Top Banner
12 6.0 REKA BENTUK RASUK DISOKONG MUDAH Ref. Calculation Output SPECIFICATION W kN/m L h b Effective span, L = 8.25m Characteristic actions : Permanent, gk = 15 kN/m Variable, qk = 10 kN/m Design life = 50 years Fire resistance = R60 Exposure classes = XC1 Materials: Characteristic strength of concrete, fck = 20 N/mm 2 (Table F.1 EN 206) Characteristic strength of steel, fyk = 500 N/mm 2 Characteristic strength of link, fyk = 500 N/mm 2 Unit weight of reinforced concrete = 25 kN/m 3 (Table A.1 EN 1991-1) Assumed: ᴓ bar 1 = 20mm ᴓ bar 2 = 12mm ᴓ link = 8mm (Excluding selfweight) (Table 2.1 EN 1990) SIZE Overall depth, h = L /13 = 8250/13 = 20mm Width, b = 0.4h = 0.4x 635 = 254mm Use : b x h = 250 x 650 mm Table 4.2 Table 4.4N 4.4.1.2 4.4.1.3 4.4.1.1(2) DURABILITY, FIRE & BOND REQUIREMENTS Min. conc. Cover regard to bond, C min,b = 20mm Min. conc. Cover regard to durability, C min, dur = 15mm Min. required axis distance for R60 fire resistance, a sd = 30 + 10 = 40mm Min. concrete cover regard to fire, C min = a sd - ᴓ link - ᴓbar/2 = 40-8-0.5(20) = 22mm Allowance in design for deviation, Λ C dev = 10 mm Nominal cover, Cnom = Cmin + ΛCdev = 20 + 10 = 30mm Table 5.5 EN 1992- 1-2 Use : C nom = 35mm
22

LUKISAN STRUKTUR

Nov 18, 2015

Download

Documents

LS (BEAM)
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 12

    6.0 REKA BENTUK RASUK DISOKONG MUDAH

    Ref. Calculation Output

    SPECIFICATION W kN/m

    L h

    b

    Effective span, L = 8.25m

    Characteristic actions :

    Permanent, gk = 15 kN/m

    Variable, qk = 10 kN/m

    Design life = 50 years

    Fire resistance = R60

    Exposure classes = XC1

    Materials:

    Characteristic strength of concrete, fck = 20 N/mm2

    (Table F.1 EN

    206)

    Characteristic strength of steel, fyk = 500 N/mm2

    Characteristic strength of link, fyk = 500 N/mm2

    Unit weight of reinforced concrete = 25 kN/m3

    (Table A.1 EN

    1991-1)

    Assumed:

    bar 1 = 20mm

    bar 2 = 12mm

    link = 8mm

    (Excluding

    selfweight)

    (Table 2.1 EN 1990)

    SIZE Overall depth, h = L /13 = 8250/13 = 20mm

    Width, b = 0.4h = 0.4x 635 = 254mm

    Use : b x h

    = 250 x 650 mm

    Table 4.2

    Table 4.4N

    4.4.1.2

    4.4.1.3

    4.4.1.1(2)

    DURABILITY, FIRE & BOND REQUIREMENTS

    Min. conc. Cover regard to bond, C min,b = 20mm

    Min. conc. Cover regard to durability, C min, dur = 15mm

    Min. required axis distance for R60 fire resistance,

    asd = 30 + 10 = 40mm

    Min. concrete cover regard to fire,

    Cmin = asd - link - bar/2

    = 40-8-0.5(20) = 22mm

    Allowance in design for deviation, Cdev = 10 mm

    Nominal cover,

    Cnom = Cmin + Cdev = 20 + 10 = 30mm

    Table 5.5 EN 1992-

    1-2

    Use :

    Cnom = 35mm

  • 13

    Ref Calculation Output

    Table A

    1.2B

    :EN 1990

    LOADING & ANALYSIS

    Beam selfweight = (0.25 x 0.65) x 25 = 4.06 kN/m

    Permanent load (excluding selfweight) = 15.00 kN/m

    Characteristic permanent action, gk = 19.06 kN/m

    Characteristic variable action, qk = 10.00 kN/m

    Design action,

    Wd= 1.35gk + 1.5 qk = 1.35(19.06) + 1.5(10.00)

