Top Banner
Manuel Romero Instituto IMDEA Energía Avda. Ramón de la Sagra 3 28935 Móstoles Energía Solar Térmica de Alta Temperatura
40
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: M romero diasolar_print

Slide 1

Manuel Romero Instituto IMDEA Energía Avda. Ramón de la Sagra 3 28935 Móstoles

Energía Solar Térmica de Alta Temperatura

Page 2: M romero diasolar_print

Slide 2

• ensure the development, together with the SET Plan stakeholders, of an Integrated Roadmap around the priorities identified in the EU Energy technology and innovation strategy by the end of 2013.

• define, together with the Member States, an Action Plan of joint and individual investments in support of the Integrated Roadmap by mid 2014. • invite, together with the Member States in the context of the Steering Group, the European Industrial Initiatives and associated European Technology Platforms to adjust their mandate, structure and participation to update their Technology Roadmaps and to contribute to the Integrated Roadmap. • establish a coordination structure, under the Steering Group of the SET Plan, to promote investments in research and innovation on energy efficiency

Page 3: M romero diasolar_print

Slide 3

The EU is committed to reducing greenhouse gas emissions to 80-95% below 1990 levels by 2050 in the context of necessary Reductions by developed countries as a group. The Commission analysed the implications of this in its "Roadmap for moving to a competitive low-carbon economy in 2050“.

Page 4: M romero diasolar_print

Slide 4

Page 5: M romero diasolar_print

Slide 5

The public consultation was open between 20 December 2012 and 15 March 2013.

Page 6: M romero diasolar_print

Slide 6

Page 7: M romero diasolar_print

Slide 7

Objetivo sostenible en el crecimiento de la demanda energética primaria mundial

Año Fuente: German Advisory Council on Global Change, 2003, www.wbgu.de

Geotérmica Otras renovables Solar térmica (calor y frio) Electricidad solar (fotovoltaica y solar termoeléctrica) Eólica Biomasa (avanzada) Biomasa (tradicional) Hidroeléctrica Nuclear Gas Carbón Petróleo

Page 8: M romero diasolar_print

Slide 8

RADIACIÓN SOLAR

CENTRALES ELÉCTRICAS TERMOSOLARES

ESPEJOS

RECEPTOR

ALMA-

CENAMIENTO

FOCO FRIO

FOCO CALIENTE

TURBINA

Page 9: M romero diasolar_print

Slide 9 Maricopa Solar SES, USA

Archimede Priolo Italia, ENEA

LFC en Liddell Power plant de Areva, Australia

PS10 torre solar de Abengoa, España

Centrales Eléctricas Termosolares: Foco puntual (3D) Foco lineal (2D)

Page 10: M romero diasolar_print

Slide 10

Majadas, España, 50 MW, Acciona Energía

Gemasolar, España, 19 MW, Torresol Energy

Primeras plantas desplegadas en el mundo >2GW

La electricidad termosolar en el mundo

Page 11: M romero diasolar_print

Slide 11

Page 12: M romero diasolar_print

Slide 12

Page 13: M romero diasolar_print

Slide 13

Page 14: M romero diasolar_print

Slide 14

Page 15: M romero diasolar_print

Slide 15

Page 16: M romero diasolar_print

Slide 16

Page 17: M romero diasolar_print

Slide 17

Page 18: M romero diasolar_print

Slide 18

Page 19: M romero diasolar_print

Slide 19

Cilindro-parabólicos y centrales de torre operando a temperaturas modestas, por debajo de 400 ºC . Consecuencias de estos diseños conservadores:

Uso de sistemas con eficiencias menores del 20% nominal en conversión de solar a electricidad. Fuertes limitaciones en el uso eficiente de sistemas almacenamiento de energía. Alto consumo de agua y de terreno por la ineficiencia de la integración con el bloque de potencia. Ausencia de esquemas racionales de integración con sistemas de generación distribuida. No se alcanzan temperaturas necesarias para la producción de combustibles solares e hidrógeno.

