Page 5: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 5

800 mm

T=97.9 % T=98.4 %

emi=10 mm rad(a) (b)

(a)

(b)

Page 6: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 6

NB: beta_min = 49 cm (was 60cm at CM14)

means M1 1.4x, M2 0.7xmain issuesa)current increase: is it within

tolereances?b)magnet forces?c)MC distance = 800 mm. Can it be

changed?

300 A!

Page 7: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 7

emittance growth in vacuum

Z (m)

T (f

inal

)/ T

(in

itia

l)

i=1.0 cm rad

0 1 2 3 4 5 6

T/T=2.8%

2.8 %T/

T Z (m)

T (cm rad)

Page 8: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 8

xqByPxPxqB

PqBx

xPxPP

qBxP

P

qBxP

P

PxPP

P

xPcm

xxxy

xy

xyz

zx

z

zy

z

xxx

z

xNN

2

2222

: emittance evolution in a cylindrical symmetric channel

non uniform Bz can cause growth (e.g. flip region)

Z (m)

T (

m r

ad)

ecalc9

MUC-NOTE 0071 prediction

Most of the effect explainedMost of the effect explained

Page 9: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 9

(a) 13 cm LiH absorber in the middle

Page 10: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 10

-7.3%

-3%

-3%

Pz vs Zemi vs Z

Beta= 70cm

Beta= 50 cm

Page 11: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 11

(b) 13 cm LiH absorber in the II solenoid

Page 12: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 12

vacuum (no absorbers)

LiH absorberLiH absorber - vacuum

Page 13: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 13

00

1

eq

p

p

00

1

eq

p

p

equilibrium

vacuum growth subtracted

emi. % variation

Page 14: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 14

Page 15: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 15

Conclusion

1)Slow B flip emi growth. Has to be minimized

2)a single absorber seems to work better

3) the middle point cannot have a low beta cooling effect reduced

4) reduce beta_centre increase M1 currents forces

5) better to place abs inside the II solenoid

uneasy6) transmission: large radius spool

piece doesn’t seem to create dramatic effects