    = 40.73 kN/m

    Wd= 40.73 kN/m

    L=8.25m

    Shear force,

    V = wd L/2

    = 40.73(8.25)/2

    = 168.0 kN

    M

    BENDINGMOMENT

    M = wdL2/8

    = 40.73(8.25)2/8

    =346.6 kNm

    MAIN REINFORCEMENT Effective Depth,

    D = H Cnom - link - bar = 587mm

    D = Cnom - link - bar/2 = 49mm

    Design Bending Moment, Med = 346.6 Knm

    K = M/Bd2fck

    = 346.6x106 / (250 X 587

    2 X 20)

    = 0.201

    Redistribution = 0% Redistribution ratio, = 1.0

    Kbal = 0.454 ( - k1)/ k2 0.182( - k1)/k2]2

    = 0.363 ( - k1) 0.116 ( -k1)2

    = 0.167

    K > Kbal Compression reinforcement is required

    z = d [ 0.5 + 0.25 kbal/1.134 ]

    = 0.82d

    d

    b

    Using : EC2

    K1 = 0.44

    K2 = 1.25

  • 14

    Ref Calculation Output

    = 0.82(587)

    = 481.8 mm

    X = (d-z)/ 0.4 = 263.1 mm

    d/x = 49/263.1 = 0.19 < 0.38

    : the compression steel will have yielded

    fsc = 0.87 fyk

    Area of compression steel

    As = ( K Kbal) fckbd2

    / 0.87fyk (d - d)

    = ( 0.201 0.167) x (20 x 250 x 5872)

    0.87 x 500 x (587 -49)

    = 250 mm2

    Area of tension steel

    As = kbalfckbd2 / 0.87fyk Z bal + As

    = 0.167 x (20 x 250 x 5872) + 252

    0.87 x 500 x 481.8

    = 1623 mm2

    Minimum and maximum reinforcement area,

    As, min = 0.26(fctm/fyk) bd

    = 0.26 (2.21/500) bd

    = 0.0011 bd use= 0.0013bd

    = 0.0013 x 250 x 587 = 119mm2

    As,max = 0.04AC = 0.04bh

    = 0.04 x 250 x 650 = 6500mm2

    Use : 3H 12

    (339 mm2)

    Use : 6H 20

    (1885 mm2)

    SHEAR REINFORCEMENT

    Design shear force, VEd =168.0 Kn

    Concrete strut capacity

    VRd, max = 0.36b wdfck ( 1- fck/250) / (cot + tan )

    = (0.36 x 250 x 587 x 20 (1-20/250)

    Cot +tan

    =338Kn = 22 deg cot = 2.5

    =486Kn = 45 deg cot = 1.0

    VED < VRD,max cot = 2.5

    VED < VRD, max cot = 1.0

    Therefore angle < 22o

    = 0.5 sin -1

    [VED / 0.18bwdfck(1-fck/250)]

    = 0.5 sin-1

    ( 168.0 x 103

    )

    (0.18 x 250 x 587 x 20 (1- 20/250)

  • 15

    Ref Calculation Output

    =0.5 sin

    -1 (0.35)

    = 10.1o

    Use: = 22.0 o tan = 0.40 cot = 2.48

    9.2.2 (6)

    9.2.2 (5)

    Shear links

    ASW/S =VED/0.78fykd cot

    =168.0 x 103 /(0.78x 500x 587x 2.48)

    =0.297

    Try link: H8 ASW = 101 mm2

    Spacing s = 101/0.30

    =339 mm

    Max. spacing , s max = 0.75d =0.75x 587 =440mm

    Minimum links

    ASW/S = 0.08fck1/2

    bw/fyk

    =0.08 x(20)

    x 250/ 500

    =0.179

    Try link: H8 ASW = 101 mm2

    Spacing s = 101/0.18

    =562mm > 0.75d =440mm

    Shear resistance of minimum links

    V min = (ASW/s)( 0.78fykd cot )

    =(101/425) x (0.78 x 587 x 500 x 2.5)

    =134kN

    Use :

    H8-325

    Use :

