Top Banner
Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014 1 M2 EEA – Systèmes Microélectroniques Polytech’montpellier – MEA 4 Analog Integrated Circuits Design Chapter IV Basic and Advanced Current Sources Pascal Nouet / 2014-2015 [email protected] http://www2.lirmm.fr/~nouet/homepage/lecture_ressources.html Lecture material download http://www2.lirmm.fr/~nouet/homepage/lecture_ressources.html
24

M2 EEA – Systèmes Microélectroniques Polytech’montpellier ...nouet/homepage/pdf_files/S4-2014.pdf · M2 EEA – Systèmes Microélectroniques Polytech’montpellier – MEA

Jan 25, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    1

    M2 EEA – Systèmes Microélectroniques Polytech’montpellier – MEA 4

    Analog Integrated Circuits Design Chapter IV

    Basic and Advanced Current Sources

    Pascal Nouet / 2014-2015 [email protected]

    http://www2.lirmm.fr/~nouet/homepage/lecture_ressources.html

    Lecture material download

    http://www2.lirmm.fr/~nouet/homepage/lecture_ressources.html

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    2

    Introduction

    •  Analog Integrated Circuits are based on elementary stages –  Voltage references –  Current mirrors –  Current sources –  Amplifier stages

    •  Main characteristics of a current mirror –  Current flow to Vss (ground) or from Vdd –  Coefficient of recopy –  Quality of recopy

    • High output resistance •  Range of output voltages (output dynamic)

    Outline

    •  Elementary current mirror –  Principle –  Output resistance

    •  Elementary stages for increased output resistance

    •  Other elementary current mirrors •  Elementary current sources •  Overview of advanced current sources •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    3

    Current mirroring principle

    •  Biasing (Large Signal Analysis): –  T1 is saturated è Iin = Ids1 = f(Vgs1) = f(Veff1) –  T2 must be saturated to deliver a constant current

    •  Veff2=Veff1 à Output dynamic: Vds ≥ Veff

    •  Small-Signal Analysis à Output resistance

    Vs

    Iin IS

    T1 T2 vs

    gm.vgs2 rds2 vgs2

    iS

    1/gm1

    Is = Idsat =µnCox2

    WLVeff2 = Iin

    vsis= rds2 =

    1λIdsat

    Elementary current mirror: output resistance

    Vs

    Iin IS

    T1 T2

    Impact of Idsat

    y  =  0,0044x

    0,00E+00

    5,00E-‐02

    1,00E-‐01

    1,50E-‐01

    2,00E-‐01

    2,50E-‐01

    3,00E-‐01

    3,50E-‐01

    4,00E-‐01

    4,50E-‐01

    5,00E-‐01

    0,00E+00 2,00E+01 4,00E+01 6,00E+01 8,00E+01 1,00E+02

    gds  (µA/V)Linéaire  (gds  (µA/V))

    Ids (µA) Vds (V)

    Ids (A)

    gds (µA /V ) =1

    rds (MΩ)≅ λ(V −1) ⋅ Idsat (µA)

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    4

    Elementary current mirror: output resistance

    Vs

    Iin IS

    T1 T2

    Impact of transistor length

    Vds (V)

    Ids (A)

    y  =  0,093x  +  2,718

    0,00E+00

    2,00E+00

    4,00E+00

    6,00E+00

    8,00E+00

    1,00E+01

    1,20E+01

    1,40E+01

    0,00E+00 2,00E+01 4,00E+01 6,00E+01 8,00E+01 1,00E+02

    rds  (Mohms)

    L (µm)

    rds ≅Ve(V / µm) ⋅L(µm)

    Idsat (A)+ r0

    Elementary current mirror: output resistance

    Vs

    Iin IS

    T1 T2

    Impact of transistor size (W/L)

    Vds (V)

    Ids (A)

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    4,5

    0 10 20 30 40 50

    rds  (Mohms)

    W/L

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    5

    Elementary current mirror: summary

    •  Impact of Idsat –  Output resistance is divided by two

    when current is multiplied by two

    •  Impact of transistor size –  Output resistance doubled when transistor length is

    multiplied by two (constant W/L)

