Top Banner

of 33

lyapunov exponents and chaos theory

Jun 01, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 lyapunov exponents and chaos theory

    1/33

    P h y s i ca 1 6 D ( 1 9 8 5 ) 2 8 5 - 3 1 7

    N o r t h - H o l l a n d , A m s t e r d a m

    D E T E R M I N I N G L Y A P U N O V E X P O N E N T S F R O M A T IM E S E R IE S

    A l a n W O L F ~ - , J a c k B . S W I F T , H a r r y L . S W I N N E Y a n d J o h n A . V A S T A N O

    Department of Physics, University of Texas, Austin, Texas 78712, USA

    Re c e i v e d 1 8 Oc t o b e r 1 9 8 4

    W e p r e s e n t t h e f i rs t a l g o r i t h m s t h a t a l lo w t h e e s t i m a t i o n o f n o n - n e g a t i v e Ly a p u n o v e x p o n e n t s f r o m a n experimental t i m e

    s e r ie s . Ly a p u n o v e x p o n e n t s , w h i c h p r o v i d e a q u a l i t a t iv e a n d q u a n t i t a t i v e c h a r a c t e r i z a t i o n o f d y n a m i c a l b e h a v i o r , a r e r e l a t e d t o

    t h e e x p o n e n t i a l l y f a s t d i v e rg e n c e o r c o n v e r g e n c e o f n e a r b y o r b i t s i n p h a s e s p a c e . A s y s t e m w i t h o n e o r m o r e p o s i t i v e Ly a p u n o v

    e x p o n e n t s i s d e f i n e d t o b e c h a o t i c. O u r m e t h o d i s r o o t e d c o n c e p t u a l l y i n a p r e v i o u s l y d e v e l o p e d t e c h n i q u e t h a t c o u l d o n l y b e

    a p p l i e d t o a n a l y t i c a l l y d e f i n e d m o d e l s y s t e m s : w e m o n i t o r t h e long-term g r o w t h r a t e o f small v o l u m e e l e m e n t s in a n a t t r a c t o r .

    T h e m e t h o d i s t es t ed o n m o d e l s y s t em s w i t h k n o w n L y a p u n o v s p e c tr a , a n d a p p l ie d t o d a t a f o r t h e B e l o u s o v - Z h a b o t i n s k i i

    r e a c t i o n a n d C o u e t t e - Ta y l o r f l o w .

    Contents

    1 . I n t r o d u c t i o n

    2 . T h e L y a p u n o v s p e c t ru m d e f in e d

    3 . C a l c u l a t i o n o f Ly a p u n o v s p e c t r a f r o m d i f f e r e n ti a l e q u a t i o n s

    4 . A n a p p r o a c h t o s p e c t r a l e s t i m a t i o n f o r e x p e r i m e n t a l d a t a

    5 . Sp e c t r a l a l g o r i t h m i m p l e m e n t a t i o n *

    6 . I m p l e m e n t a t i o n d e ta i ls *

    7 . D a t a r e q u i r e m e n t s a n d n o i s e*

    8 . Resul t s

    9 . C o n c l u s i o n s

    Appendices

    A . Ly a p u n o v s p e c t r u m p r o g r a m f o r s y s t e m s o f d i ff e r e n t ia l

    e q u a t i o n s

    B . F i x e d e v o l u t i o n t i m e p r o g r a m f o r ~ '1

    1 I n t r o d u c t i o n

    Co n v i n c i n g ev i d en ce fo r d e t e rmi n i s t i c ch ao s h as

    c o m e f r o m a v a r i e t y o f r e c e n t e x p e r i m e n t s [ 1 - 6 ]

    o n d i s s i p a t i v e n o n l i n ea r sy s t ems ; t h e re fo re , t h e

    q u e s t i o n o f d e t e c t i n g a n d q u a n t i f y i n g c h a o s h a s

    b e c o m e a n i m p o r t a n t o n e . H e r e w e c o n s i d e r t h e

    s p e c t r u m o f L y a p u n o v e x p o n e n t s [ 7 - 1 0 ] , w h i c h

    h a s p r o v e n t o b e t h e m o s t u s e f u l d y n a m i c a l d i -

    a g n o s t i c f o r c h a o t i c s y s te m s . L y a p u n o v e x p o n e n t s

    a re t h e av e rag e ex p o n en t i a l r a t e s o f d i v e rg en ce o r

    t P r e s e n t a d d r e s s : T h e C o o p e r U n i o n , S c h o o l o f E n g i n e er i ng ,

    N . Y . , N Y 1 0 0 03 , U S A .

    * Th e r e a d e r m a y w i s h t o s k i p t h e s t a r r e d s e c t i o n s a t a f i r s t

    r e a d i n g .

    co n v e rg en ce o f n ea rb y o rb i t s i n p h ase sp ace . S i n ce

    n ea rb y o rb i t s co r re sp o n d t o n ea r l y i d en t i ca l s t a t e s ,

    ex p o n en t i a l o rb i t a l d i v e rg en ce mean s t h a t sy s t ems

    wh o se i n i t i a l d i f fe ren ces we may n o t b e ab l e t o

    r e s o l v e w i ll s o o n b e h a v e q u i t e d i f f e r e n t l y - p r e d i c -

    t i v e ab i l i t y i s r ap i d l y l o s t . An y sy s t em co n t a i n i n g

    a t l e a s t o n e p o s i t i v e L y a p u n o v e x p o n e n t i s de f in e d

    t o b e c h a o t ic , w i t h t h e m a g n i t u d e o f t h e e x p o n e n t

    re f l ec ti n g t h e t i me sca l e o n w h i ch sy s t em d y n am i cs

    b e c o m e u n p r e d i c ta b l e [ 1 0 ] .

    F o r s y s t e m s w h o s e e q u a t i o n s o f m o t i o n a r e e x -

    p l i c i t l y kn o wn t h e re i s a s t ra i g h t fo rward t ech n i q u e

    [ 8 , 9 ] f o r c o m p u t i n g a c o m p l e t e L y a p u n o v s p e c -

    t r u m . T h i s m e t h o d c a n n o t b e a p p l i e d d i r e c t l y t o

    ex p e r i men t a l d a t a fo r rea so n s t h a t wi l l b e d i s -

    cu ssed l a t e r . We wi l l d e sc r i b e a t e ch n i q u e wh i ch

    fo r t h e f i r s t t i me y i e l d s e s t i ma t e s o f t h e n o n -n eg a -

    t i v e L y a p u n o v e x p o n e n t s f r o m f i n i t e a m o u n t s o f

    e x p e r i m e n t a l d a t a .

    A l e s s g en e ra l p ro ced u re [ 6 , 1 1 -1 4 ] fo r e s t i ma t -

    i n g o n l y t h e d o m i n a n t L y a p u n o v e x p o n e n t in e x -

    p e r i m e n t a l s y s t e m s h a s b e e n u s e d f o r s o m e t i m e .

    Th i s t e ch n i q u e i s l i mi t ed t o sy s t ems wh e re a we l l -

    d e f i n e d o n e - d i m e n s i o n a l ( l - D ) m a p c a n b e r e -

    co v e red . Th e t ech n i q u e i s n u mer i ca l l y u n s t ab l e

    an d t h e l i t e ra t u re co n t a i n s sev e ra l ex amp l es o f i t s

    i mp ro p e r ap p l i ca t i o n t o ex p e r i men t a l d a t a . A d i s -

    c u s s i o n o f t h e 1 - D m a p c a l c u l a t i o n m a y b e f o u n d

    0 1 6 7 - 2 7 8 9 / 8 5 / $ 0 3 . 3 0 E l se v ie r S ci e nc e P u b li s h er s

    (No r t h -H01 an d Ph y s i c s Pu b l i sh i n g Di v i s i o n )

  • 8/9/2019 lyapunov exponents and chaos theory

    2/33

    286 A. Wolf et al. / Determining Lyapunov exponents ro m a time series

    i n r e f . 1 3. I n r e f. 2 w e p r e s e n t e d a n u n u s u a l l y

    r o b u s t 1 - D m a p e x p o n e n t c a l c u l a t i o n f o r e x p e r i -

    m e n t a l d a t a o b t a i n e d f r o m a c h e m i c a l r e a c ti o n .

    E x p e r i m e n t a l d a t a i n e v i t a b l y c o n t a i n e x t e r n a l

    n o i s e d u e t o e n v i r o n m e n t a l f lu c t u a t io n s a n d l i m i t e d

    e x p e r i m e n t a l r e s o l u t i o n . I n t h e l i m i t o f a n i n f i n i t e

    a m o u n t o f n o i s e - f r e e d a t a o u r a p p r o a c h w o u l d

    y i e l d L y a p u n o v e x p o n e n t s b y d e f i n i ti o n . O u r a b il -

    i t y t o o b t a i n g o o d s p e c t r a l e s t i m a t e s f r o m e x p e r i -

    m e n t a l d a t a d e p e n d s o n t h e q u a n t i t y a n d q u a l i t y

    o f t h e d a t a a s w e l l a s o n t h e c o m p l e x i ty o f t h e

    d y n a m i c a l s y s t e m . W e h a v e t e s t e d o u r m e t h o d o n

    m o d e l d y n a m i c a l s y s te m s w i t h k n o w n s p e c t r a a n d

    a p p l i e d i t t o e x p e r i m e n t a l d a t a f o r c h e m i c a l [2 , 1 3]

    a n d h y d r o d y n a m i c [3] s t ra n g e a t t r ac t o r s .

    A l t h o u g h t h e w o r k o f c h a r a c te r i zi n g c h a o ti c d a t a

    i s s t i l l i n i t s i n f a n c y , t h e r e h a v e b e e n m a n y a p -

    p r o a c h e s t o q u a n t i f y i n g c h a o s , e .g ., f r a c t a l p o w e r

    s p e c t r a [ 15 ], e n t r o p y [ 1 6 - 1 8 , 3 ], a n d f r a c t a l d i m e n -

    s io n [p r o p o sed in r e f . 1 9 , u sed in r e f . 3 - 5 , 2 0 , 2 1 ] .

    W e h a v e t e s t e d m a n y o f t h e s e a l g o r i t h m s o n b o t h

    m o d e l a n d e x p e r i m e n t a l d a t a , a n d d e s p i t e t h e

    c l a i m s o f t h e i r p r o p o n e n t s w e h a v e f o u n d t h a t

    t h e s e a p p r o a c h e s o f t e n f a i l t o c h a r a c t e r i z e c h a o t i c

    d a t a . I n p a r t i c u l a r , p a r a m e t e r i n d e p e n d e n c e , t h e

    a m o u n t o f d a t a r e q u i r ed , a n d t h e s t a b il i ty o f r e -

    s u i t s w i t h r e s p e c t t o e x t e r n a l n o i s e h a v e r a r e l y

    b e e n e x a m i n e d t h o r o u g h l y .

    T h e s p e c t r u m o f L y a p u n o v e x p o n e n t s w il l b e

    d e f i n e d a n d d i s c u s s e d i n s e c t i o n 2 . T h i s s e c t i o n

    i n c l u d e s t a b l e I w h i c h s u m m a r i z e s t h e m o d e l s y s -

    t e m s t h a t a r e u s e d i n t h i s p a p e r . S e c t i o n 3 i s a

    r e v ie w o f t h e c a l c u l a t io n o f t h e c o m p l e t e s p e c t r u m

    o f e x p o n e n t s f o r s y s t e m s i n w h i c h t h e d e f i n i n g

    d i f f e re n t i a l e q u a t i o n s a r e k n o w n . A p p e n d i x A c o n -

    t a i n s F o r t r a n c o d e f o r t h i s c a l c u l a t i o n , w h i c h t o

    o u r k n o w l e d g e h a s n o t b e e n p u b l i s h e d e l s e w h e r e .