    H8-425

    Links arrangement 168kN

    X = (16-134)/40.7

    =0.83m

    134kN

    134kN

    168kN

  • 16

    Ref Calculation Output

    Additional longitudinal reinforcement

    Additional tensile force,

    F td =0.5 vEd cot

    = 0.5 x 168 x 2.48

    = 208 Kn

    MED,max/Z = 346.6 x 106 / 481.8

    = 719 kN > F td

    Additional longitudinal reinforcement,

    As = F td/0.87fyk

    = 207.94 x 103

    / 0.87 x 500

    = 478 mm2

    Use : 2H 20

    (628 mm2)

    DEFLECTION Percentage of required tension reinforcement

    = As,req/bd

    = 1624 / 250 x 587

    = 0.011

    Reference reinforcement ratio,

    o = ( fck)1/2

    x 10-3

    = (20)1/2

    x 10-3

    = 0.0045

    Percentage of required compression reinforcement

    = As,req / bd

    = 252 / 250 x 587

    = 0.002

    Factor for structural system , K = 1.0

    > o (use equation 2)

    1/d = K [11 + 1.5 fck o/ + 3.2 fck(o/ 1)3/2

    ] -> (1)

    1/d = K [11 + 1.5fck o/ + 1/12 fck/] ->(2)

    = 1.0 (11 + 3.21 + 0.23)

    =14.4

    Therefore basic span-effective depth ratio, l/d =14.44

    Modification factor for span greater than 7m

    = 7/span = 7/8 =0.85

  • 17

    Ref Calculation Output

    Modification factor for steel are provided,

    As,prov / As,req =1885 / 1624 =1.16 < 1.5

    Therefore allowable span-effective depth ratio

    (i/d) allowable =14.44 x 0.85 x 1.16 =14.22

    Actual span effective depth

    (i/d)actual =8250 /857 =14.1 < (i/d)allowable

    Table 7.1 N CRACKING

    Limiting crack width, w max = 0.3mm

    Steel stress,

    fs = fyk/1.15 x [Gk + 0.3 Qk/(1.35Gk + 1.5 Qk)](1/)

    = (500/1.15) x [19.1 + 0.3(10) / 1.35 (19.1) + 1.5 (10)](1.0)

    = 236 N/mm2

    Max allowable bar spacing = 150 mm

    Bar spacing

    s = [250-2(35)-2(8)-(20)]/2

    =72 mm < 150mm

  • 18

    Ref Calculation Output

    DETAILING

  • 19

    7.0 REKA BENTUK RASUK SELANJAR

    Ref Calculations Output

    SPECIFICATION

    Dimension:

    Span, L = 8.00 m

    Width, B = 3.00 m

    Slab thickness = 110 mm

    Beam size = 225 x 500 mm

    Charasteristic loads:

    Finishes, etc = 1.5 kN/m2

    Variable, qk = 3.0 kN/m2

    Materials:

    Unit weight of concrete = 25 kN/m3

    Charasteristic strength of concrete, fcl = 25 N/m2

    Charasteristic strength of steel, fyk = 500 N/m2

    Charasteristic strength of link, fyk = 500 N/m2

    Nominal concrete cover = 30 mm

    Assumed : bar 1 = 20 mm

    bar 2 = 16 mm

    link = 6 mm

    Design beam 1a/A-D

    Beam 1a/A-D

    w kN/m w kN/m w kN/m

    A 8.0 m B 8.0 m C 8.0 m D

  • 20

    Ref Calculation Output

    EFFECTIVE FLANGE WIDTH

    Effective flange width,

    b eff = beff i +bw b

    beff i= 0.2bi + 0.1lo 0.2lo

    Span A-B, C-D

    l =0.85l = 0.85 x 8000 = 6800 mm

    b eff,1 = 960 mm

  • 21

    Ref. Calculation Output

    Action on beam 1a/A-D : Distribution of action from slabs to beam are as follows :

    Panel 1-1a/A-D :

    LY/LX = 8.00/3.00 =2.7 > 2.0, one-way slab

    Shear coefficient, v = 0.50

    Panel 1a-2/A_D:

    LY/LX = 8.00/3.00 =2.7 > 2.0, one-way slab

    Shear coefficient, v = 0.5

    Characteristic permanent action:

    Wo = 0.225 (0.50 0.11) x 25 = 2.19 kN/m

    W1 = vnLx = 0.50 x 4.25 x 3.00 = 6.38 kN/m

    W2 = vnLx = 0.50 x 4.25 x 3.00 = 6.38 kN/m

    Gk = 14.95kN/m

    Characteristic variable action :

    W1 = vnLx = 0.50 x 3.00 x 3.00 = 4.50 kN/m

    W1 = vnLx = 0.50 x 3.00 x 3.00 = 4.50 kN/m

    Qk = 9.00 kN/m

    Design load,

    Wd = 1.35Gk + 1.5Qk

    = 1.35(14.95) + 1.5(9.00) = 33.68 kN/m

    ANALYSIS

    Continuous beam with equal spans, uniform action and

    Qk < Gk use moment and shear coefficient

    From table 3.14 BS8110 Part 1

    Wd kN/m Wd kN/m Wd kN/m

    L m L m L m

    A B C

    D

    0.11 FL 0.11 FL

    0.09 FL 0.07 FL 0.09

    FL

    0.45 F 0.55 F 0.6 F

    0.6 F 0.55F 0.45 F

    F = WD L kn = 33.67 x 8.0 = 269 kN

    Shear Force

    Bending Moment

  • 22

    Ref. Calculation Output

    9.2.1.1

    MAIN REINFORCEMENT

    Span A-B & C-D

    Effective depth, d = h Cnom - link 0.5 bar = 454.0 mm

    Bending moment,

    M = 0.09 FL

    = 0.09 X 269 X 8.0 = 194 kNm

    Mf = 0.567 fckbhf (d - 0.5h)

    = 0.567 x 25 x 2145 x 110 ( 454.0 55 )

    = 1334 kNm

    M < Mf neutral axis within the flange

    K = M/fck bd2

    = 194 x106 / (25 x 2145 x 454.0

    2)

    = 0.018

    z = d [ 0.5 + 0.25 K/1.134)] = 0.98d

    Area of tension reinforcement

    As = M/0.87 fyk z

    = 194.0 x 106 / (0.87 x 500 x 0.95 x 454.0)

    = 1034 mm2

    Minimum and maximum reinforcement area,

    As min = 0.26 (fctm /fyk ) bd

    = 0.26 ( 2.56 / 500) bd

    = 0.0013bd use= 0.0013bd

    = 0.0013 x 225 x 454.0 = 136 mm2

    As max = 0.04 Ac = 0.04 bh

    = 0.04 x 225 x 500 = 4500 mm2

    Support B & C

    Effective depth, d = h Cnom - link - bar = 444.0 mm

    Bending moment,

    M = 0.11 FL

    = 0.11 X 269 X 8.0 =237kNm

    K = M/ bd2 fck

    = 237.1 x 106 / ( 225 x 444

    2 x 25)

    = 0.214

    Redistribution = 0% redistribution ratio, = 1.0

    K bal = 0.454( - k1)/k2 0.182[ - k1)/ k2]2

    = 0.363 ( - k1) 0.116 ( - k1)2

    = 0.167

    Use : 5H 20

    (1571 mm2)

    Use : EC2

    K1 = 0.44

    K2 = 1.25

  • 23

    Ref. Calculation Output

    K > kbal

    Compression reinforcement is required

    d = c + link + 0.5 bar =44mm z =d (0.5 + 0.25- kbal /1.134)

    = 0.82d =0.82 x 444 =364.4mm

    X = (d-z)/0.4 =199.0mm

    d/x =44/199.0 = 0.22 < 0.38

    the compression steel will have have yielded

    area of compression steel

    As = (k- kbal) fckbd2/0.87fyk (d- d )

    = (0.214-0.17)x (25 x 225 x 4442)

    0.87 x 500 x (444-44)

    =299mm2

    Area of tension steel

    As = (k- kbal) fckbd2/0.87fyk z bal + As

    = 0.167x (25 x 225 x 4442)

    0.87 x 500 x 364 + 299

    = 1466mm2

    Asmin = 0.0013 bd =136mm2

    Asmax = 0.04 bh = 4500mm2

    Span B-C

    Effective depth , d =h-cnom link- bar =444.0 mm

    Bending moment,

    M =0.07FL

    =0.007 X 269 X8.0 =151 kNm

    Mf =0.567 fckbhr(d-0.5h)

    =0.567 x 25 x 1345 x 110 (454.0-55)

    =837 kNm

    M < Mf neutral axis within the flange

    K =m/fckbd2

    =151 x 106/ (25 x1345 x454.0

    2)

    =0.022

    Z = d(0.5+ 0.25-k/1.134) = 0.98 d

    Use : 5H 20

    (1571 mm2)

    Use : 2H 16

    (402mm2)

  • 24

    Ref. Calculation Output

    Area of tension renforcement

    As = M/0.87fyk =

    = 150,9X106/(0.87 X 500 X 0.95 X 454.0)

    =804mm2

    Asmin =0.0013 bd =136mm2

    Asmax =0.04 bh = 4500mm2

    Use : 3H 20

    (943mm2)

    6.2.3

    9.2.2 (6)

    6.2.3 (7)

    SHEAR REINFORCEMENT

    Design shear force, VEd =168.0 Kn

    Concrete strut capacity

    VRd, max = 0.36b wdfck ( 1- fck/250) / (cot + tan )

    = (0.36 x 250 x 587 x 20 (1-20/250)

    Cot +tan

    =338Kn = 22 deg cot = 2.5

    =486Kn = 45 deg cot = 1.0

    Support A & D

    VED =0.45 F = 0.45 X 269 =121 kNm

    < VRD,max cot = 2.5

    < VRD, max cot = 1.0

    Therefore angle < 22o

    Shear link

    Asw /s = ved /0.78fyk dcot

    = 121.2 x 103/ (0.78 x 500 x 454 2.48)

    =0.277

    Try link : H6 Asw = 57mm2

    Spacing, s =57/0.2777

    = 204mm < 0.5d = 341 mm

    Additional longitudinal reinforcement

    Additional tensile force,

    f td = 0.5 ved cot

    = 0.5 x 121 x 2.48

    = 150 kN

    MEd max/z = 194.0 X 106/431.3

    =450 kN > F td

    As req =F td/0.87fyk =150 x 10

    3 /(0.87x 500)

    = 345mm2

    Use :H6-200

    Use :2H-200

  • 25

    Ref. Calculations Output

    9.2.2 (6)

    6.2.3 (7)

    9.2.2 (6)

    6.2.3 (7)

    Support B & C

    VEd = 0.60 F = 0.60 x 269 = 162 kN

    < VRd, max cot = 2.5

    < VRd, max cot = 1.0

    Therefore angle < 22

    Shear links

    Asw / s = VEd / 0.78 fyk d cot

    = 161.6 x 103 / (0.78 x 500 x 454 x 2.48)

    = 0.369

    Try link : H6 Asw = 57 mm2

    Spacing, s = 57 / 0.369

    = 153 mm < 0.75d = 341 mm

    Additional longitudinal reinforcement

    Additional tensile force,

    Ftd = 0.5 VEd cot

    = 0.5 x 162 x 2.48 = 200kN

    As req = Ftd / 0.87fyk

    = 200 x 103 / (0.87 x 500) = 460 mm

    2

    Support B & C

    VEd = 0.55 F = 0.55 x 269 = 148 kN

    < VRd, max cot = 2.5

    < VRd, max cot = 1.0

    Therefore angle < 22

    Shear links

    Asw / s = VEd / 0.78 fyk d cot

    = 148.2 x 103 / (0.78 x 500 x 454 x 2.48)

    = 0.338

    Try link : H6 Asw = 57 mm2

    Spacing, s = 57 / 0.338

    = 167 mm < 0.75d = 341 mm

    Additional longitudinal reinforcement

    Additional tensile force,

    Ftd = 0.5 VEd cot

    = 0.5 x 148 x 2.48 = 183 kN

    As req = Ftd / 0.87fyk

    = 183 x 103 / (0.87 x 500) = 422 mm

    2

    Use : H6 150

    Use : 3H 16

    ( 603 mm2)

    Use : H6 150

    Use : 3H 16

    ( 603 mm2)

  • 26

    Ref. Calculation Output

    9.2.2 (5)

    9.2.2 (6)

    6.2.4

    Minimum links

    Asw / s = 0.08fck1/2

    b w / fyk = 0.08 x (25)

    x 225 / 500

    = 0.180

    Try link : H6 Asw = 57 mm2

    Spacing, s = 57 / 0.18

    = 314 mm

    < 0.75d = 0.75 x 454 = 341 mm

    Shear resistance of minimum links

    Vmin = (Asw / s) (0.78dfyk cot )

    = (57 / 300) x (0.78 x 454 x 500 x 2.5)

    = 83 kN

    Link arrangement

    121 148 162 83

    83 162 148 121

    x1 x2 x3 | | | | |

    x1 = (121 83) / 33.67 = 1.14 m

    x2 = (162 83) / 33.67 = 2.34 m x3 = (148 83) / 33.67 = 1.94 m

    Transverse steel in the flange

    The longitudinal shear stresses are the greatest over a distance x

    measured from the point of zero moment.

    x = 0.5(L/2) = (L/4) = 8000 / 4 = 2000 mm

    The change in moment over distance x from zero moment,

    M = (wL/2) (L/4) (wL/4) (L/8) = 3wL2/32

    = 3 x 33.7 x 8.02 / 32 = 202.04 kNm

    The change in longitudinal force,

    Fd = [ M / (d 0.5hf) ] x [ (b bw) / 2b ]

    = 202.04 x 103

    x

    (2145 225)

    (454 55) (2 x 2145)

    = 227 kN

    Use :

    H6 - 300

  • 27

    Ref Calculations Output

    Longitudinal shear stress

    VED = FO / (hfx)

    = 227 x 103 / (110 x 2000)

    = 1.03 N/mm2

    VED > 0.27fck = 0.27 x 2.03 = 0.55 N/mm2

    Transverse shear reinforcement is required

    Concrete strut capacity in the flange

    vED max = 0.4fck (1-fck / 250) / (cot + tan )

    = ( 0.40 x 25 ( 1- 25 / 250)

    ( cot + tan )

    = 3.59 N/mm2 = 27 deg cot = 2.0

    = 4.50 N/mm2

    = 45 deg cot = 1.0

    vED < vED, max cot = 2.0

    vED < vED, max cot = 1.0

    therefore angle < 27o

    = 0.5 sin -1

    [ vED / 0.2 fck(1 - fck / 250)]

    = 0.5 sin -1

    { 1.03 }

    {0.20 x 25 (1 25/250)}

    = 0.5 sin -1

    {0.23}

    = 6.62o

    Use : = 26.5o tan = 0.50 cot = 2.0

    Transverse shear reinforcement

    Asf / sf = vED hf / 0.87 fykcot

    = 1.03 x 110 / (0.87 x 500 x 2.0)

    = 0.13

    Try : H10 Asf = 79 mm2

    Spacing, sf = 79/0.13 = 605mm

  • 28

    Ref. Calculation Output

    Minimum transverse steel area,

    As,min = 0.26( fctm / fyk) bhf

    = 0.26 (2.56 / 500)bhf = 0.0013 bhf Use = 0.0013bhf

    = 0.0013 x 1000 x 110.0

    = 147 mm2/m

    Use:

    H10-400

    (196 mm2/m)

    DEFLECTION

    Check at span A-B

    Percentage of required tension reinforcement,

    = As,req / bd

    = 1034 / 225 x 454 = 0.010

    Reference reinforcement ratio,

    o = (fck)1/2

    x 10-3

    = (25)1/2

    x 10-3

    = 0.005

    percentage of required compression reinforcement,

    = As,req / bd

    = 0 /225 x 454 = 0

    Factor for structural system, K = 1.3

    > o use equation (2)

    1/d = K [ 11 + 1.5 fck o/ + 3.2 fck(o/ 1)3/2

    ] (1)

    1/d = K [11 + 1.5fck o / + 1/12 fck / ] (2)

    = 1.3( 11 + 3.71 + 0.00)

    = 19.1

    Therefore basic span-effective depth ratio, 1/d = 19.12

    Modification factor for steel area provided,

    =As,prov/ As,req

    = 1571/1034

    = 1.52 > 1.50

  • 29

    Ref. Calculation Output

    Therefore allowable span effective depth ratio,

    (1/d)allowable = 19.12 x 0.88 x 1.50 = 25.23

    Actual span effective depth

    (1/d)actual = 8000/454.0 = 17.6 < (1/d)allowable

    OK!