    •  Useful equations –  Working with constant Veff

    and transistor length

    –  General case à rds α L

    Vs

    Iin IS

    T1 T2

    isvs=1rds=∂Ids∂Vds

    ≅ λ(V −1) ⋅ Idsat (A)

    rds ≅Ve(V / µm) ⋅L(µm)

    Idsat (A)+ r0

    Outline

    •  Elementary current mirror •  Elementary stages for increased output

    resistance –  Degenerated source current mirror –  Cascode current mirror

    •  Other elementary current mirrors •  Elementary current sources •  Overview of advanced current sources •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    6

    Degenerated source current mirror

    •  Large-Signal Analysis –  T1 always saturated –  Output dynamic à saturation of T2

    •  Small-Signal Analysis –  Output resistance

    vs

    Rs vs2

    iS

    Rs

    gm2.vgs2 rds2 vg2

    1/gm1 Iin IS

    T1 T2

    Rs Rs

    effinSS VIRV +>

    ( )smdss

    S Rgriv

    22 1+≅Is = Idsat =µnCox2

    WLVeff2 = Iin

    Degenerated source current mirror

    Impact of Rs

    50µA IS

    T1 T2

    Rs Rs

    y  =  0,9914x  +  3,4627

    0,0

    5,0

    10,0

    15,0

    20,0

    25,0

    0 5 10 15 20 25

    rout  (MOhms)

    Rs(kΩ)

    rout = rds2 + 1+ gm2rds2( )Rs → gm2rds2 ≅2IVeff

    1λnI

    =2

    λnVeff≈1000

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    7

    Outline

    •  Elementary current mirror •  Elementary stages for increased output

    resistance –  Degenerated source current mirror –  Cascode current mirror

    •  Other elementary current mirrors •  Elementary current sources •  Overview of advanced current sources •  PMOS current sources

    Cascode current mirror

    •  Large-Signal Analysis –  T1 and T3 are saturated, T2 also –  Output dynamic à saturation of T4

    •  Small-Signal Analysis –  Output resistance

    Iin IS

    T1 T2

    T3 T4 vs gm2.vgs2 rds2

    vg2

    iS

    1/gm1

    gm4.vgs4 rds4 vg4

    1/gm3

    vs2

    vs4

    efftnS VVV ⋅+> 2

    424 dsdsmS

    S rrgiv

    VS

    Id1 = Id2 = Id3 = Id 4 = Iin

    Is = Idsat =µnCox2

    WLVeff2 = Iin

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    8

    Cascode current mirror

    200µA IS

    T1 T2

    T3 T4

    Impact of W/L

    Vds (V)

    Ids (A)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    1 10 100

    rout  (MOhms)

    W/L

    Outline

    •  Elementary current mirror •  Elementary stages for increased output

    resistance •  Other elementary current mirrors •  Elementary current sources •  Overview of advanced current sources •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    9

    Wilson current mirror

    •  Similar performance to cascode mirror

    •  Substrate bias effect:

    Iin IS

    T1 T2

    T3 T4 vx

    vgs1

    ix

    1/gm2

    gm4.vgs4 rds4 vgs4 1/gm3

    gm1.vgs1 rds1

    ( ) 4144 dsdssms

    S rrggiv

    +≅⇒

    indddd IIIII ==== 4321

    Is = Idsat =µnCox2

    WLVeff2 = Iin VS >Vtn + 2 ⋅Veff

    vSis≅ gm4rds1rds4

    PMOS Current Mirrors

    •  Every NMOS current mirror has a PMOS dual •  Caracteristics are identical and easy to

    transpose: Vsmin à Vsmax, rout

    IS

    Iin

    Vdd

    T2 T1

    T4 T3

    IS

    Iin

    Vdd

    T2 T1

    T4 T3 IS

    Iin

    Vdd

    T2 T1 IS

    Iin

    Vdd

    T2 T1 RS RS

    rout ≅ rds

    rout ≅ gmrdsrds

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    10

    Non-symetrical mirrors

    •  Different ratio W/L may be used in the output branch (generally X>1 à output current higher than reference current)

    •  Same Veff for all transistors means current proportionnal to W/L:

    Vs

    Iin IS

    T1 T2

    1 : X

    Vs

    Iin IS

    T1 T2

    T3 T4

    1 : X

    Iin IS

    T1 T2

    T3 T4 Vs

    1 : X

    in2neff

    2out

    in2neff

    1out

    tneff2S

    tneff1S

    2Sin1S

    I.XV

    2r

    IV

    2r

    VV.2V

    VV.2VXI

    II

    λ≅

    λ≅

    +>

    +>

    ==

    inn2out

    inn1out

    eff2Seff1S

    2Sin1S

    I.X1

    rI1

    r

    VVVVXI

    II

    λ≅

    λ≅

    >>

    ==

    ;

    ;

    Multiple outputs current mirrors

    •  One reference branch may be connected to as many output branches as recessary for the application

    •  Each output may deliver a different ratio of current •  Each output may have a different output resistance

    Iin VS1

    IS1

    VS2 IS2

    nLW

    = nLW

    =

    nXLW

    =

    nLW

    = nLW

    =

    nXLW

    =

    VS1 Iin IS1

    nLW

    = nLW

    =

    IS2

    nXLW

    =

    VS2

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    11

    1,00E+03

    1,00E+04

    1,00E+05

    1,00E+06

    1,00E+07

    1,00E+08

    1,00E+09

    1,00E+10

    0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50

    Miroir  simple

    SD1

    SD2

    Cascode

    Wilson

    Overview of output resistance of elementary current mirors

    )(ΩoutR

    )(VVS

    Outline

    •  Elementary current mirror •  Elementary stages for increased output

    resistance •  Other elementary current mirrors •  Elementary current sources

    –  Resistance biasing –  Transistor biasing –  Impact of Vdd and T°C

    •  Overview of advanced current sources •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    12

    From current mirrors towards current sources

    •  Analog Integrated Circuits are based on elementary stages –  Voltage references –  Current mirrors –  Current sources –  Amplifier stages

    Vdd

    R

    Vs

    Iin IS

    T1 T2

    I=f(V)

    T1

    Ibias Iout

    Vdd

    T2

    Rp

    V1

    Current flowing through ground

    or from Vdd

    Ideal versus actual current sources

    Is0

    VS

    I0

    VS

    IS

    Vmin

    ROUT

    Vdd ö

    Vdd ø

    Output Resistance and dynamics

    Sensitivity to Vdd and T°C

    Power consumption

    Rout

    ISmin

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    13

    Resistance biasing

    •  NMOS current sources

    •  Sizing –  Output dynamics à Veff –  Output current (Iout) à W/L of T2 (T4) –  X à Reference current (Iin) à W/L of T1 (T3), Rp

    1 : X

    T1

    Ibias Iout

    Vdd

    T2

    Rp Vout > Veff

    V1

    Iout

    T1 T2

    T3 T4

    1 : X

    Ibias

    Vdd

    Rp

    > Vtn+2Veff

    Iout

    T1 T2

    T3 T4

    1 : X

    Ibias

    Vdd

    Rp

    > Vtn+2Veff

    Output resistance calculation (e.g. Wilson Current Source )

    vx

    vgs1

    ix

    1/gm2

    gm4.vgs4 rds4 vgs4 1/gm3

    gm1.vgs1 rds1

    ( )

    ( ) ( ) ( )2

    12

    14

    11

    31

    114

    11

    31

    1

    111

    1)(.

    1

    m

    xpm

    m

    xgsgs

    gsgs

    mdsp

    pdsmppg

    gsm

    mdsp

    dsp

    gi

    Rggi

    AvAv

    Avv

    grR

    RrgRiRv

    vg

    grR

    rRi

    +−≅+−=+−=

    −=++

    −=−=

    ++=

    Iout

    T1 T2

    T3 T4

    1 : X

    Ibias

    Vdd

    Rp

    > Vtn+2Veff Rp

    ( )

    ( )

    ( ) ( ) dspmdsm

    out

    xdsm

    mds

    mx

    gsmxdsm

    xx

    rRgrAg

    r

    irgg

    Arg

    v

    vgirgi

    v

    ⋅+≅⋅++=

    ##$

    %&&'

    (+++=

    −+=

    12

    42

    44

    2

    4442

    221

    11

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    14

    Transistor biasing

    1 : X

    T1

    Ibias Iout

    Vdd

    T2

    Rp Vout > Veff

    V1

    Iout

    T1 T2

    T3 T4

    1 : X

    Ibias

    Vdd

    Rp

    > Vtn+2Veff

    Iout

    T1 T2

    T3 T4

    1 : X

    Ibias

    Vdd

    Rp

    > Vtn+2Veff

    Ibias

    Vdd

    Tp Ibias

    Vdd

    Tp

    Ibias

    Vdd

    Tp

    •  NMOS Current Sources

    –  Output dynamics à Veff –  Output current (Iout) à W/L of T2 (T4) –  X à Reference current (Iin) à W/L of T1 (T3), Tp

    Outline

    •  Elementary current mirror •  Elementary stages for increased output

    resistance •  Other elementary current mirrors •  Elementary current sources

    –  Resistance biasing –  Transistor biasing –  Impact of Vdd and T°C

    •  Overview of advanced current sources •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    15

    Impact of Vdd

    I0

    VOUT

    IS

    Vmin

    ROUT

    Vdd ö

    Vdd ø

    Vout fixe

    Resistance biasing

    iout

    gm2.v1 rds2 v1

    Rp

    1/gm1

    vdd

    )(

    2

    21

    1

    21

    11

    TTIIIVV

    R

    VLWC

    I

    VVV

    outbias

    bias

    ddp

    effoxn

    bias

    tneff

    ==

    −=

    ⋅⋅=

    +=

    µ

    T1

    Ibias Iout

    Vdd

    T2

    Rp Vout=2V (>Veff1)

    V1

    ( )

    ( ) dddd

    outpm

    ddm

    out

    out

    dd

    dd

    outpm

    ddm

    out

    out

    out

    out

    pm

    ddmmout

    VV

    IRgVg

    II

    Vv

    IRgVg

    Ii

    II

    Rgv

    gvgi

    Δ⋅

    +=

    Δ

    ⋅+

    ==Δ

    +==

    1

    2

    1

    2

    1212

    1

    1

    1.

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    16

    Transistor biasing

    iout

    gm2.v1 rds2 v1 1/gm1

    vdd

    1/gm3

    ( ))(

    2

    2

    21

    2

    13

    3

    21

    1

    1

    11

    TTII

    VVVLWC

    I

    VLWC

    I

    VVV

    outbias

    tpddoxp

    bias

    effoxn

    bias

    tneff

    ==

    −−⋅⋅=

    ⋅⋅=

    +=

    µ

    µ

    T1

    Ibias Iout

    Vdd

    T2

    Vout=2V (>Veff1) T3

    V1

    dd

    dd

    effeff

    dd

    out

    out

    dd

    dd

    effeff

    dd

    bias

    out

    out

    out

    effeff

    bias

    mm

    mm

    mm

    ddmmmout

    VV

    VVV

    II

    Vv

    VVV

    Ii

    II

    VVI

    gggg

    ggvg

    gvgi

    Δ⋅

    +=

    Δ

    ⋅+

    ==Δ

    +=

    +

    +==

    31

    31

    3131

    32

    31

    3212

    2

    2

    2

    .

    Impact of Vdd on Current Sources

    Vdd (V)

    Iout (A)

    T1

    Ibias Iout

    Vdd

    T2

    Rp Vout=2V

    T1

    Ibias Iout

    Vdd

    T2

    Vout=2VT3

    dd

    dd

    out

    out

    VV

    II Δ

    ⋅=Δ 21,1

    dd

    dd

    out

    out

    VV

    II Δ

    ⋅=Δ 77,2

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    17

    Impact of Vdd on Current Sources

    T1

    Ibias Iout

    Vdd

    T2

    Rp Vout=2V

    dd

    dd

    out

    out

    VV

    II Δ

    ⋅=Δ 21,1

    Rp Vout=2V

    Iout

    T1 T2

    T4

    T3

    Vdddd

    dd

    out

    out

    VV

    II Δ

    ⋅=Δ 55,1

    Vdd (V)

    Iout (A)

    Resistance biasing and temperature

    •  An increase in temperature reduces the saturation current of a transistor

    T1

    Ibias Iout

    Vdd

    T2

    Rp Vout=2V (>Veff1)

    V1

    9,20E+01

    9,40E+01

    9,60E+01

    9,80E+01

    1,00E+02

    1,02E+02

    1,04E+02

    1,06E+02

    -‐40,00 -‐20,00 0,00 20,00 40,00 60,00 80,00

    Polarisation  par  résistance

    Polarisation  par  résistance

    -0,08 %/°C

    )(µAIout

    )C.(Temp °

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    18

    Resistance biasing and temperature

    •  Resistance may also change with temperature

    T1

    Ibias Iout

    Vdd

    T2

    Rp Vout=2V (>Veff1)

    V1

    -0,08%/°C

    ( )T.TCR1RR 0pp +=

    8,00E+01

    8,50E+01

    9,00E+01

    9,50E+01

    1,00E+02

    1,05E+02

    1,10E+02

    1,15E+02

    -‐40,00 -‐20,00 0,00 20,00 40,00 60,00 80,00

    Résistance  fixe

    TCR=1e-‐3  /°C

    -0,08 %/°C

    -0,157 %/°C

    )(µAIout

    )C.(Temp °

    Transistor biasing and temperature

    •  NMOS et PMOS exhibits same phenomenon

    T1

    Ibias Iout

    Vdd

    T2

    Vout=2V (>Veff1) T3

    V1

    8,00E+01

    8,50E+01

    9,00E+01

    9,50E+01

    1,00E+02

    1,05E+02

    1,10E+02

    1,15E+02

    1,20E+02

    -‐40,00 -‐20,00 0,00 20,00 40,00 60,00 80,00

    Polarisation  par  R  constantePolarisation  par  R  avec  TCR=1e-‐3  /°CPolarisation  par  PMOS

    -0,08 %/°C

    -0,157 %/°C

    )(µAIout

    )C.(Temp °

    -0,2 %/°C

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    19

    8,50E+01

    9,00E+01

    9,50E+01

    1,00E+02

    1,05E+02

    1,10E+02

    1,15E+02

    -‐40,00 -‐20,00 0,00 20,00 40,00 60,00 80,00

    Cascode  avec  R  et  TCR=1e-‐3  /°CPolarisation  par  R  avec  TCR=1e-‐3  /°CCascode  pplarisé  par  PMOS

    Cascode Source and temperature

    •  Feedback may improve results

    -0,036 %/°C

    -0,157 %/°C

    )(µAIout

    )C.(Temp °

    0,036 %/°C

    Rp Vout=2V

    Iout

    T1 T2

    T4

    T3

    Vdd

    Rp Vout=2V

    Iout

    T1 T2

    T4

    T3

    Vdd

    Ibias

    Vdd

    T3

    Outline

    •  Elementary current mirror •  Elementary stages for increased output

    resistance •  Other elementary current mirrors •  Elementary current sources •  Overview of advanced current sources

    –  Vdd-independent current sources –  Vdd-independent and increased output resistance –  Increasing output dynamic range

    •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    20

    Vdd-independent current sources

    •  Principle: a resistor implement a feedback that tends to reduce current variations

    •  Sizing methods –  Choice of Ibias and α (generally, 4, 9 or 16)

    •  Ibias is not sensitive to Vdd variations –  Assuming identical currents in T1

    and T2 leads to an expression of Ibias depending of T4, T5 et R

    T1

    T3

    Ibias Ibias

    Vdd

    VA

    T5 T4

    T2

    R

    Ibias

    VB

    4

    4

    5

    5

    LW

    LW

    ⋅=α

    2

    4

    42

    12!"#

    $%&

    +−

    ⋅⋅=αα

    αµ W

    LRC

    Ioxp

    bias

    Vdd-independent current sources

    •  Other configurations –  Dual circuit in PMOS (current from Vdd) –  Increased stability by reduction of Vds2 and Vds5 –  Power consumption à asymmetrical current mirror

    4

    4

    5

    5

    LW

    LW

    ⋅=α

    T1

    T7

    Ibias 10.Ibias

    Vdd

    VA

    T5 T4

    T2

    R

    Ibias

    VC

    T6 T3

    VB VD

    T1

    T2

    R1

    Vout

    Iout T3 T4

    Vdd

    T8

    1

    1

    2

    2

    LW

    LW

    ⋅=α

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    21

    Vdd- independent and increased output resistance

    •  Vdd-independent à R, T4 and T5 to set value of Ibias

    independently of Vdd •  Reduced power consumption

    à  asymmetrical current mirror

    •  High-voltage operation à  T3 and T6 are optional

    •  Increased Rout à Cascode output à Problem à output range of operation

    T1

    T7

    Ibias 10.Ibias

    Vdd

    VA

    T5 T4

    T2

    R

    Ibias

    VC

    T6 T3

    VB VD

    T1c

    T7c T2c

    Outline

    •  Elementary current mirror •  Elementary stages for increased output

    resistance •  Other elementary current mirrors •  Elementary current sources •  Overview of advanced current sources

    –  Vdd-independent current sources –  Vdd-independent and increased output resistance –  Increasing output dynamic range

    •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    22

    Increasing output dynamic range

    •  Principle

    T1

    R

    IS

    T2

    T3 Vs

    Ibias

    effd

    effbiassds

    tneffsbiasdsgs

    tneffgsds

    tngseff

    VV

    VIRVV

    VVVIRVV

    VVVV

    VVV

    .2

    .

    .

    3

    32

    313

    11

    ≥⇒

    ≥==⇒

    +=−+=

    +==

    −=

    Trade-off between output range of operation and output resistance…

    Increasing output dynamic range

    •  Implementation: large-swing cascode current source with Vdd-independent reference current

    T5

    Ibias Ibias

    Vdd

    VA

    T7 T6

    R

    Ibias

    VB

    T3 T2

    T1

    9

    9

    5

    5

    3

    3

    2

    2

    1

    1 44LW

    LW

    LW

    LW

    LW

    ⋅=⋅===T9

    T8

    Ibias

    VC

    76

    76

    6

    6

    7

    7

    avec

    )1(

    effeff

    biasRReffeff

    VV

    IRVVVVLW

    LW

    ⋅=

    ⋅=+=

    >⋅=

    α

    αα

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    23

    Increasing output dynamic range: alternative configurations

    T5

    Ibias Ibias

    Vdd

    VA

    T7 T6

    R

    Ibias

    VB

    T3 T2

    T4 T1

    T9

    T8

    Ibias VC

    T5

    Ibias 10.Ibias

    Vdd=5V

    VA

    T7 T6

    R

    Ibias

    T3 T2

    T4 T1

    T9

    T8

    Ibias VC

    T71 T61 VB

    T81

    Current sources

    •  Elementary current mirror •  Elementary stages for increased output

    resistance •  Other elementary current mirrors •  Elementary current sources •  Overview of advanced current sources •  PMOS current sources

  • Circuits Intégrés Analogiques - 2014/2015 - Chapitre 4 20/10/2014

    24

    Current sources

    •  Overview of main characteristics

    Impact of Vdd

    Output resistance Output range of operation

    Basic current source ±25% 625kΩ

    > 0,8V

    Vdd-independent current source

    ±2,3%

    500kΩ

    > 0,9V

    Vdd-independent current source with

    cascoded output

    ±0,02%

    80MΩ

    > 1V

    Large-swing Vdd-independent cascoded

    current source

    ±9% ±2,25%

    3,54MΩ

    4,88MΩ

    > 0,3V > 0,3V

    Contrôle des connaissances

    •  4 Novembre : 3 heures –  Analyse de Layout –  Source de tension

    •  Dimensionnement théorique •  Ajustement fin •  Schéma petit-signal •  Sensibilité à Vdd

    –  Source de courant •  Dimensionnement théorique •  Ajustement fin •  Schéma petit-signal •  Résistance de sortie