    I n s e c t i o n 4 , a n o u t l i n e o f o u r a p p r o a c h t o e s t i m a t -

    i n g t h e n o n - n e g a t i v e p o r t i o n o f t h e L y a p u n o v

    e x p o n e n t s p e c t r u m i s p r e s e n te d . I n s e c t io n 5 w e

    d e s c r i b e t h e a l g o r i th m s f o r e s t i m a t i n g t h e t w o

    l a r g e s t e x p o n e n t s . A F o r t r a n p r o g r a m f o r d e -

    t e r m i n i n g t h e l a r g e s t e x p o n e n t i s c o n t a i n e d i n

    a p p e n d i x B . O u r a l g o r it h m r eq u i re s i n p u t p a r a m e -

    t e r s w h o s e s e l e c t i o n i s d is c u s s e d i n s e c t i o n 6 . S e c -

    t i o n 7 c o n c e r n s s o u r c e s o f e rr o r i n t h e c a l c u l a t i o n s

    a n d t h e q u a l i t y a n d q u a n t i t y o f d a t a r e q u i re d f o r

    a c c u r a t e e x p o n e n t e s t i m a t i o n . O u r m e t h o d i s a p -

    p l i e d t o m o d e l s y s t e m s a n d e x p e r i m e n t a l d a t a i n

    s e c t i o n 8 , a n d t h e c o n c l u s i o n s a r e g i v e n i n

    sec t io n 9 .

    2 T h e L y a p u n o v s p e c t ru m d e f in e d

    W e n o w d e f i n e [8 , 9 ] t h e s p e c t ru m o f L y a p u n o v

    e x p o n e n t s i n t h e m a n n e r m o s t r e l e v a n t to s p e c t ra l

    c a l c u l a t i o n s . G i v e n a c o n t i n u o u s d y n a m i c a l s y s -

    t e m i n a n n - d i m e n s i o n a l p h a s e s p a ce , w e m o n i t o r

    t h e l o n g - t e r m e v o l u t i o n o f a n i n f i n i t e s i m a l n - s p h e r e

    o f i n i t i a l c o n d i t i o n s ; t h e s p h e r e w i l l b e c o m e a n

    n - e l l i p s o i d d u e t o t h e l o c a l l y d e f o r m i n g n a t u r e o f

    t h e f l ow . T h e i t h o n e - d i m e n s i o n a l L y a p u n o v e x p o -

    n e n t i s t h e n d e f i n e d i n t e r m s o f t h e l e n g t h o f th e

    e l l i p s o i d a l p r i n c i p a l a x i s p i t ) :

    h ~ = l im 1 lo g 2

    p c t )

    t -- ,o o t p c ( O ) '

    ( 1 )

    w h e r e t h e ) h a r e o r d e r e d f r o m l a rg e s t t o s m a l l e s t t .

    T h u s t h e L y a p u n o v e x p o n e n t s a r e re l a te d t o t he

    e x p a n d i n g o r c o n t r a c t i n g n a t u r e o f d i f fe r e n t d i re c -

    t i o n s i n p h a s e s p a c e . S i n c e t h e o r i e n t a t i o n o f t h e

    e l l i p s o i d c h a n g e s c o n t i n u o u s l y a s i t e v ol v es , t h e

    d i r e c t i o n s a s s o c i a t e d w i t h a g i v e n e x p o n e n t v a r y i n

    a c o m p l i c a t e d w a y t h r o u g h t h e a t tr a c t o r. O n e c a n -

    n o t , t h e r e f o r e , s p e a k o f a w e l l - d e fi n e d d i r e c t i o n

    a s s o c i a t e d w i t h a g i v e n e x p o n e n t .

    N o t i c e t h a t t h e l i n e a r e x t e n t o f t h e e l l i p s o i d

    g r o w s a s 2 h tt , t h e a r ea d e f in ed b y th e f i r s t two

    p r in c ip a l ax es g r o w s a s 2 (x ~* x2 )t, t h e v o lu m e d e -

    f i n e d b y t h e f i r s t t h r e e p r i n c i p a l a x e s g r o w s a s

    2 ( x'+x 2+x ~) t, an d so o n . Th i s p r o p e r ty y i e ld s

    a n o t h e r d e f i n i t io n o f t h e s p e c t ru m o f e x p o n e n t s :

    tWhile the existence of this limit has been questioned [8, 9,

    22], the fact is that the orbital divergenceof any data set

    may

    be quantified.Even if the limit does not exist for the underlying

    system, or cannot be approached due to having finite amounts

    of noisy data, Lyapun ovexponent estimates could still provide

    a useful characterizationof a given data set. (See section 7.1.)

  • 8/9/2019 lyapunov exponents and chaos theory

    3/33

    A Wo l f e t aL / De termin ing Lyapunov expo nen ts f rom a t ime ser ies

    287

    the sum of the first j exponents is defined by the

    long term exponential growth rate of a j-volume

    element. This alternate definition will provide the

    basis of our spectral technique for experimental

    data.

    Any continuous time-dependent dynamical sys-

    tem without a fixed point will have at least one

    zero exponent [22], corresponding to the slowly

    changing magnitude of a principal axis tangent to

    the flow. Axes that are on the average expanding

    (contracting) correspond to positive (negative) ex-

    ponents. The sum of the Lyapunov exponents is

    the time-averaged divergence of the phase space

    velocity; hence any dissipative dynamical system

    will have at least one negative exponent, the sum

    of all of the exponents is negative, and the post-

    transient motion of trajectories will occur on a

    zero volume limit set, an attractor.

    The exponential expansion indicated by a posi-

    tive Lyapunov exponent is incompatible with mo-

    tion on a bounded attractor unless some sort of

    fo ld ing

    process merges widely separated trajecto-

    ries. Each positive exponent reflects a direct ion

    in which the system experiences the repeated

    stretching and folding that decorrelates nearby

    states on the attractor. Therefore, the long-term

    behavior of an initial condition that is specified

    with

    any

    uncertainty cannot be predicted; this is

    chaos. An attractor for a dissipatiVe system with

    one or more positive Lyapunov exponents is said

    to be str ange or chaotic .

    The signs of the Lyapunov exponents provide a

    qualitative picture of a system's dynamics. One-

    dimensional maps are characterized by a single

    Lyapunov exponent which is positive for chaos,

    zero for a marginal ly stable orbit, and negative for

    a periodic orbit. In a three-dimensional continuous

    dissipative dynamical system the only possible

    spectra, and the attractors they describe, are as

    follows: ( + , 0 , - ) , a strange attractor; (0 ,0 ,- ), a

    two-toms; (0, - , -) , a limit cycle; and ( - , - , - ) ,

    a fixed point. Fig. 1 illustrates the expanding,

    slower than exponential, and contracting char-

    acter of the flow for a three,dimensional system,

    the Lorenz model [23]. (All of the model systems

    that we will discuss are defined in table I.) Since

    Lyapunov exponents involve long-time averaged

    behavior, the short segments of the trajectories

    shown in the figure cannot be expected to accu-

    rately characterize the positive, zero, and negative

    exponents; nevertheless, the three distinct types of

    behavior are clear. In a continuous four-dimen-

    sional dissipative system there are three possible

    types of strange attractors: their Lyapunov spectra

    are (+ , + , 0 , - ) , (+ , 0 , 0 , - ) , and (+ , 0 , - , - ) .

    An example of the first type is Rossler's hyper-

    chaos attractor [24] (see table I). For a given

    system a change in parameters will generally

    change the Lyapunov spectrum and may also

    change both the type of spectrum and type of

    attractor.

    The magnitudes of the Lyapunov exponents

    quantify

    an attractor's dynamics in information

    theoretic terms. The exponents measure the rate at

    which system processes create or destroy informa-

    tion [10]; thus the exponents are expressed in bits

    of information/s or bits/orbit for a continuous

    system and bits/iteration for a discrete system.

    For example, in the Lorenz attractor the positive

    exponent has a magnitude of 2.16 bits/s (for the

    parameter values shown in table I). Hence if an

    initial point were specified with an accuracy of one

    part per million (20 bits), the future behavior

    could not be predicted after about 9 s [20 bits/(2.16

    bits/s)], corresponding to about 20 orbits. After

    this time the small initial uncertainty will essen-

    tially cover the entire attractor, reflecting 20 bits of

    new information that can be gained from an ad:

    ditional measurement of the system. This new

    information arises from scales smaller than our

    initial uncertainty and results in an inability to

    specify the state o f the system except to say that it

    is somewhere on the attractor. This process is

    sometimes called an information gai n- reflecting

    new information from the heat bath, and some-

    times is called an information loss-bits shifted

    out of a phase space variable

    register

    when bits

    from the heat bath are shifted in.

    The average rate at which information con-

    tained in transients is lost can be determined from

  • 8/9/2019 lyapunov exponents and chaos theory

    4/33

    288 A. W ol f e t a l. / De termin ing Lyapun ov expon en ts f rom a t ime series

    o

    . . t . : . . . . " .

    . . . . - . . . . . . . . . . . . . , : . ~ ' . ' . . . .

    . . . . - - . : - : . : : - : . . . . . . . . .

    . . , : ' . . ~ . . - - . . : ~ : : . - . : . . : ' . . : . . : . . . . . . , ~ . , . : . . : ' . .

    - . . . . . s t a r t . ' ~ . . -

    : ' : : : ' N ~ ~" ""

    ~ '" " " " "

    . ' : ' : ' ( ( , ~ ' . ~ , m ~ : ' ' '

    . - ' . : . . % V 4 ; ' : '

    " ' - " . ' . . . " . . .

    ~ .

    . . , . . : / ~ . : . . . . . . . . . . . . . . . . .

    i l [ l l l

    t i m e - ~

    - . . o , - : . . . - . .

    . . . . . . . . , : , , . : :. . . .

    b ) . . . ' , . < ' . ~ : : . : . ' : . . . . . - . . , . . . ~ . ' ~ : ' - : , ~ : . . ~ r . . : - :

    . ~ . . . . . . : ' ~ .? ' - , ', ; ~ " x - ~ i l ~ I - " . . .

    " " ~ , ~ ' . : ~ ' ~ " , - ~ , ~ ' ~ x x x ~ . ~ ' - . '. . :

    " : : : , . . . . " : " " " - . . . -

    . : : : , . f , ~ , _ , , , ~ . ~ - , . - , , . , . - . . . : . . . . . .

    $ : L ~ . . . . . ~ - ~ . ' . . . _ _ ' ~ . . . . : - . : . . . . . . . : : . : . . :

    . - ' . ~ . . . ~ . ; . ; . , . . . . . . . . . . . . . . . . . . . . . . .

    , . : , v ' : . : ~ . : ~ . ' . ' . . . . . :

    ~ s t a r t

    [ l , , m , , , , l , , , , , l l l i , , l l l l i , , d l l

    t i m e

    ~

    . . . - . - . . . . . : ; . .- - - - ~ . .- : . .

    . . . ; ; . ~ . . . . . ~ . : : . . . . . . . . . . . s ~ . ~ , . ~ ; , . . ' : . . : : . ~ : ~ - : . v

    : ' "

    , ' , . . . : ~ . ' . - 2 ~ ' W ~ ' . ~ - . . . . . '. . ' : : . . . ' : ' . :

    - - " " . " -

    :

    . , , ~, ' .

    . . . . . . . . .

    t i m e

    F i g . 1 . T h e s h o r t t e r m e v o l u t i o n o f t h e s e p a r a t i o n v e c t o r b e t w e e n t h r e e c a r e f u ll y c h o s e n p a i r s o f n e a r b y p o i n t s i s s h o w n f o r t h e

    L o r e n z a t t r a c t o r , a ) A n e x p a n d i n g d i r e c t i o n ( ~1 > 0 ) ; b ) a " s l o w e r t h a n e x p o n e n t i a l " d i r e c t i o n ( ~ '2 = 0 ); C ) a c o n t r a c t i n g d i r e c t i o n

    (X3 < 0) .

    t he ne ga t i ve e xpone n ts T he a s ym pt o t i c de c a y o f a

    pe r t u r ba t i on t o t he a t t r a c t o r is gove r ne d by t he

    l e a s t ne ga t i ve e xpone n t , w h i c h s hou l d t he r e f o r e be

    t he e a s ie s t o f t he ne ga t i ve e xpone n t s t o e s t i m a t e t .

    t W e h a v e b e e n q u i t e s u c c e s s fu l w i t h a n a l g o r i t h m f o r d e -

    t e r m i u i n g t h e d o m i n a n t ( s m a l l e s t m a g n i t u d e ) n e g a t i v e e x p o -

    n e n t f r o m p s e u d o - e x p e r i m e n t a l d a t a ( a s i n g l e t im e s e r i es e x -

    t r a c t e d f r o m t h e s o l u t i o n o f a m o d e l s y s t e m a n d t r e a t e d a s a n

    e x p e r i m e n t a l o b s e r v a b l e ) f o r s y s t e m s t h a t a r e n e a r l y i n t e g e r -

    d i m e n s i o n a l . U n f o r t u n a t e l y , o u r a p p r o a c h , w h i c h i nv o l v e s m e a -

    s u r i n g t h e m e a n d e c a y r a t e o f m a n y i n d u c e d p e r t u r b a t io n s o f

    t h e d y n a m i c a l s y s t e m , i s u n l i k e l y t o w o r k o n m a n y e x p e r i m e n -

    t a l s y s t e m s . T h e r e a r e s e v e ra l f u n d a m e n t a l p r o b l e m s w i t h t h e

    c a l c u l a t i o n o f n e g a t i v e e x p o n e n t s f r o m e x p e r i m e n t a l d a t a , b u t

    F o r t he L o r e nz a t t r a c to r t he ne ga t ive e xpon e n t is

    s o l a r ge t ha t a pe r t u r be d o r b i t t yp i c a l ly be c om e s

    i nd i s t i ngu i s ha b l e f r om t he a t t r a c t o r , by " e ye " , i n

    le ss th an on e m ean orb i t a l pe r iod ( see fig. 1 ).

    o f g r e a t e s t i m p o r t a n c e i s t h a t pos t t rans ien t d a t a m a y n o t

    c o n t a i n r e s o l v a b l e n e g a t i v e e x p o n e n t i n f o r m a t i o n a n d p e r

    t u r b e d d a t a m u s t r e f l ~ t p r o p e r t ie s o f th e u n p e r t u r b e d s y s t e m ,

    t h a t i s , p e r t u r b a t i o n s m u s t o n l y c h a n g e t h e s t a t e o f t h e s y s t e m

    ( c u r r e n t v a l u e s o f t h e d y n a m i c a l v a ri a b le s ) . T h e r e s p o n s e o f a

    p h y s i c a l s y s t e m t o a n o n - d e l t a f u n c t i o n p e r t u r b a t i o n i s d i f fi c u lt

    t o i n t e r p r e t , a s a n o r b i t s e p a r a t i n g f r o m t h e a t t r a c to r m a y

    r e f l e c t e i th e r a l o c a l l y r e p e l li n g re g i o n o f t h e a t t r a c t o r ( a

    p o s i t i v e c o n t r i b u t i o n t o t h e n e g a t i v e e x p o n e n t ) o r t h e f i n i te r i se

    t i m e o f t h e p e r t u r b a t i o n .

  • 8/9/2019 lyapunov exponents and chaos theory

    5/33

  • 8/9/2019 lyapunov exponents and chaos theory

    6/33

    290

    4 .

    14/olfet aL / Determining Lyapunov exponents from a time series

    exponents appears to be satisfied for some model

    systems [30]. The calculation of dimension from

    this equation requires knowledge of all but the

    most negative Lyapunov exponents.

    3 Calculation of Lyapu nov spectra from differential

    equations

    Our algorithms for computing a non-negative

    Lyapunov spectrum from experimental data are

    inspired by the technique developed indepen-

    dently by Bennetin et al. [8] and by Shimada and

    Nagashima [9] for determining a complete spec-

    trum from a set of differential equations. There-

    fore, we describe their calculation (for brevity, the

    ODE approach) in some detail.

    We recall that Lyapunov exponents are defined

    by the long-term evolution of the axes of an infini-

    tesimal sphere of states. This procedure could be

    implemented by defining the principal axes with

    initial conditions whose separations are as small as

    computer limitations allow and evolving these with

    the nonlinear equations of motion. One problem

    with this approach is that in a chaotic system we

    cannot guarantee the condition of small sep-

    arations for times on the order of hundreds of

    orbital periodst, needed for convergence of the

    spectrum.

    This problem may be avoided with the use of a

    phase space plus tangent space approach. A fidu -

    cial trajectory (the center of the sphere) is defined

    by the action of the nonlinear equations of motion

    on some initial condition. Trajectories.of points on

    the surface of the sphere are defined by the action

    of the linearized equations of motion on points

    infinites imally separated from the fiducial trajec-

    tory. In particular, the principal axes are defined

    by the evolution via the linearized equations of an

    initially orthonormal vector frame anchored to the

    fiducial trajectory. By definition, p r i n c i p a l a x e s

    de f i ned by t he l i near s ys t em ar e a l w ays i n f i n i t e s i ma l

    r e l a t i ve t o t he a t t r ac t o r Even in the linear system,

    principal axis vectors diverge in magnitude, but

    this is a problem only because computers have a

    limited dynamic range for storing numbers. This

    divergence is easily circumvented. What has been

    avoided is the serious problem of principal axes

    finding the global fo ld when we really only want

    them to probe the local stretch.

    To implement this procedure the fiducial trajec-

    tory is created by integrating the nonlinear equa-

    tions of motion for some post-transient initial

    condition. Simultaneously, the linearized equa-

    tions of motion are integrated for n different ini-

    tial conditions defining an arbitrarily oriented

    frame of n orthonormal vectors. We have already

    pointed out that each vector will diverge in magni-

    tude, but there is an additional singularity-in a

    chaotic system, each vector tends to fall along the

    local direction of most rapid growth. Due to the

    finite precision of computer calculations, the col-

    lapse toward a common direction causes the tan-

    gent space orientation of all axis vectors to become

    indistinguishable. These two problems can be

    overcome by the repeated use of the Gram-

    Schmidt reorthonormalization (GSR) procedure on

    the vector frame:

    Let the linearized equations of motion act on

    the initial frame of orthonormal vectors to give a

    set of v e c t o r s { v 1 . . . . V n . (The desire of each

    vector to align itself along the ~1 direction, and

    the orientation-preserving properties of GSR mean

    that the initial labeling of the vectors may be done

    arbitrarily.) Then GSR provides the following or-

    thonormal set { ~ . . .. . v,' }:

    1D1

    v ~ = I I v , l l

    v2- ~

    v~=

    tlv~ - ~l l

    tSh oul d the mean orbital period not be well-defined, a

    characteristic time can be either the mean time between inter-

    sections of a Poincar6 section or the time corresponding to a

    domi nant power s pectral feature.

    v. - ~ ._ , . . . . . ~

    4 )

  • 8/9/2019 lyapunov exponents and chaos theory

    7/33

    A. Wol f e t al . / D etermining Lyapunoo exponents f rom a t ime ser ies

    291

    w h e r e ( , ) s ig n i fi e s t h e i n n e r p r o d u c t . T h e

    f r e q u e n c y o f r e o r t h o n o r m a l i z a t i o n i s n o t c r i t i c a l ,

    s o l o n g a s n e i t h e r t h e m a g n i t u d e n o r t h e o r i e n t a -

    t i o n d i v e r g e n c e s h a v e e x c e e d e d c o m p u t e r l i m i t a -

    t i o ns . A s a r u l e o f th u m b , G S R i s p e r f o r m e d o n

    t h e o r d e r o f o n c e p e r o r b i t a l p e ri o d .

    W e s e e t h a t G S R n e v e r af fe c ts t h e d i re c t i o n o f

    t h e f i r s t v e c t o r i n a s y s t e m , s o t h i s v e c t o r t e n d s t o

    s e e k o u t t h e d i r e c t i o n i n t a n g e n t s p a c e w h i c h i s

    m o s t r a p i d l y g r o w i n g ( c o m p o n e n t s a l o n g o t h e r

    d i r e c t i o n s a r e e i t h e r g r o w i n g l e s s r a p i d l y o r a r e

    s h r in k i n g ) . T h e s e c o n d v e c t o r h a s i ts c o m p o n e n t

    a l o n g t h e d i r e c t i o n o f t h e f i r s t v e c t o r r e m o v e d , a n d

    i s t h e n n o r m a l i z e d . B e c a u s e w e a r e c h a n g i n g i ts

    d i r e c t i o n , v e c t o r v 2 i s n o t f r e e to s e e k o u t t h e m o s t

    r a p i d l y g r o w i n g d i re c t io n . B e c a u s e o f th e m a n n e r

    i n w h i c h w e a r e c h a n g i n g i t, it a l s o i s n o t f r e e to

    s e e k o u t t h e s e c o n d m o s t r a p i d l y g r o w i n g d i r e c -

    t i o n t . N o t e h o w e v e r t h a t th e v e c t o r s ~ a n d if2

    s p a n t h e s a m e t w o - d i m e n s i o n a l s u b s p a c e as th e

    v e c t o r s v x a n d v 2 . I n s p i t e o f r e p e a t e d v e c t o r

    r e p l a c e m e n t s t h e s p a c e t h e s e v e c t o r s d e f i n e c o n t i n u -

    a l l y s e e k s o u t t h e tw o - d i m e n s i o n a l s u b s p a c e t h a t i s

    m o s t r a p i d l y g r o w i n g .

    T h e a r e a d e f i n e d b y t h e s e

    v e c t o r s i s p r o p o r t i o n a l t o 2 (x ~+ x2 )t [ 8] . T h e l e n g t h

    o f v e c t o r v t i s p r o p o r t i o n a l t o 2 x~t s o t h a t m o n i t o r -

    i n g l e n g t h a n d a r e a g r o w t h a l lo w s us t o d e t e r m i n e

    b o t h e x p o n e n t s . I n p r a c t ic e , as ~ a n d if2 a r e

    o r t h o g o n a l , w e m a y d e t e r m i n e h 2 d i r e ct l y f r o m

    t h e m e a n r a t e o f g r o w t h o f t h e p r o j e c ti o n o f v e c t o r

    v 2 o n v e c t o r 4 . I n g e n e r a l, t h e s u b s p a c e s p a n n e d

    b y t h e f ir s t k v e c t o r s is u n a f f e c t e d b y G S R s o t h a t

    t h e l o n g - t e r m e v o l u t io n o f t h e k - v o l u m e d e f in e d

    b y t h e s e v e c t o r s i s p r o p o r t i o n a l t o 2 ~ w h e r e # =

    ~.ki_ 1 ~ i t

    P r o j e c t i o n o f t h e e v o l v e d v e c t o r s o n t o t h e

    n e w o r t h o n o r m a l f r a m e c o r r e c tl y u p d a t e s t h e r a te s

    o f g r o w t h o f e a c h o f th e f i rs t k - p r i n c i p a l a x e s i n

    tTh is is clear when we consider that we may obtain different

    directions of vector 02 at some specified ime if we exercise our

    freedom to choose the intermediate tim es at wh ich GSR is

    performed. T hat is, beginning with a specified v1 and 02 at

    time ti, we may perform replacemen ts at times t~+ x and ti+2,

    obtaining the vectors ~ , t~ and th en v~' , v~' or we may

    propagate directly to tim e ti+ 2, obtaining vl*, v~. t~' and v~

    are not

    par alle l; therefore, the d etails of propaga tion and

    replacemen t determine the orientation of 02

    t u r n , p r o v i d i n g e s t i m a t e s o f t h e k l a r ge s t L y a p u n o v

    e x p o n e n t s . T h u s G S R a l lo w s th e i n te g r a t i o n o f t h e

    v e c t o r f r a m e f o r a s l o n g a s i s r e q u i r e d f o r s p e c t r a l

    c o n v e r g e n c e .

    F o r t r a n c o d e f o r th e O D E p r o c e d u r e a p p e a r s i n

    a p p e n d i x A . W e i l l u s t r a t e t h e u s e o f t h i s p r o c e d u r e

    f o r t h e R o s s l e r a t t r a c t o r [ 26 ]. T h e s p e c t r a l c a l c u la -

    t i o n r e q u i r e s t h e i n t e g r a t i o n o f th e 3 e q u a t i o n s o f

    m o t i o n a n d 9 li n e a ri z e d e q u a t io n s f o r o n t h e o r d e r

    o f 1 0 0 o r b i t s o f m o d e l t i m e (a f e w c p u m i n u t e s o n

    a V A X 1 1 / 7 8 0 ) t o o b t a i n e a c h e x p o n e n t t o w i t h i n

    a f e w p e r c e n t o f it s a s y m p t o t i c v a lu e . I n p r a c t i c e

    w e c o n s i d e r t h e a s y m p t o t i c v a l u e to b e a t t a i n e d

    w h e n t h e m a n d a t o r y z e r o e x p o n e n t (s ) a re a f e w

    o r d e r s o f m a g n i t u d e s m a l l e r t h a n t h e s m a l le s t

    p o s i t i v e e x p o n e n t . T h e c o n v e r g e n c e r a t e o f z e r o

    a n d p o s i t i v e e x p o n e n t s i s a b o u t t h e s a m e , a n d i s

    m u c h s l o w e r t h a n t h e c o n v e rg e n c e r a te o f n e g a ti v e

    e x p o n e n t s . N e g a t i v e e x p o n e n t s a r i s e f r o m t h e

    n e a r l y u n i f o r m a t t ra c t i v e n e ss o f t he a t t r a c t o r w h i c h

    c a n o f t e n b e w e l l e s t i m a t e d f r o m a f e w p a s se s

    a r o u n d a n a t t r a c t o r , n o n - n e g a t i v e e x p o n e n t s a r is e

    f r o m a o n c e - p e r - o r b i t s tr e t ch a n d f o ld p r o c e s s t h a t

    m u s t b e s a m p l e d o n t h e o r d e r o f h u n d r e d s o f

    t i m e s ( o r m o r e ) f o r r e a s o n a b l e c o n v er g e n c e .

    T h e m e t h o d w e h a v e d e s c r i b e d f o r f i n d i n g

    L y a p u n o v e x p o n e n t s is p e r h a p s m o r e e a si ly u n d e r-

    s t o o d f o r a d i s c r e t e d y n a m i c a l s y s t e m . H e r e w e

    c o n s i d e r t h e H 6 n o n m a p [2 5] ( s e e t a b l e I ). T h e

    l i n e a r i z a t i o n o f t h i s m a p i s

    [ , s x .

    = L / B y . ,

    5 )

    w h e r e

    1 0 ] 6

    a n d X ~ i s t h e ( n - 1 ) st i t e r a t e o f a n a r b i t r a r y

    i n i t i a l c o n d i t i o n X 1.

    A n o r t h o n o r m a l f r a m e o f p r i n c ip a l a x is v e c t o r s

    s u c h a s ( ( 0 ,1 ) , ( 1 , 0 ) ) i s e v o l v e d b y a p p l y i n g t h e

    p r o d u c t J a c o b i a n t o e a c h v e ct o r. F o r e i t he r v e c to r

  • 8/9/2019 lyapunov exponents and chaos theory

    8/33

    292

    A. Wolf et al./ Determin ing Lyapunov exponents

    from u tune

    eries

    the operation may be written in two different

    ways. For example, for the vector 0,l) we have

    or, by regrouping the terms,

    In eq. 7) the latest Jacobi matrix multiplies

    each current axis vector, which is the initial vector

    multiplied by all previous Jacobi matrices. The

    magnitude of each current axis vector diverges,

    and the angular separation between the two vec-

    tors goes to zero. Fig. 2 shows that divergent

    behavior is visible within a few iterations. .GSR

    corresponds to the replacement of each current

    axis vector. Lyapunov exponents are computed

    Fig. 2. The action of the product Jacobian on an initially

    orthonorma l vector frame is illustrated for the H non map: (1)

    initia l frame; (2) first iterate; and (3) second iterate. By the

    second iteration the divergence in vector magnitude and the

    angular collapse of the frame are quite apparent. Initial condi-

    tions were chosen so that the angular collapse of the vectors

    was uncommon ly slow.

    from the growth rate of the length of the first

    vector and the growth rate of the area defined by

    both vectors.

    In eq. 8) the product Jacobian acts on each of

    the initial axis vectors. The columns of the product

    matrix converge to large multiples of the eigenvec-

    tor of the biggest eigenvalue, so that elements of

    the matrix diverge and the matrix becomes singu-

    lar. Here GSR corresponds to factoring out a large

    scalar multip lier of the matrix to prevent the mag-

    nitude divergence, and doing row reduction with

    pivoting to retain the linear independence of the

    columns. Lyapunov exponents are computed from

    the eigenvalues of the long-time product matrix?.

    We emphasize that Lyapunov exponents are not

    local quantities in either the spatial or temporal

    sense. Each exponent arises from the average, with

    respect to the dynamical motion, of the loca l de-

    formation of various phase space directions. Each

    is determined by the long-time evolution of a

    singZe volume element. Attempts to estimate expo-

    nents by averaging local contraction and expan-

    sion rates of phase space are likely to fail at the

    point where these contributions to the exponents

    are combined. In fig. 3a we show vector vi at each

    renormalization step for the Lorenz attractor over

    the course of several hundred orbits [32]. The

    apparent multivaluedness of the most rapid ly

    growing direction in some regions of the attrac-

    tor) shows that this direction is not simply a

    function of position on the attractor. While this

    direction is often nearly paralle l to the flow on the

    Lorenz attractor see fig. 3b) it is usually nearly

    transverse to the flow for the Rossler attractor. We

    conclude that exponent calcula tion by averaging

    local divergence estimates is a dangerous proce-

    dure.

    +We are aware o f an attempt to estimate Lyapunov spectra

    from experimen tal data through direct estimation of local

    Jacobian matrices and formation of the long time product

    matrix [31]. This calculation is essentially the same as ours (we

    avoid m atrix notation by diagon alizing the system at each step)

    and has the same problems of sensitivity to external noise, and

    to the amoun t and resolution of data required for accurate

    estimates.

  • 8/9/2019 lyapunov exponents and chaos theory

    9/33

    4 . Wo l f e t a l. / De termin ing Lyap unoo exponen ts f rom a t im e ser ies 293

    .

    b )

    _ - . _ _ , , , , . - - _ - -

    J l e o 1

    Fi g . 3 . A m o d i f i c a t i o n t o t h e OD E s p e c t r a l c o d e ( s ee a p p e n d i x A ) a l lo w s u s t o p l o t t h e r u n n i n g d i r e c t i o n o f g r e a t e s t g r o w t h ( v e c t o r

    v ~ ) i n t h e L o r e n z a t t r a c t o r . I n ( a ) , in f r e q u e n t r e n o r m a l i z a t i o n s c o n f i r m t h a t t h i s d i r e c t i o n i s n o t s i n g l e - v a lu e d o n t h e a t t r a c t o r . I n ( b ) ,

    f r e q u e n t r e n o r m a l i z a t i o n s s h o w u s t h a t t h i s d i r e c t i o n is u s u a l l y n e a r l y p a r a l l e l t o t h e f lo w . I n t h e R o s s l e r a t t r a c t o r , t h i s d i r e c t io n i s

    u s u a l l y n e a r l y o r t h o g o n a l t o t h e f l ow .

    4 A n a p p r o a c h to sp e c tr a l e s t i m a t i o n f o r

    e x p e r i m e n t a l d a t a

    Experimental data typically consist of discrete

    measurements of a single observable. The well-

    known technique of phase space reconstruction

    with delay coordinates [2, 33, 34] makes it possible

    to obtain from such a time series an attractor

    whose Lyapunov spectrum is identical to that of

    the original attractor. We have designed a method,

    conceptually similar to the ODE approach, which

    can be used to estimate non-negative Lyapunov

    exponents from a reconstructed attractor. To un-

    derstand our method it is useful to summarize

    what we have discussed thus far about exponent

    calculation.

    Lyapunov exponents may be defined by the

    ph se sp ce evolution of a sphere of states. At-

    tempts to apply this definition numerically to

    equations of motion fail since computer limita-

    tions do not allow the initial sphere to be con-

    structed sufficiently small. In the ODE approach

    one avoids this problem by working in the t ngent

    sp ce

    of a fiducial trajectory so as to obtain always

    infinitesimal principal axis vectors. The remaining

    divergences are easily eliminated with Gram-

    Schmidt reorthonormalization.

    The ODE approach is not directly applicable to

    experimental data as the linear system is not avail-

    able. All is not lost provided that the linear ap-

    proximation holds on the smallest length scales

    defined by our data. Our approach involves

    working in a reconstructed attractor, examining

    orbital divergence on length scales that are always

    as small as possible, using an approximate GSR

    procedure in the reconstructed

    ph se sp ce

    as

  • 8/9/2019 lyapunov exponents and chaos theory

    10/33

    294 A. Wolfet al. Determining Lyapunov exponents rom a tim e series

    n e c e s s a r y . T o s i m p l i f y t h e e n s u i n g d i s c u s s i o n w e

    w i ll a s s u m e t h a t t h e s y st e m s u n d e r c o n s i d e r a t i o n

    p o s s e s s a t l e a s t o n e p o s i ti v e e x p o n e n t .

    T o e s t i m a t e X1 w e i n e f f ec t m o n i t o r t h e l o n g - t e r m

    e v o l u t i o n o f a s in g le p a i r o f n e a r b y o r b it s . O u r

    r e c o n s t r u c t e d a t t r a c t o r , t h o u g h d e f i n e d b y a s i ng le

    t r a j e c t o r y , c a n p r o v i d e p o i n t s t h a t m a y b e c o n s i d -

    e r e d t o l i e o n d i f f e r e n t t r a j e c t o r i e s . W e c h o o s e

    p o i n t s w h o s e t e m p o r a l s e p a r a t i o n i n t h e o r i g i n a l

    t i m e s e r i e s i s a t l e a s t o n e m e a n o r b i t a l p e r i o d ,

    b e c a u s e a p a i r o f p o i n ts w i t h a m u c h s m a l le r

    t e m p o r a l s e p a r a t i o n i s c h a r a c t e r i z e d b y a z e r o

    L y a p u n o v e x p o n e n t. T w o d a t a p o i n ts m a y b e c o n -

    s i d e r e d t o d e f i n e t h e e a r l y s t a t e o f t h e f i r s t p r i n -

    c i p a l a x i s s o l o n g a s t h e i r s p a t i a l s e p a r a t i o n i s

    s m a l l. W h e n t h e i r s e p a r a t i o n b e c o m e s l a rg e w e

    w o u l d l ik e t o p e r f o r m G S R o n t h e v e c t o r t h e y

    d e f i n e ( s i m p l y n o r m a l i z a t i o n f o r t h i s s i n gl e v e c t o r) ,

    w h i c h w o u l d i n v o l v e r e p la c i n g t h e n o n - f i d u c ia l

    d a t a p o i n t w i t h a p o i n t c l o s e r to t h e f i d u c ia l p o i n t ,

    i n t h e s a m e d i r e c t i o n a s t h e o r i g i n a l v e c t o r . W i t h

    f i n i t e a m o u n t s o f d a t a , w e c a n n o t h o p e t o f i n d a

    r e p l a c e m e n t p o i n t w h i c h f a ll s e x a c t l y a l o n g a

    s p e c i f i e d l i n e s e g m e n t i n t h e r e c o n s t r u c t e d p h a s e

    s p a c e , b u t w e c a n l o o k f o r a p o i n t t h a t c o m e s

    c l o s e . I n e f f e c t t h ro u g h a s i m p l e r e p l a c e m e n t p r o -

    c e d u r e t h a t a t t e m p t s t o p r e s e r v e o r i e n ta t io n a n d

    m i n i m i z e t h e s iz e o f r e p la c e m e n t v e ct o rs w e h a v e

    m o n i t o r e d t h e l o n g - t e r m b e h a v i o r o f a s i n g le p r i n -

    c i p a l a x i s v e c t o r . E a c h r e p l a c e m e n t v e c t o r m a y b e

    e v o l v e d u n t i l a p r o b l e m a r is e s, a n d s o on . T h i s

    l ead s u s t o an e s t i ma t e o f X1 . (S ee f i g . 4 a . )

    T h e u s e o f a f i n it e a m o u n t o f e x p e r i m e n t a l d a t a

    d o e s n o t a l l o w u s t o p r o b e t h e d e s i r e d in f i n it e si m a l

    l e n g t h s c a l e s o f a n a t t r a c t o r . T h e s e s c a l e s a r e a l s o

    i n a c c e s s i b le d u e t o t h e p r e s e n c e o f n o i s e o n f in i te

    l e n g t h s c a l e s a n d s o m e t i m e s b e c a u s e t h e c h a o s -

    p r o d u c i n g s t r u c t u r e o f t h e a t t r a c t o r i s o f n e g li g ib l e

    s p a t i a l e x t e n t . A d i s c u s s i o n o f t h e s e p o i n t s i s d e -

    f e r r e d u n t i l s e c t i o n 7 . 1 .

    A n e s t i m a t e o f t h e s u m o f t h e t w o la r g e s t e x p o -

    n e n t s X1 + X 2 i s s i m i l a r l y o b t a i n e d . I n t h e O D E

    p r o c e d u r e t h i s i n v o l v e s t h e l o n g - t e r m e v o l u t i o n o f

    a f i d u c i a l t r a j e c t o r y a n d a p a i r o f t a n g e n t s p a c e

    v e c t o r s . I n o u r p r o c e d u r e a t r i p l e o f p o i n t s i s

    e v o l v e d i n t h e r e c o n s t r u c t e d a t t r a c t o r . B e f o r e th e

    a r e a e l e m e n t d e f i n e d b y t h e t r i p l e b e c o m e s c o m -

    p a r a b l e t o t h e e x t e n t o f t h e a t t r a c t o r w e m i m i c

    G S R b y k e e p i n g t h e f id u c ia l p o i n t , r e p l a c in g t h e

    r e m a i n d e r o f t h e t r i p l e w i t h p o i n t s t h a t d e f i n e a

    s m a l l e r a r e a e l e m e n t a n d t h a t b e s t p r e s e r v e t h e

    e l e m e n t ' s p h a s e s p a c e o r i e n t a t i o n . R e n o r m a l i z a -

    t i o n s a r e n e c e s s a r y s o l el y b e c a u s e v e c t o r s g r o w t o o

    l a rg e , n o t b e c a u s e v e c t o r s w i l l c o l l a p s e t o i n d i s -

    t i n g u i s h a b l e d i r e c t i o n s i n p h a s e s p a c e ( t h i s i s u n -

    l i k e ly w i t h t h e l i m i t e d a m o u n t s o f d a t a u s u a l l y

    a v a i l a b l e i n e x p e r i m e n t s ) . T h e e x p o n e n t i a l g r o w t h

    r a t e o f a r e a e l e m e n t s p r o v i d e s a n e s t i m a t e o f X 1

    + X 2 . (See f ig . 4b . )

    O u r a p p r o a c h c a n b e e x te n d e d t o a s m a n y n o n -

    n e g a t i v e e x p o n e n t s a s w e c a r e t o e s t im a t e : k + 1

    p o i n t s i n t h e r e c o n s t r u c t e d a t t r a c t o r d e fi n e a k -

    v o l u m e e l e m e n t w h o s e l o n g - t e r m e v o l u t i o n i s p o s -

    s i b le t h r o u g h a d a t a r e p l a c e m e n t p r o c e d u r e t h a t

    a t t e m p t s t o p r e s e r v e p h a s e s p a c e o r i e n t a t i o n a n d

    p r o b e o n l y t h e s m a l l s c a l e s t r u c t u r e o f t h e a t t r a c -

    t o r . T h e g r o w t h r a t e o f a k - v o l u m e e l e m e n t p r o -

    v i d e s a n e s t i m a t e o f t h e s u m o f t h e f i r s t k

    L y a p u n o v e x p o ne n t s.

    I n p r i n c i p l e w e m i g h t a t t e m p t t h e e s t i m a t i o n o f

    n e g a t i v e e x p o n e n t s b y g o i n g to h i g h e r - d i m e n s i o n a l

    v o l u m e e l e m e n t s, b u t i n f o r m a t i o n a b o u t c o n t r a c t -

    i n g p h a s e s p a c e d i r e c t i o n s i s o f t e n i m p o s s i b l e t o

    r e s o lv e . I n a s y s t e m w h e r e f r a c t a l s t ru c t u r e c a n b e

    r e s o l v e d , t h e r e i s t h e d i f f ic u l t y t h a t t h e v o l u m e

    e l e m e n t s i n v o l v i n g n e g a t i v e e x p o n e n t d i r e c t i o n s

    c o l l a p s e e x p o n e n t i a l l y f a s t , a n d a r e t h e r e f o r e

    n u m e r i c a l l y u n s t a b l e f o r e x p e r i m e n t a l d a t a ( s e e

    s e c t i o n 7 . 1 ).

    5 Spec tnd algorithm implementation

    W e h a v e i m p l e m e n t e d s e v e r a l v e r s i o n s o f o u r

    a l g o r i t h m s i n c l u d i n g s i m p l e " f i x e d e v o l u t i o n t i m e "

    p r o g r a m s f o r ~'1 a n d X1 h E , " v a r i a b l e e v o l u t i o n

    t i m e " p r o g r a m s f o r X I + ~ : , a n d " in t e r ac t iv e "

    p r o g r a m s t h a t a r e u s e d o n a g ra p h ic s m a c h i n e t .

    tT he interactive progra m avoids the profusion of input

    parame ters required for our increasingly sophisticated expo-

  • 8/9/2019 lyapunov exponents and chaos theory

    11/33

    A Wolf et al / Determining Lyapunov exponents from a time series 2 9 5

    I n a p p e n d i x B w e i n c l u d e F o r t r a n c o d e a n d

    d o c u m e n t a t i o n f o r t h e h 1 f i xe d e v o l u t io n t i m e

    p r o g r a m . T h i s p r o g r a m i s n o t s o p h i s t ic a t e d , b u t i t

    i s c o n c i s e , e a s i l y u n d e r s t o o d , a n d u s e f u l f o r l e a r n -

    i n g a b o u t o u r t e c h n i q u e . W e d o n o t i n c l u d e t h e

    f ix ed ev o lu t io n t im e co d e f o r )~x + )~2 ( th o u g h i t i s

    b r i e f ly d i s c u s s e d a t t h e e n d o f a p p e n d i x B ) o r o u r

    o t h e r p r o g r a m s , b u t w e w i ll s u p p ly t h e m t o i n te r -

    e s t e d p a r t i e s . W e c a n a l s o p r o v i d e a h i g h l y e ff i-

    c i e n t d a t a b a s e m a n a g e m e n t a l g o r i t h m t h a t c a n b e

    u s e d i n a n y o f o u r p r o g r a m s t o e l i m i n a t e t h e

    e x p e n s i v e p r o c e s s o f e x h a u s t i v e s e a r c h f o r n e a r e s t

    n e i g h b o r s . W e n o w d i s c u s s t h e f i x e d e v o l u t i o n

    t i m e p r o g r a m f o r A a n d t h e v a r ia b l e e v o l u t io n

    t i m e p r o g r a m f o r ~ x

    + h 2

    i n s o m e d e t a i l.

    5 .1 .

    F i x e d e v o l u t i o n t i m e p r o g r a m f o r )~1

    G i v e n t h e t i m e s e r i e s x ( t ) , a n m - d i m e n s i o n a l

    p h a s e p o r t r a i t i s r e c o n s tr u c t e d w i t h d e l a y co o r d i -

    n a t e s [2 , 3 3 , 3 4 ] , i . e . , a p o in t o n th e a t t r ac to r i s

    g i v e n b y

    { x ( t ) , x ( t + ~ ) . . . . x ( t + [ m -

    1]~')}

    w h e r e z i s t h e a l m o s t a r b i t r a r i l y c h o s e n

    d e l a y t i m e . W e l o c a t e t h e n e a r e s t n e i g h b o r ( i n

    t h e E u c l i d e a n s e n s e ) t o t h e i n i t i a l p o i n t

    { x ( t o ) . . . . . X ( t o + [ m -

    1 ]~ ) } an d d en o te t h e d i s -

    t a n c e b e t w e e n t h e s e t w o p o i n t s

    L ( t o ) .

    A t a l a t e r

    t i m e t t , t h e i n i t i a l l e n g t h w i l l h a v e e v o l v e d t o

    l e n g t h L ' ( t x ) . T h e l e n g t h e l e m e n t i s p r o p a g a t e d

    t h r o u g h t h e a t t r a c t o r f o r a t i m e s h o r t e n o u g h s o

    t h a t o n l y s m a l l s c a l e a t t r a c t o r s t r u c t u r e i s l ik e l y t o

    b e e x a m i n e d . I f t h e e v o l u t io n t i m e i s t o o l a r ge w e

    n e n t p r o g r a m s . T h i s p r o g r a m a l l o w s t h e o p e r a t o r t o o b s e r v e :

    t h e a t t r a c t o r , a l e n g t h o r a r e a e l e m e n t e v o l v i n g o v e r a r a n g e o f

    t i m e s , t h e b e s t r e p l a c e m e n t p o i n t s a v a i l a b l e o v e r a r a n g e o f

    t i m e s , a n d s o f o r t h . E a c h o f t h e s e is s e e n i n a t w o o r t h r e e -

    d i m e n s i o n a l p r o j e c t i o n ( d e p e n d i n g o n t h e g r a p h i c a l o u t p u t

    d e v i c e ) w i t h t e r m i n a l o u t p u t p r o v i d i n g s u p p l e m e n t a r y i n f o r m a -

    t i o n a b o u t v e c t o r m a g n i t u d e s a n d a n g l e s i n t h e d i m e n s i o n o f

    t h e a t t r a c t o r r e c o n s t r u c t i o n . U s i n g t h is i n f o r m a t i o n t h e o p e r -

    a t o r c h o o s e s a p p r o p r i a t e e v o l u t i o n ti m e s a n d r e p l a c e m e n t

    p o i n t s . T h e p r o g r a m i s c u r r e n t l y w r i t te n f o r a V e c t o r G e n e r a l

    3 4 0 5 b u t m a y e a s i l y b e m o d i f i e d f o r u se o n o t h e r g r a p h i c s

    m a c h i n e s . A 1 6 m m m o v i e su m m a r i z i n g o u r a l g o r it h m a n d

    s h o w i n g t h e o p e r a t i o n o f t h e p r o g r a m o n t h e L o r e n z a t t r a c t o r

    h a s b e e n m a d e b y o n e o f t h e a u t h o r s (A . W .) .

    m a y s e e L ' s h r i n k a s t h e t w o t r a j e c t o r i e s w h i c h

    d e f i n e i t p a s s t h r o u g h a f o l d i n g r e g i o n o f t h e

    a t t r a c t o r . T h i s w o u l d l e a d t o a n u n d e r e s t i m a t i o n

    o f h i - W e n o w l o o k f o r a n e w d a t a p o i n t t h a t

    sa t i s f i e s two c r i t e r i a r ea so n ab ly we l l : i t s sep -

    a r a t i o n , L ( t l ) , f r o m t h e e v o l v e d f i d u c i a l p o i n t i s

    s m a l l , a n d t h e a n g u l a r s e p a r a t i o n b e t w e e n t h e

    e v o l v e d a n d r e p l a c e m e n t e l e m e n t s i s s m a l l ( s ee f ig .

    4 a ) . I f a n a d e q u a t e r e p l a c e m e n t p o i n t c a n n o t b e

    f o u n d , w e r e t a i n t h e p o i n t s t h a t w e r e b e i n g u s e d .

    T h i s p r o c e d u r e i s r e p e a t e d u n t i l t h e f i d u c i a l t r a je c -

    t o r y h a s t r a v e r s e d t h e e n t i r e d a t a f i l e , a t w h i c h

    p o i n t w e e s t i m a t e

    M L , ( t k )

    Y'~ lo g 2 , (9)

    k I =

    t M _ t o L ( t t , _ x )

    k=l

    w h e r e M i s t h e t o t a l n u m b e r o f r e p l a c e m e n t s te p s .

    I n t h e f i x e d e v o l u ti o n t i m e p r o g r a m t h e t i m e s t ep

    A = t k + 1 - - t k

    ( E V O L V i n t h e F o r t r a n p r o g r a m )

    b e t w e e n r e p l a c e m e n t s i s he l d c o n s t a n t . I n t h e l i m i t

    o f a n i n f i n it e a m o u n t o f n o i s e- f re e d a t a o u r p r o c e -

    d u r e a l w a y s p r o v i d e s r e p l a c e m e n t v e c t o rs o f i n f in i -

    t e s i m a l m a g n i t u d e w i t h n o o r i e n t a t i o n e r r o r , a n d

    )k 1 i s o b t a i n e d b y d e f i n i t io n . In s e c t i o n s 6 a n d 7 w e

    d i s c u s s t h e s e v e r i t y o f e r r o r s o f o r i e n t a t i o n a n d

    f i n i t e v e c t o r s i ze f o r f i n it e a m o u n t s o f n o i s y e x p e r i -

    m e n t a l d a t a .

    5.2.

    V a r i a b l e e v o l u t i o n t i m e p r o g r a m f o r )~1 + )~ 2

    Th e a lg o r i t h m f o r e s t im a t in g h x + 1~2 i s s im i l a r

    i n s p i r i t t o t h e p r e c e e d i n g a l g o r i t h m , b u t i s m o r e

    c o m p l i c a t e d i n i m p l e m e n t a t i o n . A t r io o f d a t a

    p o i n t s i s c h o s e n , c o n s i s t i n g o f t h e i n i t i a l f i d u c i a l

    p o i n t a n d i t s t w o n e a r e s t n e i g h b o r s . T h e a r e a

    A ( t o )

    d e f i n e d b y t h e s e p o i n t s i s m o n i t o r e d u n -

    t i l a r e p l a c e m e n t s t e p i s b o t h d e s i r a b l e a n d p o s s i -

    b l e -

    t h e e v o l u t i o n t i m e i s v a r i a b l e . T h i s m a n d a t e s

    t h e u s e o f s e v e r a l a d d i t i o n a l i n p u t p a r a m e t e r s : a

    m i n i m u m n u m b e r o f e v o l u t i o n s t e p s b e t w e e n r e -

    p l a c e m e n t s ( J U M P M N ) , t he n u m b e r o f st ep s t o

    e v o lv e b a c k w a r d s ( H O P B A K ) w h e n a r e p l a ce m e n t

    s i t e p r o v e s i n a d e q u a t e , a n d a m a x i m u m l e n g t h o r

    a r e a b e f o r e r e p l a c e m e n t i s a t te m p t e d .

  • 8/9/2019 lyapunov exponents and chaos theory

    12/33

    296

    A. Wolf et aL Determining Lyapunov exponents rom a t ime series

    a ) ~

    t L I m i

    s %/

    L l t ~ t t2 t i q t u l o l t

    b , .

    " t i I

    M t o ) ~ r t - - t2 ~it luci*l- - ~ I f . .~ 'tec '

    o

    Fig. 4. A schem atic representation o f the evolution and replacement procedure u sed to es tima te Lyapunov exponents from

    experimental data. a) The largest Lyapunov exponent is computed from the growth of length elements. When the length of the vector

    between two poin ts becomes large, a new point is chosen near the reference trajectory, minimizing both the replacement length L and

    the orientation change ~. b) A similar procedure is followed to calculate the sum of the two largest Lyapunov exponents from the

    growth of area elements. When an area element becomes too large or too skewed, two new points are chosen near the reference

    trajectory, minimizing the replacement area A and the change in phase space orientation between the original and replacement area

    elements.

    E v o l u t i o n c o n t i n u e s u n t il a " p r o b l e m " a ri se s. I n

    o u r i m p l e m e n t a t i o n t h e p r o b l e m l i st i n c lu d e s : a

    p r i n c i p a l a x is v e c t o r g r o w s t o o l a rg e o r t o o r a p id l y ,

    t h e a r e a g r o w s t o o r a p id l y , a n d t h e s k e w n e s s o f

    t h e a r e a e l e m e n t e x c e e d s a t h r e s h o l d v a l u e .

    W h e n e v e r a n y o f th e s e c r it e r ia a r e m e t , th e t r ip l e

    is e vo l v e d b a c k w a r d s H O P B A K s te p s an d a re -

    p l a c e m e n t i s a t t e m p t e d . I f r e p la c e m e n t f ai ls , w e

    w i l l p u l l t h e t r i p l e b a c k a n o t h e r H O P B A K s t e p s ,

    a n d t r y a g a i n . T h i s p r o c e s s i s r e p e a t e d , i f n e c e s -

    s a r y , u n t i l t h e t r i p l e is g e t t i n g u n c o m f o r t a b l y c l o s e

    t o t h e p r e v i o u s r e p l a c e m e n t s i t e . A t t h i s p o i n t w e

    t a k e t h e b e s t a v a i l a b l e r e p l a c e m e n t p o i n t , a n d

    j u m p f o r w a r d a t le as t J U M P M N s te p s t o s ta r t t he

    n e x t e v o l u t i o n . A t t h e f ir s t r e p l a c e m e n t t i m e , t l ,

    t h e t w o p o i n t s n o t o n t h e f id u c ia l t r a je c t o r y a re

    r e p l a c e d w i t h t w o n e w p o i n t s t o o b t a i n a s m a l le r

    a r e a A ( t t ) w h o s e o r i e n t a ti o n i n p h a s e s p a c e is

    m o s t n e a r l y t h e s a m e a s th a t o f t h e ev o l v e d a re a

    A ( t l ) .

    D e t e r m i n i n g t h e se t o f re p l a c e m e n t p o i n t s

    t h a t b e s t p r e s e r v e s a r e a o r i e n t a t i o n p r e s e n t s n o

    f u n d a m e n t a l d i f f i c u l t i e s .

    P r o p a g a t i o n a n d r e p l a c e m e n t s te p s a r e r e p e a t e d

    ( s e e f i g . 4 b ) u n t i l t h e f i d u c i a l t r a j e c t o r y h a s

    t r a v e r s e d t h e e n t i r e d a t a f il e a t w h i c h p o i n t w e

    e s t i m a t e

    1 _ _ E l o g 2 - ( 1 0 )

    ~1 ~2 = tM -- t o A ( t k , x ) ,

    k = l

    w h e r e t k i s t h e t i m e o f t h e k t h r e p l a c e m e n t s t e p .

    I t i s o f t e n p o s s i b l e t o v e r i f y o u r r e s u l ts f o r X~

    t h r o u g h t h e u s e o f t h e h 1 + h 2 c a l c u la t io n . F o r

  • 8/9/2019 lyapunov exponents and chaos theory

    13/33

    A W ol f e t aL De term in ing Lyapuno v exponen ts f ro m a t ime series 297

    a t t r a c t o r s t h a t a r e v e r y n e a r l y tw o d i m e n s i o n a l

    t h e r e i s n o n e e d t o w o r r y a b o u t p r e s e rv i n g o ri e n t a-

    t i o n w h e n w e r e p l a c e t r i p l e s o f p o i n t s . T h e s e e l e -

    m e n t s m a y r o t a t e a n d d e f o r m w i t h in t h e p la n e o f

    t h e a t t r a c t o r , b u t r e p l a c e m e n t t ri p l e s a l w a y s l i e

    w i t h i n t h i s s a m e p l a n e . S i n c e X 2 f o r t h e s e a t t r a c -

    t o r s i s z e r o , a r e a e v o l u t i o n p r o v i d e s a d i r e c t e s t i -

    m a t e f o r h 1. W i t h e x p e r i m e n t a l d a t a t h a t a p p e a r

    t o d e f i n e a n a p p r o x i m a t e l y t w o - d i m e n s i o n a l a t-

    t r a c t o r , a n i n d e p e n d e n t c a l c u l a t io n o f d f f r o m i ts

    d e f i n i t i o n ( f e a s i b l e f o r a t t r a c t o r s o f d i m e n s i o n l e s s

    t h a n t h r e e [ 3 5] ) m a y j u s t i f y t h i s a p p r o a c h t o e s ti -

    m a t i n g h x .

    6 Im plem entat ion deta ils

    6.1 .

    election of embedding dimension and delay

    t ime

    I n p r i n c ip l e , w h e n u s i n g d e l a y c o o r d i n a te s t o

    r e c o n s t r u c t a n a t t ra c t o r , a n e m b e d d i n g [ 3 4 ] o f t h e

    o r i g i n a l a t t r a c t o r i s o b t a i n e d f o r a n y s u f f i c i e n t l y

    l a r g e m a n d a l m o s t a n y c h o i c e o f t i m e d e l a y ~-, b u t

    i n p r a c t i c e a c c u r a t e e x p o n e n t e s t i m a t i o n r e q u i r e s

    s o m e c a r e i n c h o o s i n g t h e s e t w o p a r a m e t e r s . W e

    s h o u l d o b t a i n a n e m b e d d i n g i f m i s c h o s e n to b e

    g r e a t e r t h a n t w i c e th e d i m e n s i o n o f t h e u n d e r l y i n g

    a t t r a c t o r [ 3 4 ] . H o w e v e r , w e f i n d t h a t a t t r a c t o r s

    r e c o n s t r u c t e d u s i n g s m a l l e r v a l u es o f m o f t e n

    y i e l d r e l ia b l e L y a p u n o v e x p o n e n t s . F o r e x a m p l e ,

    i n r e c o n s t r u c t i n g t h e L o r e n z a t t r a c t o r f r o m i t s

    x - c o o r d i n a t e t i m e s e r i e s a n e m b e d d i n g d i m e n s i o n

    o f 3 i s a d e q u a t e f o r a c c u r a te e x p o n e n t e s t i m a t i o n ,

    w e l l b e l o w t h e s u f f ic i e n t d i m e n s i o n o f 7 g i v e n b y

    r e f . [ 34 11 ". W h e n a t t r a c t o r r e c o n s t r u c t i o n i s p e r -

    f o r m e d i n a s p a c e w h o s e d i m e n s i o n is t o o l ow ,

    " c a t a s t r o p h e s " t h a t i n t e rl e a v e d i s t in c t p a rt s o f t h e

    a t t r a c t o r a r e l i k e l y t o r e s t f l t . F o r e x a m p l e , p o i n t s

    f W e h a v e f o u n d t h a t i t i s o f t e n p o s s i b l e t o i g n o r e s e v e r a l

    c o m p o n e n t s o f e v o l v i n g v e c t or s i n c o m p u t i n g t h e i r a v e r a ge

    e x p o n e n t i a l r a t e o f g r o w t h : k e e p i n g t w o o r m o r e c o m p o n e n t s

    o f t h e v e c t o r o f t e n s uf fi ce s f o r t h i s p u r p o s e . A s o u r d i s c u s s i o n

    o f " c a t a s t r o p h e s " w i l l s o o n m a ke c l e a r , t h e s e a r c h f o r r e p l a c e -

    m e n t p o i n t s m o s t o f t e n r e q u i r e s t h a t a l l o f t h e d e l a y c o o r d i -

    n a t e s b e u s e d .

    o n s e p a r a t e l o b e s o f t h e L o r e n z a t t r a c t o r m a y b e

    c o i n c i d e n t i n a t w o - d im e n s i o n a l r e c o n s t r u c ti o n o f

    t h e a t t r a c t o r . W h e n t h i s o c c u r s , r e p l a c e m e n t e l e -

    m e n t s m a y c o n t a i n p o i n t s w h o s e s e p a r a t i o n i n t h e

    o r i g i n a l a t t r a c t o r i s v e r y l a r g e ; s u c h e l e m e n t s a r e

    l i a b l e t o g r o w a t a d r a m a t i c r a t e i n o u r r e c o n -

    s t r u c t e d a t t r a c t o r i n t h e s h o r t t e r m , p r o v i d i n g a n

    e n o r m o u s c o n t r i b u t i o n t o t h e e s t i m a t e d e x p o n e n t .

    A s t h e s e e l e m e n t s t e n d t o b l o w u p a l m o s t i m -

    m e d i a t e l y , t h e y a r e a l s o q u i t e t r o u b l e s o m e t o r e -

    p l a c e , .

    I f m i s c h o s e n t o o l a r ge w e c a n e x p ec t , a m o n g

    o t h e r p r o b l e m s , t h a t n o i s e in t h e d a t a w i ll t e n d t o

    d e c r e a s e t h e d e n s i t y o f p o i n t s d e f i n i n g t h e a t t r a c -

    t o r , m a k i n g i t h a r d e r t o f i n d r e p l a c e m e n t p o i n t s .

    N o i s e i s a n i n f i n i t e d i m e n s i o n a l p r o c e s s t h a t , u n -

    l i k e t h e d e t e r m i n i s t i c c o m p o n e n t o f t h e d a t a , f l U s

    e a c h a v a i l a b l e p h a s e s p a c e d i m e n s i o n i n a re -

    c o n s t r u c t e d a t t r a c t o r ( s e e s e c t i o n 7 . 2 ) . I n c r e a s i n g

    m p a s t w h a t i s m i n i m a l l y re q u i re d h a s t h e e f f e c t o f

    u n n e c e s s a r i l y i n c r e a si n g t h e l ev e l o f c o n t a m i n a t i o n

    o f t h e d a t a .

    A n o t h e r p r o b l e m i s s e e n i n a t h r e e - d i m e n s i o n a l

    r e c o n s t r u c t i o n o f t h e H t n o n a t t r a c t o r . T h e r e c o n -

    s t r u c t e d a t t r a c t o r l o o k s m u c h l i k e t h e o r i g i n a l

    a t t r a c t o r s i t ti n g o n a t w o - d i m e n s i o n a l sh e e t, w i t h

    t h i s s h e e t s h o w i n g a s i m p l e t w i s t i n t h r e e - s p a c e .

    W e e x p e c t t h a t t h i s b e h a v i o r i s t y p i c a l ; w h e n m i s

    i n c r e a s e d , s u r f a c e c u r v a t u r e i n c r e a se s ~ . I n c r e a s i n g

    m t h e r e f o r e m a k e s i t i n c r e a s i n g l y d i f fi c u l t t o s a t i s f y

    o r i e n t a t i o n c o n s t r a i n t s a t r e p l a c e m e n t t i m e , a s t h e

    a t t r a c t o r i s n o t s u f f ic i e n t ly f l a t o n t h e s m a l l e s t

    l e n g t h s c a l e s f i l l e d o u t b y t h e f i x e d q u a n t i t y o f

    d a t a . I t i s a d v i s a b l e t o c h e c k t h e s t a t i o n a r i t y o f

    * I f t w o p o i n t s l i e a t o p p o s i t e e n d s o f a n a t t r a c t o r , i t i s

    p o s s i b l e t h a t t h e i r s e p a r a t i o n v e c t o r l i es e n t i re l y o u t s id e o f t h e

    a t t r a c t o r s o t h a t n o o r i e n t a t io n p r e s er v i n g r e p l a ce m e n t c a n b e

    f o u n d . I f t h i s g o e s u n d e t e c t e d , t h e c u r r e n t p a i r o f p o i n t s i s

    l i ke l y t o b e r e t a i n e d f o r a n o r b i t a l p e r i o d o r l o n g e r , u n t i l t h e s e

    p o i n t s a r e a c c i d e n t a l l y t h r o w n c lo s e t o g e t h e r.

    * A s i m p l e s t u d y f o r t h e H t n o n s y s t e m s h o w e d t h a t f o r

    r e c o n s t r u c t i o n s o f i n c r e as i n g d im e n s i o n t h e m e a n d i s t an c e b e -

    t w e e n t h e p o i n t s d e f i n i n g t h e a t t r a c t o r r a p i d l y c o n v e r g e d t o a n

    a t t r a c t o r i n d e p e n d e n t v a l u e . T h e f o l d p u t i n e a c h n e w p h a s e

    s p a c e d i r e c t i o n b y t h e r e c o n s t r u c ti o n p r o c e s s t e n d e d t o m a k e

    t h e c o n c e p t o f " n e a r b y p o i n t i n p h a s e s p a c e " m e a n in g l e s s f o r

    t h i s f i n i t e d a t a s e t .

  • 8/9/2019 lyapunov exponents and chaos theory

    14/33

    298 A W o l f e t a l / D e t e r m in i n g L y a p u n o v e x po n e n t s f r o m a t i m e s er ie s

    Fi g . 5 . Th e s t r a n g e a t t r a c t o r i n t h e Be l o u s o v - Z h a b o t i n s k i i r e a c t i o n is r e c o n s t r u c t e d b y t h e u s e o f d e l a y c o o r d i n a t e s f r o m t h e b r o m i d e

    i o n c o n c e n t r a t i o n t i m e s e r i e s [ 2] . Th e d e l a y s s h o w n a r e a ) ~ ; b ) ; a n d c ) ~ o f a m e a n o r b i t a l p e r i o d . N o t i c e h o w t h e f o l d i n g re g i o n o f

    t h e a t t r a c t o r e v o l v e s f r o m a f e a t u re l e s s " p e n c i l " t o a l a r g e s c a l e tw i s t.

    r e s u l t s w i th m t o e n s u r e r o b u s t e x p o n e n t es ti -

    m a t e s .

    C h o i c e o f d e l a y t i m e i s a l s o g o v e r n e d b y t h e

    n e c e s s i t y o f a v o i d i n g c a t a s t r o p h e s . I n o u r d a t a [2 ]

    f o r t h e B e l o u s o v - Z h a b o t i n s k i i c h e m i c a l r e a c t i o n

    ( s e e f i g. 5 ) w e s e e a d r a m a t i c d i f f e r e n c e i n t h e

    r e c o n s t r u c t e d a t t r a c t o r s f o r t h e c h o i c e s T = 1 / 1 2 ,

    ~" - - 1 / 2 a n d I" = 3 / 4 o f t h e m e a n o r b i t a l p e r i o d .

    I n t h e f i rs t c a s e w e o b t a i n a " p e n c i l - l i k e " r e g i o n

    w h i c h o b s c u r e s t h e f o l d in g r e g i o n o f t h e a t tr a c t o r .

    T h i s s t r u c t u r e o p e n s u p and grows larger r e l a t i v e

    t o t h e t o t a l e x t e n t o f t h e a t t r a c t o r f o r t h e l a r g e r

    v a l u e s o f ~', w h i c h i s c l e a r l y d e s i r a b l e f o r o u r

    a l g o r i t h m s . W e c h o o s e n e i t h e r so s m a ll t h a t t h e

    a t t r a c t o r s t r et c h e s o u t a lo n g t he h n e x = y - - z =

    . . . , n o r s o l a r g e t h a t m z i s m u c h l a r g e r t h a n t h e

    o r b i t a l p e r i o d . A c h e c k o f t h e s t a ti o n a r i t y o f e x p o -

    n e n t e s t i m a t e s w i t h t- i s a g a i n r e c o m m e n d e d .

    6 .2 . volution t imes between replacements

    D e c i s i o n s a b o u t p r o p a g a t i o n t i m e s a n d r e p l a c e -

    m e n t s t e p s i n t h e s e c a l c u l a t i o n s d e p e n d o n a d -

    d i t i o n a l i n p u t p a r a m e t e r s , o r in t h e c a s e o f t h e

    i n t e ra c t i v e p r o g r a m , o n t h e o p e r a t o r ' s j u d g e m e n t .

    ( T h e s t a t i o n a r i t y o f )~l v a l u e s o v e r r a n g e s o f a l l

    a l g o r i t h m p a r a m e t e r s i s i l l u s t r a t e d f o r t h e R o s s l e r

    a t t r a c t o r i n f ig s. 6 a - 6 d . ) A c c u r a t e e x p o n e n t c a lc u -

    l a t i o n t h e r e f o r e r e q u i r e s t h e c o n s i d e r a t i o n o f t h e

    f o l l o w i n g i n t e r r e l a t e d p o i n t s : t h e d e s i r a b i l i t y o f

    m a x i m i z i n g e v o l u t i o n t im e s , t h e t r a d e o f f b e t w e e n

    m i n i m i z i n g r e p l a c e m e n t v e c t o r s iz e a n d m i n i m i z -

    i n g t h e c o n c o m i t a n t o r i e n t a t i o n e r r o r , a n d t h e

    m a n n e r i n w h i c h o r i e n t a t i o n e r r o r s c a n b e e x -

    p e c t e d t o a c c u m u l a t e . W e n o w d i sc u s s th e s e p o in t s

    i n t u r n .

    M a x i m i z i n g t h e p r o p a g a t i o n t i m e o f v o l u m e e l e-

    m e n t s i s h i g h l y d e s i r a b l e a s i t b o t h r e d u c e s t h e

    f r e q u e n c y w i t h w h i ch o r i e n t a t io n e r r o r s a r e m a d e

    a n d r e d u c e s t h e c o s t o f t h e c a l c u l a ti o n c o n s i d er -

    a b l y ( e l e m e n t p r o p a g a t i o n i n v o l v e s m u c h l e s s

    c o m p u t a t i o n t h a n e l e m e n t r ep l a ce m e n t ) . I n o u r

    v a r i a b l e e v o l u t i o n t i m e p r o g r a m t h i s i s n o t m u c h

    o f a p r o b l e m , a s r e p l a c e m e n t s ar e p e r f o r m e d o n l y

    w h e n d e e m e d n e c e s s a r y ( t h o u g h th e p r o g r a m h a s

    b e e n m a d e c o n s e r v a t i v e i n s u c h j u d g m e n t s ) . I n t h e

    i n t e r a c t i v e a l g o r i t h m t h i s i s e v e n l e ss o f a p r o b l e m ,

    a s a n e x p e r i e n c e d o p e r a t o r c a n o f t e n p r o c e ss a

    l a r g e f il e w i t h a v e r y sm a l l n u m b e r o f r e p l a c e-

    m e n t s . T h e p r o b l e m i s s e v e r e , h o w e v e r , i n o u r

    f i x e d e v o l u t i o n t i m e p r o g r a m , w h i c h i s o t h e r w i s e

    d e s i r a b l e f o r i t s e x t r e m e s i m p l i c i t y . I n t h i s p r o -

    g r a m r e p l a c e m e n t s a r e a t t e m p t e d a t f i x e d t i m e

    s te p s, i n d e p e n d e n t o f t h e b e h a v i o r o f th e v o l u m e

    e l e m e n t .

  • 8/9/2019 lyapunov exponents and chaos theory

    15/33

    A W o l f e t a l l D e t e r m i n in g L y a p u n ov e x p o n e n ts f r o m a t i m e se ri es 299

    o 2 1

    I a )

    ~0. t

    )..

    .._i

    o. 8

    o : o : :

    8 1 2

    T A U (ORBITS)

    I.B

    . /~^

    l I l I l l l I I I I I I I I I I I

    2 3

    EVOLUTION TIN (ORglT~

    0,2

    ( c )

    ~ - ~ ~" k

    2 f ( d )

    -

    ~ q ~ ' ~ . . . . t b . . . . . . . ~ ' ' ~ S ' ' ' ' ' . . . . , b . . . .

