Top Banner
Linearized Lateral-Directional Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012 Spiral, Dutch roll, and roll modes Stability derivatives Copyright 2012 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html 6-Component Lateral-Directional Equations of Motion State Vector, 6 components Nonlinear Dynamic Equations v = Y / m + g sinφ cosθ ru + pw y I = cosθ sinψ ( ) u + cosφ cosψ + sinφ sinθ sinψ ( ) v + sinφ cosψ + cosφ sinθ sinψ ( ) w p = I zz L + I xz N I xz I yy I xx I zz ( ) p + I xz 2 + I zz I zz I yy ( ) % & ' ( r { } q ( ) ÷ I xx I zz I xz 2 ( ) r = I xz L + I xx N I xz I yy I xx I zz ( ) r + I xz 2 + I xx I xx I yy ( ) % & ' ( p { } q ( ) ÷ I xx I zz I xz 2 ( ) φ = p + q sinφ + r cosφ ( ) tanθ ψ = q sinφ + r cosφ ( ) secθ x 1 x 2 x 3 x 4 x 5 x 6 ! " # # # # # # # # $ % & & & & & & & & = x LD6 = v y p r φ ψ ! " # # # # # # # # $ % & & & & & & & & = Side Velocity Crossrange Body Axis Roll Rate Body Axis Yaw Rate Roll Angle about Body x Axis Yaw Angle about Inertial x Axis ! " # # # # # # # # $ % & & & & & & & & Douglas A-4 4- Component Lateral-Directional Equations of Motion State Vector, 4 components Nonlinear Dynamic Equations, neglecting crossrange and yaw angle v = Y / m + g sin φ cosθ ru + pw p = I zz L + I xz N I xz I yy I xx I zz ( ) p + I xz 2 + I zz I zz I yy ( ) $ % & ' r { } q ( ) ÷ I xx I zz I xz 2 ( ) r = I xz L + I xx N I xz I yy I xx I zz ( ) r + I xz 2 + I xx I xx I yy ( ) $ % & ' p { } q ( ) ÷ I xx I zz I xz 2 ( ) φ = p + q sin φ + r cos φ ( ) tanθ x 1 x 2 x 3 x 4 ! " # # # # # $ % & & & & & = x LD 4 = v p r φ ! " # # # # # $ % & & & & & = Side Velocity Body Axis Roll Rate Body Axis Yaw Rate Roll Angle about Body x Axis ! " # # # # # $ % & & & & & Eurofighter Typhoon Lateral-Directional Equations of Motion Assuming Steady, Level Longitudinal Flight Nonlinear dynamic equations, assuming steady, level, flight (longitudinal variables are constant ) v = Y B / m + g sin φ cosθ N ru N + pw N = Y B / m + g sin φ cos α N ru N + pw N p = I zz L B + I xz N B ( ) I xx I zz I xz 2 ( ) r = I xz L B + I xx N B ( ) I xx I zz I xz 2 ( ) φ = p + r cos φ ( ) tanθ N = p + r cos φ ( ) tan α N q N = 0 γ N = 0 θ N = α N Lockheed F-117
11

Mae 331 Lecture 12

Jul 20, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mae 331 Lecture 12

Linearized Lateral-Directional Equations of Motion

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012"

•  Spiral, Dutch roll, and roll modes"

•  Stability derivatives"

Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.!http://www.princeton.edu/~stengel/MAE331.html!

http://www.princeton.edu/~stengel/FlightDynamics.html!

6-Component "Lateral-Directional

Equations of Motion"

State Vector, 6 components!

Nonlinear Dynamic Equations!

v = Y / m + gsinφ cosθ − ru + pwyI = cosθ sinψ( )u + cosφ cosψ + sinφ sinθ sinψ( )v + − sinφ cosψ + cosφ sinθ sinψ( )w

p = IzzL + IxzN − Ixz Iyy − Ixx − Izz( ) p + Ixz2 + Izz Izz − Iyy( )%& '(r{ }q( ) ÷ Ixx Izz − Ixz

2( )r = IxzL + IxxN − Ixz Iyy − Ixx − Izz( )r + Ixz

2 + Ixx Ixx − Iyy( )%& '( p{ }q( ) ÷ Ixx Izz − Ixz2( )

φ = p + qsinφ + r cosφ( ) tanθψ = qsinφ + r cosφ( )secθ

x1x2x3x4x5x6

!

"

########

$

%

&&&&&&&&

= xLD6 =

vyprφ

ψ

!

"

########

$

%

&&&&&&&&

=

Side VelocityCrossrange

Body − Axis Roll RateBody − Axis Yaw Rate

Roll Angle about Body x AxisYaw Angle about Inertial x Axis

!

"

########

$

%

&&&&&&&&

Douglas A-4!

4- Component "Lateral-Directional

Equations of Motion"

State Vector, 4 components!

Nonlinear Dynamic Equations, neglecting crossrange and yaw angle!

v = Y / m + gsinφ cosθ − ru + pw

p = IzzL + IxzN − Ixz Iyy − Ixx − Izz( ) p + Ixz2 + Izz Izz − Iyy( )$% &'r{ }q( ) ÷ Ixx Izz − Ixz

2( )r = IxzL + IxxN − Ixz Iyy − Ixx − Izz( )r + Ixz

2 + Ixx Ixx − Iyy( )$% &' p{ }q( ) ÷ Ixx Izz − Ixz2( )

φ = p + qsinφ + r cosφ( ) tanθ

x1x2x3x4

!

"

#####

$

%

&&&&&

= xLD4 =

vprφ

!

"

#####

$

%

&&&&&

=

Side VelocityBody − Axis Roll RateBody − Axis Yaw Rate

Roll Angle about Body x Axis

!

"

#####

$

%

&&&&&

Eurofighter Typhoon!

Lateral-Directional Equations of Motion Assuming Steady,

Level Longitudinal Flight"Nonlinear dynamic equations, assuming steady, level,

flight (longitudinal variables are constant )!

v =YB /m+ gsinφ cosθN − ruN + pwN

=YB /m+ gsinφ cosαN − ruN + pwN

p = IzzLB + IxzNB( ) Ixx Izz − Ixz2( )

r = IxzLB + IxxNB( ) Ixx Izz − Ixz2( )

φ = p+ r cosφ( ) tanθN = p+ r cosφ( ) tanαN

qN = 0γN = 0θN =αN

Lockheed F-117!

Page 2: Mae 331 Lecture 12

Lateral-Directional Force and Moments"

YB =CYB

12ρNVN

2S; Body− Axis Side Force

LB =ClB

12ρNVN

2Sb; Body− Axis Rolling Moment

NB =CnB

12ρNVN

2Sb; Body− Axis Yawing Moment

Linearized Equations of Motion�

Body-Axis Perturbation Equations of Motion"

Δ v(t)Δp(t)Δr(t)Δ φ(t)

#

$

%%%%%

&

'

(((((

=

∂ f1∂v

∂ f1∂ p

∂ f1∂r

∂ f1∂φ

∂ f2∂v

∂ f2∂ p

∂ f2∂r

∂ f2∂φ

∂ f3∂v

∂ f3∂ p

∂ f3∂r

∂ f3∂φ

∂ f4∂v

∂ f4∂ p

∂ f4∂r

∂ f4∂φ

#

$

%%%%%%%%%%%

&

'

(((((((((((

Δv(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((

+ Control[ ]+ Disturbance[ ]

Body-Axis Perturbation Variables"

Δu1Δu2

"

#$$

%

&''=

ΔδAΔδR

"

#$

%

&' =

Aileron PerturbationRudder Perturbation

"

#$$

%

&''

Δw1Δw2

"

#$$

%

&''=

ΔδAΔδR

"

#$

%

&' =

SideWind PerturbationVortical Wind Perturbation

"

#$$

%

&''

ΔvΔpΔrΔφ

#

$

%%%%%

&

'

(((((

=

Side Velocity PerturbationBody − Axis Roll Rate PerturbationBody − Axis Yaw Rate Perturbation

Roll Angle about Body x Axis Perturbation

#

$

%%%%%

&

'

(((((

Page 3: Mae 331 Lecture 12

Linearized Lateral-Directional Response to Yaw Rate Initial

Condition"

~Roll-mode response of roll angle!

~Spiral-mode response of crossrange!

~Spiral-mode response of yaw angle!

~Dutch-roll-mode response of side velocity!

~Dutch-roll-mode response of roll and yaw rates!