Limitaciones de la primera generación de CET

Implantación mercado de plantas avanzadas

Electricidad Termosolar

Reflectores solares de muy bajo coste Automatismo y operación remota Gestionabilidad (almacenamiento térmico/híbrido)/Combustibles solares Eficiencia (alta temperatura y altas irradiancias/nuevos fluidos térmicos y receptores solares) Modularidad Impacto ambiental (agua, terreno) Integración en ciclos avanzados y procesos de conversión directa

Page 20: M romero diasolar_print

Slide 20

Page 21: M romero diasolar_print

Slide 21

Page 22: M romero diasolar_print

Slide 22

• Steam heating

• Brayton cycle • Air heating

• Air heating

• Dish Stirling

• Air heating • Rankine cycle • Steam heating

Oil receivers

Water/Steam receivers

Solarized Stirling engines

Ceramic receivers Low P, T

Temperature (thermal fluid)

Pres

ent c

once

pts

Adva

nced

conc

epts

• Solar fuels and chemistry • Brayton cycle • Air heating

Ceramic receivers High P, T

Sodium Receivers

Molten salts receivers

• Brayton cycle • Air Pre-heating

500 ºC 1000 ºC 1500 ºC

• Rankine cycle • Steam heating

Current

Sour

ce: I

MDEA

Ene

rgía

Solid particles

receivers

Volumetric air receivers (metallic)

… to Market Implementation of Advanced Technologies

Solar Thermal Electricity

Efficiency (high-temperature /high-flux/new HTF/solar receivers) Integration in advanced cycles and direct conversion systems

Page 23: M romero diasolar_print

Slide 23

Receivers: More compact, durable and efficient (Efficiency > 85%)

molten salt receiver (SENER)

0 1000 2000 3000

Cur

rent

Nex

tge

nera

tion

Peak flux on aperture (kW/m2)

VolumetricMolten saltWater-steam

Direct Indirect Particles Tubular Volumetric Fluid - Water Liquid metals Molten Salts Air Average flux (MW/m2) Peak flux (MW/m2)

(0.9) (2.5)

0.1-0.3 0.4-0.6

0.4-0.5 1.4-2.5

0.4-0.5 0.7-0.8

0.5-0.6 0.8-1.0

Fluid outlet temperature (ºC) (2,000) 490-525 540 540-565 (700-1,000)

Page 24: M romero diasolar_print

Slide 24

Superheating steam with dual receivers

eSolar Double Cavity

B&W receiver

Page 25: M romero diasolar_print

Slide 25

Volumetric air-cooled receiver

Heat transfer area: 255 m2/m3 Efficiency at 750°: 78% Porosity: 50% Target:

• Improve volumetricity • Increase solar flux

Page 26: M romero diasolar_print

Slide 26

Page 27: M romero diasolar_print

Slide 27

Some recent data on production in Spain

Source REE

Important milestones in July 2012:

Max. contribution 4,1% (July the 11th at 17:00) Max daily contribution 3,2% (July the 15th)

Monthly production 2,3% (524 GWh in July)

Solar Thermal Electricity production in Spain. July 2012 MWh

Page 28: M romero diasolar_print

Slide 28

Average density

Average heat

conduc-tivity

Average heat

capacity

Volume specific

heat capacity

Media costs per kg

Media costs

per kWht

Cold HotStorage Medium ºC ºC kg/m3 W/mK kJ/kgK kWht/m3 $/kg $/kWht

Solid mediaSand-rock-oil 200 300 1 700 1 1.30 60 0.15 14Reinforced concrete 200 400 2 200 1.5 0.85 100 0.05 1NaCl (solid) 200 500 2 160 7 0.85 150 0.15 1.5Cast iron 200 400 7 200 37 0.56 160 1.00 32Cast steel 200 700 7 800 40 0.60 450 5.00 60Silica f ire bricks 200 700 1 820 1.5 1.00 150 1.00 7Magnesia f ire bricks 200 1 200 3 000 5 1.15 600 2.00 6

Liquid mediaMineral oil 200 300 770 0.12 2.6 55 0.30 4.2Synthetic oil 250 350 900 0.11 2.3 57 3.00 43Silicone oil 300 400 900 0.10 2.1 52 5.00 80Nitrite salts 250 450 1 825 0.57 1.5 152 1.00 12Nitrate salts 265 565 1 870 0.52 1.6 250 0.70 5.2Carbonate salts 450 850 2 100 2 1.8 430 2.40 11Liquid sodium 270 530 850 71 1.3 80 2.00 21