    CRACKING

    Limiting crack width, wmax = 0.3 mm

    Steel stress,

    fs = fyk / 1.15 x Gk + 0.3Qk / (1.35Gk + 1.5Qk)(1/)

    = (500/1.15) x [(14.9 + (0.3 x 9.0)) / 33.7] x 1.0

    = 262 N/mm2

    Max allowable bar spacing = 150 mm

    Bar spacing

    s = [ 225 2(30) 2(6) (20)]/2

    = 66.5 mm < 150mm

    OK!

  • 30

    Ref Calculations Output

    DETAILING

  • 31

    ANGGARAN BAHAN

    Ref Calculations Output

    Simply supported beam

    Konkrit

    Isipadu konkrit = Panjang (P) x Lebar (L) x Tinggi (H)

    = 8.25 x 0.25 x 0.6

    = 1.24m3

    Tetulang

    Panjang 1 batang tetulang = 12 m

    Jenis tetulang 3H-20 (2), 3H-12

    Panjang tetulang 3H-20 = 6 x 8.25

    = 49.5 m

    Bilangan tetulang 3H-20 = 4.125

    Panjang tetulang 3H-12 = 3 x 8.25

    =24.75 m

    Bilangan tetulang 3H-12 = 2.06

    Continuous beam

    Konkrit

    Isipadu konkrit = Panjang (P) x Lebar (L) x Tinggi (H)

    = 24 x 0.225 x 0.45

    = 2.43 m3

    Tetulang

    Panjang 1 batang tetulang = 12 m

    Jenis tetulang 3H-20, 2H-20 (4), 2H-25 , 1H-20 (2)

    Panjang tetulang 3H-20 = 3 x 8

    = 24 m

    Bilangan tetulang 3H-20 = 2

    Panjang tetulang 2H-20 = 4 x 8 (2)

    = 64 m

  • 32

    Bilangan tetulang 2H-20 = 5.33

    Panjang tetulang 2H-25 = 2 x 8

    = 16 m

    Bilangan tetulang 2H-25 = 1.33

    Panjang tetulang 1H-20 = 2 x 8

    = 16 m

    Bilangan tetulang 1H-20 = 1.33

  • 33

    6.0 KESIMPULAN

    Kesimpulannya rasuk merupakan satu komponen dalam struktur bangunan

    yang sangat penting. Tugasnya adalah untuk menerima dan menanggung beban dari

    bumbung, lantai dan sebagainya. Penggunaan rasuk sangat la luas seperti di dalam

    pembinaan ianya digunakan untung membuat jambatan, bangunan dan sebagainya.

    Rasuk terdiri daripada pelbagai jenis antaranya ialah rasuk sokong mudah, rasuk

    julur, rasuk selanjar dan sebagainya. Dalam pembinaan rasuk ianya haruslah di reka

    bentuk terlebih dahulu mengikut spesifikasi yang telah ditetapkan dan ianya perlu

    melepasi ujian kiraan supaya tiada sebarang kegagalan terjadi.

    Terdapat pelbagai jenis sistem rasuk yang biasa ditemui dalam bidang

    kejuruteraan, antaranya adalah rasuk disokong mudah, rasuk julur, rasuk terbina

    dalam, rasuk juntaian dan rasuk berterusan. Setiap keadaan ini mempunyai kekuatan

    yang berlainan bersesuaian dengan setiap kegunaannya. Apabila menerima bebanan,

    setiap rasuk akan mengalami pesongan di mana rasuk tersebut akan melentur

    mengikut arah daya yang dikenakan. Setiap rasuk mempunyai satu tahap di mana ia

    akan melentur pada satu kedudukan yang maksimum apabila beban dikenakan.