Dimensional Stability-and-Control Derivatives"

∂ f1 ∂v ∂ f1 ∂ p ∂ f1 ∂r ∂ f1 ∂φ∂ f2 ∂v ∂ f2 ∂ p ∂ f2 ∂r ∂ f2 ∂φ∂ f3 ∂v ∂ f3 ∂ p ∂ f3 ∂r ∂ f3 ∂φ∂ f4 ∂v ∂ f4 ∂ p ∂ f4 ∂r ∂ f4 ∂φ

#

$

%%%%%

&

'

(((((

Stability Matrix!

=

Yv Yp +wN( ) Yr −uN( ) gcosθNLv Lp Lr 0

Nv Np Nr 0

0 1 tanθN 0

#

$

%%%%%%

&

'

((((((

Dimensional Stability-and-Control Derivatives"∂ f1 ∂δA ∂ f1 ∂δR∂ f2 ∂δA ∂ f2 ∂δR∂ f3 ∂δA ∂ f3 ∂δR∂ f4 ∂δA ∂ f4 ∂δR

#

$

%%%%%

&

'

(((((

=

YδA YδRLδA LδRNδA NδR

0 0

#

$

%%%%%

&

'

(((((

∂ f1 ∂vwind ∂ f1 ∂ pwind∂ f2 ∂vwind ∂ f2 ∂ pwind∂ f3 ∂vwind ∂ f3 ∂ pwind∂ f4 ∂vwind ∂ f4 ∂ pwind

"

#

$$$$$

%

&

'''''

=

Yv YpLv Lp

Nv Np

0 0

"

#

$$$$$

%

&

'''''

Control Effect Matrix!

Disturbance Effect Matrix!

Stability Axes�

Page 4: Mae 331 Lecture 12

Stability Axes"•  Alternative set of body axes"•  Nominal x axis is offset from the body centerline by

the nominal angle of attack, αN "

Transformation from Original Body Axes to Stability Axes"

HBS =

cosαN 0 sinαN

0 1 0−sinαN 0 cosαN

#

$

%%%

&

'

(((

ΔuΔvΔw

"

#

$$$

%

&

'''S

= HBS

ΔuΔvΔw

"

#

$$$

%

&

'''B

ΔpΔqΔr

"

#

$$$

%

&

'''S

= HBS

ΔpΔqΔr

"

#

$$$

%

&

'''B

•  Side velocity (Δv) and pitch rate (Δq) are unchanged by the transformation "

Stability-Axis State "•  Rotate body axes to stability axes"

Δv(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((Body−Axis

⇒αN ⇒

Δv(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((Stability−Axis

Stability-Axis State"

Δv(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((Stability−Axis

⇒Δβ ≈ΔvVN

Δβ(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((Stability−Axis

•  Replace side velocity by sideslip angle"

Page 5: Mae 331 Lecture 12

Stability-Axis State"

Δβ(t)Δp(t)Δr(t)Δφ(t)

$

%

&&&&&

'

(

)))))Stability−Axis

Δr(t)Δβ(t)Δp(t)Δφ(t)

$

%

&&&&&

'

(

)))))Stability−Axis

=

Stability− Axis Yaw Rate PerturbationSideslip Angle Perturbation

Stability− Axis Roll Rate PerturbationStability− Axis Roll Angle Perturbation

$

%

&&&&&

'

(

)))))

•  Revise state order"

Stability-Axis Lateral-Directional Equations"

Δr(t)Δ β(t)Δp(t)Δ φ(t)

$

%

&&&&&

'

(

)))))S

=

Nr Nβ Np 0

YrVN

−1+

,-

.

/0

YβVN

YpVN

gcosγNVN

Lr Lβ Lp 0

tanγN 0 1 0

$

%

&&&&&&&

'

(

)))))))S

Δr(t)Δβ(t)Δp(t)Δφ(t)

$

%

&&&&&

'

(

)))))S

+

NδA NδR

YδAVN

YδRVN

LδA LδR0 0

$

%

&&&&&&

'

(

))))))S

ΔδA(t)ΔδR(t)

$

%&&

'

())+

Nβ Np

YβVN

YpVN

Lβ Lp

0 0

$

%

&&&&&&&

'

(

)))))))S

ΔβwindΔpwind

$

%&&

'

())

Why Modify the Equations?"•  Dutch-roll mode is primarily described by stability-axis yaw

rate and sideslip angle"

•  Roll and spiral mode are primarily described by stability-axis roll rate and roll angle"

•  Linearized equations allow the three modes to be studied"

Stable Spiral!

