Top Banner
Magnetic barriers in graphene Reinhold Egger Institut für Theoretische Physik Universität Düsseldorf A. De Martino, L. Dell’Anna DFG SFB Transregio 12
27

Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Oct 03, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic barriers in

graphene

Reinhold EggerInstitut für Theoretische Physik

Universität DüsseldorfA. De Martino, L. Dell’AnnaDFG SFB Transregio 12

Page 2: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Overview

� Introduction to graphene

� Dirac-Weyl equation� Effects of disorder and interactions

� Klein paradoxon

� Inhomogeneous magnetic fields

� (integer) Quantum Hall Effect

� Magnetic barrier

� Magnetic quantum dot

not discussed in this talk: superconductivity in graphene, bi- ormultilayer, phonon effects etc.

Ref.: De Martino, Dell‘Anna & Egger, PRL 98, 066802 (2007)

Page 3: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene

� Graphene monolayers: prepared by

mechanical exfoliation in 2004 & by epitaxial

growth in 2005 (but different properties!)

Novoselov et al., Science 2004, Nature 2005,

Zhang et al. Nature 2005, Berger et al., Science 2006

� „Parent system“ of many carbon-based

materials (nanotubes, fullerene, graphite)

� Tremendous research activity at present

review article: Geim & Novoselov, Nat. Mat. 6, 183 (2007)

Page 4: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene

� Monolayer graphene sheets (linear

dimension of order 1mm) have been

fabricated

� on top of non-crystalline substrates

� suspended membrane

� in liquid suspension

� Technologically interesting: high mobility

(comparable to good Si MOSFET), even at

room temperature

Page 5: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene: a new 2DEG

� 2DEG represents surface state: possibility to probe by STM/AFM/STS techniques

� Electron-phonon coupling: spontaneous„crumpling“ of suspended monolayer reflectsinstability of 2D membrane Meyer et al., Nature 2007

� Electronic transport� „Half-integer“ Quantum Hall effect

� „Universal conductivity“ (undoped limit)

� Perfect (Klein) tunneling through barriers

� Aspects related to Dirac fermion physics

Page 6: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene: Tight binding description

Basis contains two

atoms; nearest-neighbor hopping

connects different

sublattices

nmdda 14.0,3 ==

Wallace, Phys. Rev. 1947

Page 7: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Band structure

Exactly two independent cornerpoints K, K´ in first Brillouin zone.

Band structure: valence and conduction bands touch at corner

points (E=0), these are the Fermipoints in undoped graphene

� Low energies: Dirac light conedispersion

� Deviations at higher energies:

trigonal warping

( )

sec/106 mv

Kkq

qvqE

−=

±=rrr

rh

r

Page 8: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Dirac Weyl Hamiltonian

Low energy continuum limit:

massless relativistic quasiparticles

8 component spinor quantum field: spin, sublattice, K point („valley“) degeneracy

Pauli matrices in sublattice space:

Ψ⋅∇−Ψ=+= ∫+ )(2

' σr

hirdvHHH KK

),,,(),(,,',,,, BKBKAK

yx ↓↑↑ ΨΨΨ=Ψ L

),( yx σσσ =r

Page 9: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Electron-electron interactions

� Kinetic and Coulomb energy both scale linearly in density interaction parameter rs not tunable bygate voltage

� Simple estimate:� RG theory: interactions scale to weak coupling� Fermi liquid theory holds, but not RPA

Mishchenko, PRL 2007

� Experiments observe near cancellation of exchange and correlation energy Martin et al., cond-mat/0705.2180

� no spectacular deviations from noninteractingpredictions expected� Exceptions exist, e.g., asymmetric-in-B part of IV curve

De Martino, Egger & Tsvelik, PRL 2006

� In the following: disregard electron-electron interaction

1≈sr

Page 10: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Disorder effects

Two experimental

puzzles

� Universal minimum

conductivity ~4e2/h

� Linear dependence

of conductivity on

doping

Novoselov et al., Nature 2005

Page 11: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Theoretical implications

Experimental data can be rationalized only if

short-range impurity scattering suppressed

� Dominant mechanism: long-ranged Coulomb

scattering by defects Nomura & MacDonald, PRL 2007

� Then no K-K´ mixing

� Otherwise: strong localization expected Altland, PRL 2006

� Universal „minimum conductivity“ currently subject to

considerable & hot theoretical debateBadarzon, Twordzydlo, Brouwer & Beenakker, cond-mat/0705.0886,

Ostrovsky, Gornyi & Mirlin, PRB 2006

Page 12: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Universal minimum conductivity?

Subtle issue…

compare order of limits for the optical

conductivity of clean system at low frequency

( )h

e2

0

4

8,lim

πωσ

ω=∞=

→l

( )h

e241

,0limπ

ωσ ==∞→

ll

Ludwig et al., PRB 1994

Disorder would have to increase conductivity to explain

experimental data…

Page 13: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Klein tunneling� Dirac fermions can perfectly

tunnel through high and wide

barrier

� Electron and hole encoded in same equation (spinor!):

Charge-Conjugation Symmetry

� Graphene provides good

opportunity to study this

effect Williams, Di Carlo &

Marcus, cond-mat 0704.3487

� But: Confinement byelectrostatic fields (gates) is

then difficult

O.Klein, Z. Phys. B 1929

Katsnelson et al, Nature Phys. 2006

Page 14: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Electrostatic confinement

� Smooth electrostatic potentials: K-K´ scattering suppressed

� Single K point theory: Klein tunneling mostpronounced for normal incidence on barrier, other states may be reflected

Silvestrov & Efetov, PRL 2007

� How to produce mesoscopic structures? (quantum point contacts, quantum wires, quantum dots etc.)

� Our proposal: use magnetic barriers

Page 15: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Inhomogeneous magnetic field

Perpendicular orbital magnetic field

� Simplest level: ignore Zeeman field (and e-e interaction) electron spin irrelevant

� Consider ballistic case (for simplicity)� Disorder mostly of long-range type, preserves valley

degeneracy Nomura & MacDonald, PRL 2006

� For smooth field variation (on scale a):

K and K´ states remain decoupled,focus on single K point theory

Now: „minimal substitution“

AeyxBB z

rrr×∇== ),(

Aeiir

hh +∇−→∇−

Page 16: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Dirac-Weyl equation with magnetic field

equivalent to pair of decoupled Schrödinger-

like equations:

� Energies come in plus-minus pairs (chiralHamiltonian)

� Zeeman-like term in sublattice space

( )( ) 022

=Ψ−++∇− εσ zz BeAeir

h

( )

=

⋅+∇−

B

A

B

AAei

ψ

ψε

ψ

ψσrr

h

Page 17: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Homogeneous field

Relativistic Landau levels, 4-fold degenerate

results in „half-integer“ QHE because of

presence of zero-energy state

( ) neBvnE n 02sgn=

( )2

14 2

+= nh

exyσ

Experimentally confirmedZhang et al., Nature 2005, Novoselov et al., Nature Phys. 2006

0),( ByxB =

Page 18: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Integer QHE in graphene: expt. data

Page 19: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic barrier: Model

Consider square barrier:

Good approximation for

Convenient gauge:

y component of momentum conserved!

aBF >> λλ

>

<=

dx

dxByxB

,0

,),(

0

>

<

−<−

⋅=

dxd

dxx

dxd

eBA y

,

,

,

0

rr

edge smearing length

Page 20: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic barrier: Solution

… pair of decoupled 1D Schrödinger eqns(assume electron-like state )

Effective potentials

parametrize momentum by kinematic

incidence angle

Gauge invariant velocity:

=

φ

φ

sin

cosvv

r

( )( ) ( ) 0/

2

/

2 =−+∂− xxV BABAx ψε0>ε

( ) ( ) ( )( )2

/ xeApxeAxV yyyBA ++±=

0sin

cos

edBp

k

k

y

y

x

+==

=

φε

φε

h

Page 21: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Incoming scattering state (from left)

Left of the barrier:

Under the barrier:

Right of the barrier:

with emergence angle in

−+

=Ψ −

−φφ i

xik

i

xik

lefte

ree

e xx11

( )( )( )( )∑

±

+−

±

+±±

=ΨBByl

B

BByl

barrierlxlkD

li

lxlkD

c

B

B

/22

/2

2/)(

2/)(1

2

2

ε

ε

ε

0eBlB

h=

´

´1

´ φixik

xxrighte

ekkt x

´cos´ φε=xk

Page 22: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Perfect reflection regime

� Transmission/reflection probability

� Relation between emergence and incidence

angle from y-momentum conservation

� No solution, i.e. perfect reflection, for low

energy and/or wide barrier

22sin´sin

Bld

εφφ =−

TrRtT −=== 1,22

BB ldl /<ε opens up possibility of confining

Dirac Weyl quasiparticles

Page 23: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Transmission probability

angular plot of

transmission

probability

(away from the

perfect reflection

regime)

)(φT

Page 24: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic quantum dot

� Circularly symmetric magnetic field

� Total angular momentum is

conserved, good quantum number

� gives Dirac-Weyl radial (1D) equations

zerBBrr

)(=

2ziJ

σθ +∂−=

2/1±= mj

( )( ) ( )

=

+

re

re

m

mi

m

im

B

A

χ

φψ

ψθ

θ

1 ( )mm

m

mmm

ir

rm

dr

d

ir

rm

dr

d

εφχϕχ

εχφϕφ

=++

+

=+

1

)(

( ) ∫=r

rBdrrer0

´)(´´ϕMagnetic flux through discof radius r in flux quanta

Page 25: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Simple model for magnetic dot

Again simple step-type model:

Solution:

( )

>

<=

RrB

RrrB

,

,0

0

2

2

22

2

~

2/

B

B

lr

mm

lR

=

−=

=

ξ

δ

δ( ) ( )( )

( )

+−+Ψ×

=>

=<−

>

<

ξε

θ

ξφ

εφξ

;~1,2

~~122

2/2/~

ml

mm

eaRr

rJaRr

B

m

m

mm

missing flux through dot

(in flux quanta)

degenerate hyper-

geometric function

Matching problem gives energyquantization condition!

Page 26: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic dot eigenenergies

(above zero, but below first bulk Landau level)

Energy levels

tunable via magnetic field

Estimate:

meVEl

nmlTB

B

B

441

,1340

=⇔=

=⇒=

ε

02

2

2B

lR

B

∝=δ

Page 27: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Conclusions

� Graphene as model 2DEG system made of

relativistic Dirac fermions

� Klein tunneling: Dirac fermions cannot be

easily trapped by electrostatic fields

� Magnetic fields (inhomogeneous) can confine

Dirac fermions. Solution discussed for

� Magnetic barrier (square barrier)

� Magnetic dot (circular confinement)