    5 25 5 5

    WAXINUN LEN ~ CUTOFF NINIB LENGTH

    ( OF HORIZONThL EXTENT) ( OF HORIZONTAL BCI'ENT)

    Fig. 6. Stationarity of ~t for Rossler attractor data (8192 points spanning 135 orbits) for the fixed evolution ime program is shown

    for the input param eters: a) Tau (delay time); b) evo lution ime between replacementsteps; c) maximum ength of replacementvector

    length allowed; and d) m inimum length of replacementvector allowed. The c orrect value of the positive exponent s 0.13 bits /s and is

    show n by the h orizonta l line in these figures.

    O u r n u m e r i c a l r e s u l ts o n n o i s e - f r e e m o d e l s y s-

    t e m s h a v e p r o d u c e d t h e e x p e c t e d r e s ul ts : t o o f r e -

    q u e n t r e p l a c e m e n t s c a u s e a d r a m a t i c lo s s o f p h a s e

    s p a c e o r i e n t a ti o n , a n d t o o i n f r e q u e n t r e p la c e m e n t s

    a l l o w v o l u m e e l e m e n t s t o g r o w o v e r l y l a rg e a n d

    e x h i b i t f o l d i n g . F o r t h e R o s s l e r , L o r e n z , a n d t h e

    B e l o u s o v - Z h a b o t i n s k i i a t tr a c to r s , e a c h o f w h i c h

    h a s a o n c e - p e r - o r b i t c h a o s g e n e r a t i n g m e c h a n i s m ,

    w e f i n d t h a t v a r y i n g t h e e v o l u t io n t im e i n t h e

    r a n g e t o 1 o r b i t s a l m o s t a l w a y s p r o v i d e s s t a b le

    e x p o n e n t e s t i m a t e s . I n s y s t e m s w h e r e t h e m e c h a -

    n i s m f o r c h a o s is u n k n o w n , o n e m u s t c h e e k f o r

    e x p o n e n t s t a b i l it y o v e r a w i d e r a n g e o f e v o l u t io n

    t i m e s . F o r s u c h s y s t e m s i t i s p e r h a p s w i s e t o

    e m p l o y o n l y t h e v a r i a b l e e v o l u t i o n t i m e p r o g r a m

    o r t h e i n t e r a c t i v e p r o g r a m .

    T h e r e a r e o t h e r c r i t e r i a t h a t m a y a f f e ct r e p l a c e -

    m e n t t i m e s f o r v a r i a b l e e v o l u t i o n t i m e p r o g r a m s

    s u c h a s a v o i d i n g r e g i o n s o f h i g h p h a s e s p a c e v e lo c -

    i ty , w h e r e t h e d e n s i t y o f r e p l a c e m e n t p o i n t s i s

    l i k e l y t o b e s m a l l . S u c h f e a t u r e s a r e e a s i l y i n -

    t e g r a t e d i n t o o u r p r o g r a m s .

    I n t h e L o r e n z a t t r a c t o r , t h e s e p a r a t r i x b e t w e e n

    t h e t w o l o b e s o f t h e a t t r a c t o r i s n o t a g o o d p l a c e

    t o f in d a r e p l a c e m e n t d e m e n t . A n e l e m e n t c h o se n

    h e r e i s l i k e l y t o c o n t a i n p o i n t s t h a t w i l l a l m o s t

  • 8/9/2019 lyapunov exponents and chaos theory

    16/33

    300 A Wol f et aL / Determining Lyapunov exponents from a time series

    immediately fly to opposite lobes, providing an

    enormous contribution to an exponent estimate.

    This effect is certainly related to the chaotic nature

    of the attractor, but is not directly related to the

    values of the Lyapunov exponents. This has the

    same effect as the catastrophes that can arise from

    too low a value of embedding dimension as dis-

    cussed in section 6.1. While we are not aware of

    any foolproof approach to detecting troublesome

    regions of attractors it may be possible for an

    exponent program to avoid catastrophic replace-

    ments. For example, we may monitor the

    f u t u r e

    behavior of potential replacement points and re-

    ject those whose separation from the fiducial

    trajectory is atypical of their neighbors.

    6.3. hor ter l eng ths versus or ien ta t ion errors

    With a given set of potential replacement points

    some compromise will be necessary between the

    goals of minimizing the length of replacement

    vectors and minimizing changes in phase space

    orientat ion. On the one hand, short vectors may in

    general be propaga ted further in time, resulting in

    less frequent orientation errors. On the other hand,

    we may wish to minimize orientation errors di-

    rectly. We must also consider that short vectors

    are likely to contain relatively large amounts of

    noise.

    In the fixed evolution time program the search

    for replacements involves looking at successively

    larger length scales for a minimal orientation

    change. In the variable evolution time program,

    points satisfying minimum length and orientation

    standards are assigned scores based on a linear

    weighting (with heuristically chosen weighting fac-

    tors) of their lengths and orientation changes. We

    have also performed numerical studies by search-

    ing successively larger angular displacements while

    attempting to satisfy a minimum length criterion.

    Fortunately, we find that these different ap-

    proaches perform about equally well. Attempts to

    solve the tradeoff problem analytically have sug-

    gested opt ima l choices of initial vector magni-

    tude, but due to the system dependent nature of

    these calculations, we cannot be confident that our

    results are of general validity.

    The problem of considering the magnitude of

    evolved or replacement vectors is complicated by

    the fact that at a given point in an attractor, the

    orientation of a vector can determine whether or

    not it is too large. If we consider a system with an

    underlying 1-D map such as the Rossler attractor,

    it is the magnitude of the vector's component

    transverse to the attractor that is relevant. In this

    case our algorithm is closely related to obtaining

    the Lyapunov exponent of the map through a

    determination of its local slope profile [13]. The

    transverse vector component plays the role of the

    chord whose image under the map provides a

    slope estimate. This chord should obviously be no

    longer than the smallest resolvable structure in the

    1-D map, a highly system-dependent quantity.

    Since the underlying maps of commonly studied

    model and physical systems have not had much

    detailed structure on small length scales (consider

    the logistic equation, cusp maps, and the Be-

    lousov-Zhabotinskii map [2]) we have somewhat

    arbitrar ily decided to consider 5-10% of the trans-

    verse attractor extent as the maximum acceptable

    magnitude of a vector's transverse component.

    6.4.

    Th e a c c u m u l a t i o n o f o r ie n t a ti o n e r r or s

    The problem of the accumulation of orientation

    errors is reasonably well understood. Consider for

    simplicity a very nearly two-dimensional system

    with a ( + , 0 , - ) spectrum, such as the Lorenz

    attractor . Post-transient data traverse the subspace

    characterized by the positive and zero exponents.

    Length propagation with replacement on the at-

    tractor is clearly susceptible to orientation error

    that will mix contributions from the positive and

    zero exponents in some complex, system depen-

    dent manner . Now consider the n th replacement

    step (see fig. 4a) with an orientation change within

    the plane of the attractor of 0~. Further, let the

    angle the replacement vector makes with respect to

    the vector t be ~n- We make the crucial assump-

    tion that vectors are propagated for a time t that

  • 8/9/2019 lyapunov exponents and chaos theory

    17/33

    A. Wolfet aL Determining Lyapunov exponents rom a tim e series

    301

    i s l o n g e n o u g h t h a t g r o w t h a l o n g d i r e c t i o n s d 1 a n d

    d 2 a r e r e a s o n a b l y w e l l c h a r a c t e r i z e d b y t h e e x p o -

    n e n t s h 1 a n d h 2 r e s pe c t iv e l y . T h e n f o r t h e n e w

    r e p l a c e m e n t v e c t o r

    L ( t . )

    = L ( ~ c o s # . + t2 s i n # . ) ( 1 1 )

    a n d a t t h e n e x t r e p l a c e m e n t

    L ' ( t n + l ) = L ( t C x ( c o s ~ . ) 2 x a , + ~(sin ~n)2X=tr) ,

    ( 1 2 )

    w h e r e t r i s t h e t i m e b e t w e e n s u c c e s s i v e r e p l a c e -

    m e n t s t e p s ( t n + 1 - t . ) . T h e c o n t r i b u t i o n t o e q . ( 9 )

    f r o m t h i s e v o l u t i o n i s t h e n

    og2 [COS2 7~n22h'tr + s i n E 7 ~ . 2 2 a 2 ' , ]

    ( 1 3 )

    a n d t h e a n g l e t h e n e x t r e p l a c e m e n t v e c t o r L ( t . + 1 )

    m a k e s w i t h ~ i s

    ~ n + l = a r c t a n ( b " t a n # . ) + 1 9.+ 1, ( 1 4 )

    w h e r e

    b = 2 (a2-a*)t r. (1 5)

    I f w e a s s u m e a l l a n g l e s a r e s m a l l c o m p a r e d t o

    u n i t y a n d s e t # 0 = ~ 90, e q . ( 1 4 ) im p l i e s t h a t

    ~n = ~ ~n m bm~

    (16)

    m=O

    I f t h e o r i e n t a t i o n c h a n g e s h av e z e r o m e a n a n d a r e

    u n c o r r e l a t e d f r o m r e p l a c e m e n t to r e p l a c e m e n t t h e n

    a n a v e r a g e o v e r t h e c h a n g e s g i ve s

    t o b e

    a ~ . l - # 2 [ b E ( I - b E N ' ) ]

    h i 2 ( l n 2 ) N t A l t r N t 1 b E '

    ( 1 8 )

    w h e r e N t is t h e t o t a l n u m b e r o f r e p l a c e m e n t s t e ps .

    I f t h e r e i s n o d eg en e racy , i .e . , b E , l - # 2

    ~'1 = 2 ( l n 2 ) ~ . l t r " ( 1 9 )

    F o r t h e L o r e n z a t t r a c t o r ,

    b 2

    h a s a v a l u e o f a b o u t

    0 . 3 3 f o r a n e v o l u t i o n t i m e o f o n e o r b i t , s o a n

    o r i e n t a t i o n e r r o r o f a b o u t 1 9 d e g r e e s r e s u l t s i n a

    1 0 % e r r o r i n X 1. I f w e c a n m a n a g e t o e v o l v e t h e

    v e c t o r f o r t w o o r b i t s , t h e p e r m i s s i b l e i n i t i a l o r i e n -

    t a t i o n e r r o r i s a b o u t 2 7 d e g re e s , a n d s o o n . W e s e e

    t h a t a g i v e n o r i e n t a t i o n e r r o r a t r e p l a c e m e n t t i m e

    s h r i n k s t o a v a l u e n e g l ig i b le c o m p a r e d t o t h e n e x t

    o r i e n t a t i o n e r r o r , p r o v i d e d t h a t p r o p a g a t i o n t i m e s

    a r e l o n g e n o u g h . O r i e n t a t i o n e r r o r s d o n o t a c c u -

    m u l a t e b e c a u s e t h e r e i s n o m e m o r y o f p r e v i o u s

    e r r o r s .

    T h i s c a l c u l a t i o n m a y b e g e n e r a l i z e d t o a n a t -

    t r a c t o r w i t h a n a r b i tr a r y L y a p u n o v s p e c t ru m a n d

    a s i m i l a r r e s u l t i s o b t a i n e d . T h e e a s e o f e s t i m a t i n g

    t h e i t h e x p o n e n t d e p e n d s o n h o w s m a l l th e q u a n -

    t i t y

    2 (x'*~-x,)tr

    i s . P r o b l e m s a r i s e w h e n s u c c e s s i v e

    e x p o n e n t s a r e v e r y c lo s e o r i d e n ti c a l. H y p e r c h a o s ,

    w i t h a s p e c t r u m o f [ 0 .1 6 , 0 . 03 , 0 . 0 0, = - 4 0 ] b i t s / s

    a n d a n o r b i t a l p e r i o d o f a b o u t 5 . 16 s, h as a n e a s i ly

    d e t e r m i n a b l e f ir s t e x p o n e n t ,