Unstable Spiral!Roll!

Dutch Roll, top! Dutch Roll, front!

Why Modify the Equations?"

FLD =FDR FRS

DR

FDRRS FRS

!

"

##

$

%

&&=

FDR smallsmall FRS

!

"##

$

%&&≈

FDR 00 FRS

!

"##

$

%&&

Effects of Dutch roll perturbations on Dutch roll motion"

Effects of Dutch roll perturbations on roll-spiral motion"

Effects of roll-spiral perturbations on Dutch roll motion"

Effects of roll-spiral perturbations on roll-spiral motion"

... but are the off-diagonal blocks really small?!

Dassault Rafale!

Page 6: Mae 331 Lecture 12

Stability, Control, and Disturbance Matrices"

FLD =FDR FRS

DR

FDRRS FRS

!

"

##

$

%

&&=

Nr Nβ Np 0

YrVN

−1)

*+

,

-.

YβVN

YpVN

gcosγNVN

Lr Lβ Lp 0

tanγN 0 1 0

!

"

#######

$

%

&&&&&&&

GLD =

NδA NδR

YδAVN

YδRVN

LδA LδR0 0

"

#

$$$$$$

%

&

''''''

LLD =

Nβ Np

YβVN

YpVN

Lβ Lp

0 0

"

#

$$$$$$$

%

&

'''''''

Δx1Δx2Δx3Δx4

"

#

$$$$$

%

&

'''''

=

ΔrΔβ

ΔpΔφ

"

#

$$$$$

%

&

'''''

Δu1Δu2

"

#$$

%

&''=

ΔδAΔδR

"

#$

%

&'

Δw1Δw2

"

#$$

%

&''=

ΔδAΔδR

"

#$

%

&'

Lateral-Directional Stability Derivatives�

2nd-Order Approximate Modes of Lateral-Directional Motion�

2nd-Order Approximations in System Matrices"

FLD =FDR 00 FRS

!

"##

$

%&&=

Nr Nβ 0 0

YrVN

−1)

*+

,

-.

YβVN

0 0

0 0 Lp 0

0 0 1 0

!

"

#######

$

%

&&&&&&&

GLD =

NδA 0YδAVN

0

0 LδR0 0

"

#

$$$$$$

%

&

''''''

LLD =

Nβ 0

YβVN

0

0 Lp

0 0

"

#

$$$$$$$

%

&

'''''''

Page 7: Mae 331 Lecture 12

Second-Order Models of Lateral-Directional Motion"

•  Approximate Spiral-Roll Equation"

•  Approximate Dutch Roll Equation"

ΔxDR =ΔrΔ β

#

$%%

&

'((≈

Nr Nβ

YrVN

−1+

,-

.

/0

YβVN

#

$

%%%%

&

'

((((

ΔrΔβ

#

$%%

&

'((+

NδR

YδRVN

#

$

%%%

&

'

(((ΔδR+

YβVN

#

$

%%%%

&

'

((((

Δβwind

ΔxRS =ΔpΔ φ

#

$%%

&

'((≈

Lp 0

1 0

#

$%%

&

'((

ΔpΔφ

#

$%%

&

'((+

LδA0

#

$%%

&

'((ΔδA +

Lp

0

#

$%%

&

'((Δpwind

Approximate Roll and Spiral Modes"

ΔpΔ φ

#

$%%

&

'((=

Lp 0

1 0

#

$%%

&

'((

ΔpΔφ

#

$%%

&

'((+

LδA0

#

$%%

&

'((ΔδA

ΔRS (s) = s s − Lp( )λS = 0λR = Lp

•  Characteristic polynomial has real roots"

•  Roll rate is damped by Lp"•  Roll angle is a pure integral of roll rate"

Δp t( ) Δφ t( )

•  Initial condition response"

Neutral stability!

Generally < 0!

Roll Damping Due to Roll Rate, Lp!Lp ≈ Clp

ρVN2

2Ixx

#

$%

&

'(Sb =Clp̂

b2VN

#

$%

&

'(ρVN

2

2Ixx

#

$%

&

'(Sb

=Clp̂

ρVN4Ixx

#

$%

&

'(Sb2

Clp̂( )Wing

=∂ ΔCl( )Wing

∂ p̂= −

CLα

121+ 3λ1+ λ

&'(

)*+

•  Wing with taper"

•  Thin triangular wing"Clp̂( )

Wing= −

πAR32

Clp̂≈ Clp̂( )

Vertical Tail+ Clp̂( )

Horizontal Tail+ Clp̂( )

Wing

•  Vertical tail, horizontal tail, and wing are principal contributors"

< 0 for stability!

NACA-TR-1098, 1952!NACA-TR-1052, 1951 !

Roll Damping Due to Roll Rate, Lp!

•  Tapered vertical tail"

•  Tapered horizontal tail"

p̂ = pb2VN

Clp̂( )ht =∂ ΔCl( )ht∂ p̂

= −CLαht

12ShtS

%

&'

(

)*1+ 3λ1+λ

%

&'

(

)*

•  pb/2VN describes helix angle for a steady roll"

Clp̂( )vt =∂ ΔCl( )vt∂ p̂

= −CYβvt

12SvtS

%

&'

(

)*1+ 3λ1+λ

%

&'

(

)*

Page 8: Mae 331 Lecture 12

Approximate Dutch Roll Mode"

ΔrΔ β

#

$%%

&

'((=

Nr Nβ

YrVN

−1*

+,

-

./

YβVN

#

$

%%%%

&

'

((((

ΔrΔβ

#

$%%

&

'((+

NδR

YδRVN

#

$

%%%

&

'

(((ΔδR

ΔDR(s)= s2 − Nr +

YβVN

$

%&

'

()s+ Nβ 1−

YrVN( )+Nr

YβVN

*

+,-

./

ωnDR= Nβ 1−

YrVN( )+Nr

YβVN

ζDR = − Nr +YβVN

$

%&

'

() 2 Nβ 1−

YrVN( )+Nr

YβVN

ωnDR= Nβ +Nr

YβVN

ζDR = − Nr +YβVN

%

&'

(

)* 2 Nβ +Nr

YβVN

•  With negligible side-force sensitivity to yaw rate, Yr"

•  Characteristic polynomial, natural frequency, and damping ratio"

Initial Condition Response of Approximate Dutch Roll Mode"

Δr t( ) Δβ t( )

Side Force due to Sideslip Angle"

Y ≈∂CY

∂βqS•β =CYβ

qS•β

CYβ≈ CYβ( )Fuselage + CYβ( )Vertical Tail + CYβ( )Wing

CYβ( )Vertical Tail ≈∂CY

∂β

$

%&

'

()vt

ηvt

SVerticalTailS

CYβ( )Fuselage ≈ −2SBaseS; SB =

πdBase2

4

CYβ( )Wing ≈ −CDParasite,Wing− kΓ2

ηvt = Vertical tail efficiency

k = πAR1+ 1+ AR2

Γ = Wing dihedral angle, rad

•  Fuselage, vertical tail, and wing are main contributors"

Yawing Moment due to Sideslip Angle!

N ≈∂Cn

∂βρV 2

2%

&'

(

)*Sb•β =Cnβ

ρV 2

2%

&'

(

)*Sb•β

!  Side force contributions times respective moment arms"–  Non-dimensional stability

derivative"

Cnβ≈ Cnβ( )

Vertical Tail+ Cnβ( )

Fuselage+ Cnβ( )

Wing+ Cnβ( )

Propeller

Page 9: Mae 331 Lecture 12

Cnβ( )

Vertical Tail≈ −CYβvt

ηvtSvtlvtSb −CYβvt

ηvtVVT

Vertical tail contribution"

VVT =

SvtlvtSb

=Vertical Tail Volume Ratio

ηvt =ηelas 1+∂σ ∂β( ) Vvt2

VN2

%

&'

(

)*

Yawing Moment due to Sideslip Angle!

lvt Vertical tail length (+)= distance from center of mass to tail center of pressure= xcm − xcpvt [x is positive forward; both are negative numbers]

Cnβ( )Fuselage =−2K VolumeFuselage

Sb

K = 1−dmax Lengthfuselage"

#$

%

&'1.3

Fuselage contribution"

Cnβ( )Wing = 0.75CLNΓ+ fcn Λ,AR,λ( )CLN

2

Wing (differential lift and induced drag) contribution"

Yawing Moment due to Sideslip Angle!