Phase change mediaNaNO3 308 2.257 0.5 200 125 0.20 3.6KNO3 333 2.11 0.5 267 156 0.30 4.1KOH 380 2.044 0.5 150 85 1.00 24

Salt-ceramics500-850 2.6 5 420 300 2.00 17

(Na2CO3-BaCO3/MgO)NaCl 802 2.16 5 520 280 0.15 1.2Na2CO3 854 2.533 2 276 194 0.20 2.6K2CO3 897 2.29 2 236 150 0.60 9.1

Temperature

Page 29: M romero diasolar_print

Slide 29

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21

Gene

ratio

n (M

W)

CSP5 Wind15 PV10 PV

CSP

Wind

Hydro

PHS/CAES

Gas

Other

Biomass

Coal

Nuclear

Geothermal

Curtailment Due to Minimum Generation Constraints

29 National Renewable Energy Laboratory Innovation for Our Energy Future

Extensive coal and nuclear cycling unlikely to occur in current system

• Marginal curtailment rate of PV moving from 10% to 15% of generation was 5%

• At SunShot goals (~6 cents/kWh) this

increases effective PV cost by about 0.3 cents/kWh due to underused capacity

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21

Gene

ratio

n (M

W)

CSP5 Wind15 PV10 PV

CSP

Wind

Hydro

PHS/CAES

Gas

Other

Biomass

Coal

Nuclear

Geothermal

10% PV 5 % CSP

15% PV No CSP

• PV curtailment would be reduced if grid flexibility were increased

• CSP/TES provides an option to replace “baseload” capacity with more flexible generation

Page 30: M romero diasolar_print

Slide 30

System marginal price and corresponding CSP generation on January 22–24 (low RE case)

Page 31: M romero diasolar_print

Slide 31

Thermal energy storage Challenge: < 20-30 €/kWhth

Page 32: M romero diasolar_print

Slide 32

Innovative Latent Thermal Energy Storage System for Concentrating Solar Power Plants

Heat Transfer Fluid

HTF

Encapsulated PCM

Storage Container Encapsulated

PCM

Tubes for fluid flow

HTF

Storage Container

Fluid

HTF

Different concepts that will be modeled and tested Test setup - Schematic

PCM (Solidified) PCM (Melting)

PCM Melting point (0C) Latent Heat (kJ/kg) NaNO3 308 172 NaOH 318 316 KNO3 + 4.5%KCl 320 150 KNO3 333 266 Poly ether ether ketone 340 130

KNO3 + 4.7%KBr + 7.3%KCl 342 140

KOH 360 167 NaCl(26.8)/NaOH 370 370 42.5%NaCl + 20.5% KCl + MgCl2 390 410

Page 33: M romero diasolar_print

Slide 33

Ca(OH)2 + ΔH ↔ CaO + H2O (800K)

Thermochemical Energy Storage for Concentrated

Solar Power Plants

3Mn2O3 → 2Mn3O4 + ½ O2 (1180 K),

Page 34: M romero diasolar_print

Slide 34

Page 35: M romero diasolar_print

Slide 35

El heliostato de Sener Cheaper concentrators

Large area heliostats

New reflectors

Page 36: M romero diasolar_print

Slide 36

The Solar Energy Development Center Small heliostats

Page 37: M romero diasolar_print

Slide 37

Modularity, urban integration

Page 38: M romero diasolar_print

Slide 38

• Corto a medio plazo Producción de electricidad

Objetivos de la concentración solar

Objetivo último es la producción de combustibles solares

• Medio a largo plazo Química Solar

Page 39: M romero diasolar_print

Slide 39 39

Disociación de agua con óxidos metálicos

Page 40: M romero diasolar_print

Slide 40

CONCLUSIONES

Las CET introducen la energía solar en mercados de alto valor añadido mediante procesos a alta temperatura, proporcionando alta capacidad y gestionabilidad.

Las CET permiten trabajar en modo híbrido o con almacenamiento térmico para producción masiva de electricidad.

El mercado por el momento concentrado en España y EEUU.

Falta I+D para reducir costes un 60%, mejorar gestionabilidad y aumentar eficiencias.

La producción de combustibles solares es uno de los elementos estratégicos para las próximas décadas.

Energía Solar Alta Temperatura: