Top Banner
Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank you!
42

Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Jan 20, 2016

Download

Documents

Eleanor Benson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Making the case for coupled chemistry,

climate, biogeochemistry simulations

E.A. (Beth) HollandChemistry-Climate Workshop

Santa Fe, NM, Feb. 10-12

Thank you!

Page 2: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Roadmap• Carbon cycle

• Carbon/Nitrogen Cycle

• CN Chemistry

• CN Chemistry Climate

• CN Chemistry Climate Biogeochemistry

Page 3: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Summary for Policymakers, IPCC 2001

Page 4: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Table 3.1: Global CO2 budgets (in Pg C/yr) based on intra-decadal trends in atmospheric

CO2 and O2. IPCC 2001, Prentice et al, Chapter 3

1980s 1990s

Atmospheric increase

3.3 ± 0.1 3.2 ± 0.1

Emissions (fossil fuel, cement)

5.4 ± 0.3 6.3 ± 0.4

Ocean-atmosphere flux

-1.9 ± 0.6 -1.7 ± 0.5

Land atmosphere flux*

-0.2±0.7 -1.4±0.7

Land use change 1.7 (0.6 to 2.5) NA

Residual terrestrial sink -1.9 (-3.8 to 0.3)

NAPositive values are fluxes to the atmosphere; negative values represent uptake from the atmosphere. The fossil fuel emissions term for the 1980s (Marland et al., 2000) has been slightly revised downward since the SAR. Error bars denote uncertainty (± 1s), not interannual variability, which is substantially greater.

Page 5: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Atmosphere photosynthesis & respiration

plants etc.

soil (microbes, roots)

Biosphere(C, H2O, N…)O2CO2

O2

O2

CO2

CO2

Pedosphere

H2O

NOy

NOx

Norg

NO3-

N2

NH4+

Norg

NO, N2O

NO2

Page 6: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Coupling C and N

Vegetation Type

Fractionwood

C:Nmicrobes

C:Nleaves

C:N wood

Tropical rainforest

0.5 14 50 150

TemperateEvergreen forest

0.5 14 70 300

Shrubland 0.5 14 60 180Grassland 0 10 55 0

Page 7: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

What are the implications of N depositionfor the global carbon cycle?

Page 8: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Table 6. Comparison of Terrestrial Net CO2 Flux Estimated by InverseDeconvolution and Our Perturbation Estimate of Terrestrial Net CO2 Flux from NDeposition

90°S–16°S Equatorial 16°N–90°N

Global

Keeling et al. [1989] a -0.1 +0.3 -0.6 -0.5

Tans et al. [1994] a -0.1 +0.5 -2.3 -1.9

Ciais et al. [1995] b -0.2 +0.8 -2.2 -1.5

With SaturationThis work

IMAGES c -0.04 -0.11 -0.38 -0.53

ECHAM c -0.05 -0.16 -0.41 -0.62

GCTM c -0.06 -0.13 -0.37 -0.56

GRANTOUR c -0.04 -0.11 -0.36 -0.51

MOGUNTIA c -0.05 -0.16 -0.40 -0.61

MOGUNTIA NHx + NOyd -0.10 -0.26 -0.73 -1.09

Without SaturationThis work

IMAGES c -0.04 -0.12 -0.57 -0.73

ECHAM c -0.05 -0.19 -0.73 -0.97

GCTM c -0.07 -0.15 -0.73 -0.95

GRANTOUR c -0.04 -0.12 -0.50 -0.66

MOGUNTIA c -0.06 -0.20 -0.64 -0.90

MOGUNTIA NHx + NOy

d-0.11 -0.29 -1.02 -1.42

Values are in units of Gt C yr-1.aBased on CO2 concentrations.

bBased on 13CO2 + CO2.cIncludes NOy deposition from fossil fuel combustion and 50% of nonfossil fuel NOy.dIncludes NOy deposition from fossil fuel combustion and 50% of nonfossil fuelNOy plus 50% of NHx deposition.

Page 9: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.
Page 10: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Wet deposition of NH4

+Wet deposition of

NO3-

Dry deposition of particulate NH4+

Dry deposition of HNO3 (g)

Dry deposition of particulate NO3

-

Holland, Braswell, Sulzman, Lamarque submitted

All units kg N ha-1 y-1

Page 11: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

How does N retention vary with N deposition?

Holland, Braswell and Bossdorf

How does N deposition impact C storage across a range of vegetation types?

Page 12: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Do these simulations provide any evidence of N saturation characterized by a non-linear

increase in outputs relative to inputs?

Holland, Braswell and Bossdorf, in prep.

    N lossesConiferous Forests current N deposition 4.71

10X 29.78Deciduous Forests Current N deposition 5.21

10X 32.14Mixed Forests Current N deposition 4.80

10X 30.82Shrublands Current N deposition 1.50  10X 10.75Savannas Current N deposition 8.78  10X 55.94Grasslands Current N deposition 5.77  10X 39.14

NO!

N losses=gaseous losses (NO + NH3 +N2O+ nitrate leaching, kg N ha-1 y-1

Page 13: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Figure 4: The correlation between NOy deposition and surface ozone concentrations predicted by IMAGES, a 3-D chemical transport model. The correlation occurs because both depend on the same sets of chemical reactions, precursors. (from Holland et al 1997, JGR Atmospheres 102:15,849-15,866).

What’s missing?

Page 14: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Vegetation Dynamics

0

0.3

-10 25 60Temperature (C)

g C

O2g

-1s

-1 Root

HeterotrophicRespiration

Ecosystem Carbon Balance

Growth Respiration

g C

O2g

-1s

-1

0 1 2

Foliage Nitrogen (%)

0 15 30

Temperature (C)

g C

O2g

-1s

-1

0 500 1000

Ambient CO2 (ppm)

Photosynthesis

0 -1 -2

Foliage Water Potential (MPa)

g C

O2g

-1s

-1

0 1500 3000

Vapor Pressure Deficit (Pa)

46

20

0 500 1000

PPFD (molm-2s-1)

46

20

46

20

Sapwood

0

0.01

-10 25 60Temperature (C)

g C

O2g

-1s

-1Foliage

0

0.5

-10 25 60Temperature (C)

g C

O2g

-1s

-1

0 15 30Temperature

(C)

Re

lativ

e R

ate

1

8

Soil Water (% saturation)

Re

lativ

e R

ate

0 1000

1

AutotrophicRespiration

Litterfall

NutrientUptake

Community Land ModelDynamic Vegetation

Bonan 2002

Page 15: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Vegetation Dynamics

Species compositionEcosystem structureNutrient availability

Minutes-To-Hours

Days-To-Weeks

Years-To-Centuries

HeatMoistureMomentum

ClimateTemperature, Precipitation,Radiation, Humidity, Wind

ChemistryCO2, CH4, N2O

Ozone, Aerosols

CO2, CH4

N2O, Dust,Volatile organic compounds

Physiology Phenology Ecosystems

Ecosystems

• Carbon uptake• Carbon loss• Nutrient uptake• Allocation

• Bud break• Leaf drop

• Litterfall• Decomposition• Mineralization• Soil chemistry

Watersheds• Evapotranspiration• Interception• Infiltration• Runoff• Snowmelt

Aer

o-dy

nam

ics

Biogeophysics

Ene

rgy

Wat

er

Ecosystem Processes

Plant Demography

Old-Growth Forest

DisturbanceFiresHurricanesLand useInvasive species

Open Site

Surface Fluxes

Ele

men

t C

ycle

s

Biogeochemistry

Can

opy

Phy

siol

ogy

Soi

l P

roce

sses

Soil water, snowpack Leaf area, leaf nutrition

Integrator Of Processes And Time-Scales

Bonan (2002) Ecological Climatology. Cambridge Univ. Press

Community Land Model

Page 16: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

BASE CASE EMISSIONS from MOZART 2 (JULY)

IsopreneFlux

NO flux

Weidenmyer, C, XX Tie, S. Levis, A. Guenther, and EA Holland

Page 17: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

What is the impact of land use change on global O3

concentrations?Change in Concentration (ppbv)

% Change

•For 25% of each grid cell in the Amazon basic, isoprene flux is increased by a factor of 8, replacement with oil palm plantations

•For 25% of each grid cell in the northwest U.S., isoprene flux is increased by a factor of 30, replacement with Poplar plantations

Weidenmyer, C, XX Tie, S. Levis, A. Guenther, and EA Holland

Page 18: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

The GLOBAL N CYCLE

Putting the pieces together

Page 19: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Sellers et al 1997, Science

Stomatal Stomatal conductanceconductance

Page 20: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

N interactions

• Dickinson, R.E., J. A. Berry, G. B.Bonan, G. J. Collatz, C. B. Field, I. Y. Fung, M. Goulden, W. A. Hoffman, R. B. Jackson, R. Myneni, P. J. Sellers and M. Shaikh, 2001: Nitrogen Controls on Climate Model Evapotranspiration. J Clim., 15, No. 3, 278-295.

RESULT: Improvements in models ability to capture

the seasonal cycle of temperature.

Page 21: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

What if?

We included N, CO2 and O3 feedbacks on stomatal conductance and the influence of stomatal conductance on dry deposition?

Page 22: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Comparison of the five models: dry deposition velocitiescm s-1

ECHAM1 GCTM2 GRANTOUR3 IMAGES4 MOGUNTIA5

O3 0.4 n/ a 0.6 0.4 grasslands0.5 savannah

1 tropical forests0.6 other forests

0.35

NO 0.04 0.25 0.10 0.6 * Vd for O3 0.40

NO2 0.25 0.25 0.50 0.6 * Vd for O3 0.25

HNO3 2.0 1.5 1.0 2.0 2.0

1 Roelofs and Lelieveld 19952 Kasibhalta et al. 1991, 1993; Levy et al. 1996 a & b; Moxim et al. 19963 Penner et al. 1991; 19934 Müller 1992; Müller and Brasseur 1995; Lamarque pers. comm.5 Dentener and Crutzen 1993

Page 23: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Deposition Velocity Calculation

Fc = Vd * CFc- flux, Vd- deposition velocity, C-

concentration

Vd =(Ra + Rb + Rs) –1

Ra-aerodyamic resistance, from CLMRb-quasi-boundary layer resistance, from CLM

Rs-surface resistanceapproach of Ganzeveld (1995, 1999) + Wesley and Hicks 2000

Page 24: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

HNO3 drydeposition(kg N ha-1 y-1)

QuickTime™ and aYUV420 codec decompressorare needed to see this picture.

0.30

0.75

.0

0.0

1.51

0.61

Holland, EA, JF Lamarque, J Sulzman, R. Braswell, submitted, Global Biogeochemical Cycles

Page 25: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

conterminous United States,

total measured N deposition= 4.54 Tg N y-1

28%

26%

24%

22%NO3-(aq)

NOy(g+particulate)

NH4+(aq)

NH4+(particulate)

NO3-(aq)

NOy (g+particulate)

NH4+

(aq)

NH4+

(particulate)

Western Europe,

total measured N deposition= 10.83 Tg N y-1

21%

11%

36%

12%

20%

NO3-(aq)

HNO3(g)+NO3-(particulate)NO2(g)

NH4+(aq)

NH4+(particulate)

NO3-(aq)

HNO3 (g)+NO3-(particulate)

NO2 (g)

NH4+

(aq)

NH4+

(particulate)

Global NOy deposition budget, from TM3, total N deposition=46.4 Tg N y-1

14%

44%

6%

5%8%

23%

NOx(g)

HNO3(g)

HNO3(aq)

organic nitrates (g)

PAN (g)

organic nitrates (aq)

NOx (aq)

HNO3 (g)

HNO3 (aq)

Organic Nitrates (g)

PAN (g)

Organic Nitrates (aq)

N deposition partitioning for two measurement compilations (Holland et al. submitted) and one model compilation (Neff et al. 2002)

Page 26: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Wet deposition of NH4

+Wet deposition of

NO3-

Dry deposition of particulate NH4+

Dry deposition of HNO3 (g)

Dry deposition of particulate NO3

-

Holland, Braswell, Sulzman, Lamarque submitted

All units kg N ha-1 y-1

Page 27: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Atmosphere photosynthesis & respiration

plants etc.

soil (microbes, roots)

Biosphere(C, H2O, N…)O2CO2

O2

O2

CO2

CO2

Pedosphere

H2O

NOy

NOx

Norg

NO3-

N2

NH4+

Norg

NO, N2O

NO2

Page 28: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Coupling C and N

Vegetation Type

Fractionwood

C:Nmicrobes

C:Nleaves

C:N wood

Tropical rainforest

0.5 14 50 150

TemperateEvergreen forest

0.5 14 70 300

Shrubland 0.5 14 60 180Grassland 0 10 55 0

Page 29: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

P. Thornton, NCAR/CGD, Sept. 2002

Page 30: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

NOx flux = Fw/ d ( T, Aw/ d) x P x CR (LAI, SAI)(ng m-2 s-1)

T-soil temperatureA-biome dependent coefficientw/ d - distingushes between wet and dry soil fluxes

for wet soils, there are 3 temperature relationships:

cold ( 0-10 °C): = 0.28 x Aw x T (a)normal (10-30 °C): = Aw x e (0.103+0.04) x T (b)

optimal (>30 °C) = 21.97 x Aw (30° substituted into b)

for dry soils, there are 2 temperature relationships:

cold (0-30 °) =Ad x T / 30°optimal (> 30° C) = Ad

P- precipitation scalar factor to adjust the flux in event of a flux depending on one of the following four states:

no rain:P=1.0

sprinkle: 0.1 < rain < 0.5 cm day-1, 5 fold increase

P= 11.19 x e -0.805 [day-1] x t (1< time (days) <3)

shower: 0.5 < rain < 1.5 cm day-1 10 fold increase

P= 14.68 x e -0.384 [day-1] x t (1< time (days) <7)

heavy rain: 1.5 < rain cm day-1 15 fold increase

P= 18.46 x e -0.208 [day-1] x t (1< time (days) <14)

pulse yield: 1.3 Tg NOx-N y-1

Soil NO flux Yienger and Levy

Page 31: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.
Page 32: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Soil N gas model

Model measurement Model measurement comparisoncomparison

Parton,1, W.J., E.A. Holland,2 S.J. Del Grosso,1 M.D. Hartman,1 R.E. Martin,3 A.R. Mosier,4 D.S. Ojima,1 and D.S. Schimel2. Generalized Model for NOx and N2O Emissions from Soils. J. Geophys. Res . 106:17,403-17,419.

Page 33: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

What is the acceleration of the N cycle?

Page 34: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.
Page 35: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.
Page 36: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

How has the quantity and pattern of N deposition changed over the last 100 years?

Page 37: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

N forcing

Summary for Policymakers, IPCC 2001

Page 38: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Compound Average RangeGreenhouse gases

CO2-fossil fuel +167% (-28 to +405)CH4 +62 (-24 to 137)N2O +44 (-19 to 148)

O3 precursors C: NMVOCs + CO +85% (-59 to 202) N: NOx +98% (-39 to 192)

Sulfate aerosolprecursors

SO2 -48 (-15 to –72)

What does the future hold ?

IPCC SRES scenario emissions: % increases projected for 2100, relative to 2000

Page 39: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

The NCAR Biogeosciences Initiative:

Elisabeth Holland (Program Leader)

Gordon Bonan

Alex Guenther

Natalie Mahowald

David Schimel

Britton Stephens

Jielun Sun

Peter Thornton

Page 40: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

0

2

4

6

8

300 yr 4.1 million yr

NO

3-N

ug

/g

0

20

40

60

80

100

300 yr 4.1 million yr

Net

Nit

rifi

cati

on

/Net

M

iner

aliz

atio

n %

0

0.5

1

1.5

2

2.5

300 yr 4.1 million yrN2O

-N a

nd

NO

-N n

g c

m-2

h-1

NO

N2O

Nitrate ConcentrationNet Nitrification

(% Net Mineralization) N Trace Gases

Page 41: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Abiotic controls on nitrification

Page 42: Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank.

Regulation of NO:N2O

ratio