Yaw Damping Due to Yaw Rate, Nr!•  Dimensional stability derivative"

Nr ≈ Cnr

ρVN2

2Izz

#

$%

&

'(Sb =Cnr̂

b2VN

#

$%

&

'(ρVN

2

2Izz

#

$%

&

'(Sb

=Cnr̂

ρVN4Izz

#

$%

&

'(Sb2 < 0 for stability!

•  High wing-sweep angle can lead to Nr > 0"

Martin Marietta X-24B!

Yaw Damping Due to Yaw Rate, Nr!Cnr̂

≈ Cnr̂( )Vertical Tail

+ Cnr̂( )Wing

Cnr̂( )Wing

= k0CL2 + k1CDParasite,Wing

k0 and k1 are functions of aspect ratio and sweep angle"

•  Wing contribution"

•  Vertical tail contribution"Δ Cn( )Vertical Tail = − Cnβ( )Vertical Tail

rlvtVN( ) = − Cnβ( )Vertical Tail

lvtb

$

%&

'

()bVN

$

%&

'

()r

r̂ = rb2VN

Cnr̂( )vt =∂Δ Cn( )Vertical Tail∂ rb

2VN( )=∂Δ Cn( )Vertical Tail

∂ r̂= −2 Cnβ( )Vertical Tail

lvtb

%

&'

(

)*

NACA-TR-1098, 1952!NACA-TR-1052, 1951 !

Page 10: Mae 331 Lecture 12

Comparison of Fourth- and Second-Order

Dynamic Models�

•  2nd-order-model eigenvalues are close to those of the 4th-order model"•  Eigenvalue magnitudes of Dutch roll and roll roots are similar"

Bizjet Fourth- and Second-Order Models and Eigenvalues "

Fourth-Order ModelF = G = Eigenvalue Damping Freq. (rad/s)

-0.1079 1.9011 0.0566 0 0 -1.1196 0.00883

-1 -0.1567 0 0.0958 0 0 -1.20.2501 -2.408 -1.1616 0 2.3106 0 -1.16e-01 + 1.39e+00j 8.32E-02 1.39E+00

0 0 1 0 0 0 -1.16e-01 - 1.39e+00j 8.32E-02 1.39E+00

Dutch Roll ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

-0.1079 1.9011 -1.1196 -1.32e-01 + 1.38e+00j 9.55E-02 1.38E+00

-1 -0.1567 0 -1.32e-01 - 1.38e+00j 9.55E-02 1.38E+00

Roll-Spiral ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

-1.1616 0 2.3106 0

1 0 0 -1.16

Unstable!

Comparison of Second- and Fourth-Order Initial-Condition Responses of Business Jet"

Fourth-Order Response! Second-Order Response!

•  Speed and damping of responses is adequately portrayed by 2nd-order models"•  Roll-spiral modes have little effect on yaw rate and sideslip angle responses"•  Dutch roll mode has large effect on roll rate and roll angle responses"

Primary Lateral-Directional Control Derivatives"

LδA =ClδA

ρVN2

2Ixx

#

$%

&

'(Sb

NδR =CnδR

ρVN2

2Izz

#

$%

&

'(Sb

Page 11: Mae 331 Lecture 12

Next Time:�Analysis of Time Response�

�Reading�

Flight Dynamics, 298-314, 338-342 �

Virtual Textbook, Part 13 �

Supplemental Material"

Δ v(t)Δp(t)Δr(t)Δ φ(t)

#

$

%%%%%

&

'

(((((

=

Yv Yp +wN( ) Yr −uN( ) gcosθNLv Lp Lr 0

Nv Np Nr 0

0 1 tanθN 0

#

$

%%%%%%

&

'

((((((

Δv(t)Δp(t)Δr(t)Δφ(t)

#

$

%%%%%

&

'

(((((

+

YδA YδRLδA LδRNδA NδR

0 0

#

$

%%%%%

&

'

(((((

ΔδA(t)ΔδR(t)

#

$%%

&

'((+

Yv YpLv Lp

Nv Np

0 0

#

$

%%%%%

&

'

(((((

ΔvwindΔpwind

#

$%%

&

'((

•  Rolling and yawing motions"

Body-Axis Perturbation Equations of Motion"