Top Banner
LTC University Consortium LTC University Consortium University Consortium University of Michigan Massachusetts Institute of Technology Stanford University University of California, Berkeley Dennis Assanis (UM) 12th Diesel Engine-Efficiency and Emissions Research (DEER) Conference August 20-24, 2006, Detroit, Michigan Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines
17

Low-Temperature Combustion for High-Efficiency, Ultra-Low … · 2006. 10. 21. · MIT Camless Engine UCB Multi-cylinder engine Stanford Camless Engine Engine University Consortium

Jan 27, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • LTC University ConsortiumLTC University Consortium

    University Consortium

    University of MichiganMassachusetts Institute of Technology

    Stanford UniversityUniversity of California, Berkeley

    Dennis Assanis (UM)

    12th Diesel Engine-Efficiency and Emissions Research (DEER) ConferenceAugust 20-24, 2006, Detroit, Michigan

    Low-Temperature Combustion for High-Efficiency,Ultra-Low Emission Engines

  • LTC University ConsortiumLTC University Consortium

    Big Picture

    • HCCI university consortium concentrated on– developing workable control systems– obtaining experimental data– developing analytical tools to optimize and assess

    implementation ideas• LTC university consortium will focus on

    – extending the practical operating range of LTC engines at both low and high load

    – improve system fuel economy benefits– include PPCI engines and alternate fuels

  • LTC University ConsortiumLTC University Consortium

    Low Temperature CombustionPrecisely Control Combustionto Expand LTC Operating Range

    • Maintain High Thermal Efficiency• Avoid pollution forming regimes

    PhysicsExperiments

    ModelingChemical Kinetics

    Engine System Management:

    Boosting; Thermal

    In-cylinder measures:

    Fuels, Injection; Assisted Ignition

    FuelVaporizer

    N2

    Intake Canister

    SCV valve

    Heater

    External EGR Line

    ExhaustCanister

    ThrottlePlate

    Air Cleaner

    FuelTank

    Accumulator

    Direct Injection

    Fully

    Pre

    mix

    ed

    HydraulicDYNO

    MechanicalTelemetry

    Exhaust Gate Valve

    FuelVaporizer

    N2

    Intake Canister

    SCV valve

    Heater

    External EGR Line

    ExhaustCanister

    ThrottlePlate

    Air Cleaner

    FuelTank

    Accumulator

    Direct Injection

    Fully

    Pre

    mix

    ed

    HydraulicDYNO

    MechanicalTelemetry

    Exhaust Gate Valve

  • LTC University ConsortiumLTC University Consortium

    LTC Consortium Tasks

    1. Thermal management (UM)2. Combustion stability at low load

    (UM)3. Engine control for extended

    operation (MIT)4. Increased power density (UCB)5. DI studies for low load (SU)6. Emission control devices for

    PPCI (UM)7. Spark assisted HCCI (UM)8. Ignition properties of alternative

    fuels (UM)

  • LTC University ConsortiumLTC University Consortium

    UM Optical Engine UM Heat Transfer Engine

    Stanford Camless EngineMIT Camless Engine UCB Multi-cylinder engine

    Engine University Consortium Set-UpsUM Camless Engine

  • LTC University ConsortiumLTC University Consortium

    PPCI combustion regime in (Z, η ) plane

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.2 0.4 0.6 0.8 1Z (mixture fraction)

    J (E

    GR

    frac

    tion)

    (i-1)-th flameleti-th flamelet(i+1)-th flamelet

    OXIDIZER

    η

    FUEL

    Upper bound of initial η distribution

    Lower bound of initial η distribution

    EGR

    Thermal and Compositional Stratification:Near-wall Conditions and Mixture Preparation

    Stanford VVA engine

    INJECTOR

    CONTROLLER

    1 23

    4

    7

    5

    61 2

    3

    4

    7

    5

    6

    UM Heat Transfer and VVA Engine

    ReactantsEGR

    L

    ReactantsEGR

    L

    EGR

    L

    EGR+Air Fuel

    RegenerativeMultipleFlamelets

  • LTC University ConsortiumLTC University Consortium

    Spark-Assisted Concepts:Expand the LTC Operating Range

    Spark Plug

    Prechamber

    Orifice

    Main Chamber

    Burned GasesFresh Mixture

    Spark Plug

    Prechamber

    Orifice

    Main Chamber

    Burned GasesFresh Mixture

    SA-HCCIOpen Chamber

    SA-PrechamberConcept

    UM Optical Engine

  • LTC University ConsortiumLTC University Consortium

    From In-cylinder to Systems

    -5

    0

    5

    10

    15

    0 2000 4000 6000

    BM

    EP

    (bar

    )

    RPM

    LTC

    Nat. AspiratedTurbo / Supercharged

    FTPMAP

    RANGEEXTENSION

  • LTC University ConsortiumLTC University Consortium

    Expanding the LTC Range:Turbo-charging and Exhaust Heat Recuperation

    Computer controller

    Airtank

    Compressor

    Heater Chiller

    P,TSensor

    P,TSensor

    Exhaust

    EMV engine

    Valve timing control Computer controller

    Airtank

    Compressor

    Heater Chiller

    P,TSensor

    P,TSensor

    Exhaust

    EMV engine

    Valve timing control Exh. Gas

    Hot Air

    Cyl.Block

    FastFlap

    Valves

    Cold Air

  • LTC University ConsortiumLTC University Consortium

    Aftertreatment Options for LTC Engine

    0

    1

    2

    3

    4

    5

    100

    150

    200

    250

    300

    350

    400

    450

    0 100 200 300 400 500 600 700 800

    Norm CONorm HC

    Temperature

    Nor

    mal

    ized

    Em

    issi

    ons

    Temperature Turbine O

    utlet (C)

    BMEP (kPa)

    Closecoupled

    DOC

    LTC/PCIEngine

    DOC/DPF

    UreaDecomposition

    Catalyst

    CO(NH2)2 + H2O↔ 2NH3 + CO2

    Urea SCR

    Ureainjector

    FuelPost

    Injection

    HC SCR

    NAC/LNT

    Low Temperature Combustionleads to higher HC, CO

  • LTC University ConsortiumLTC University Consortium

    Thermal Management:Predictive HCCI Engine System Simulation

    -10

    0

    10

    20

    30

    40

    -8 -6 -4 -2 0 2

    BURN DATA

    CA

    (Deg

    ATC

    )

    CA0 (Deg ATC)

    EXPERIMENTALDATA POINTS

    CURVE FITS

    CA0

    CA10

    CA50

    CA90

    Intake port

    Fuelinjector

    Intakevalves

    Exhaustvalves

    Exhaust port

    Combustionchamber

    AIR

    EXHAUST

    Intake port

    Fuelinjector

    Intakevalves

    Exhaustvalves

    Exhaust port

    Combustionchamber

    AIR

    EXHAUST

    Auto-ignition delay expression

    )/33700exp(103.1 41.1277.005.14 TRyP Oign ⋅⋅⋅⋅⋅⋅=

    −−−− φτ0.1)/1( =∫ dtignτ

    ])0(06.0)0(1.15.92,5.95min[(%) 2CACACeff ⋅−⋅−=

    )])0(exp(1[ 1+Δ−−−⋅= weffCACACxθ

    GT-Power based model

    8.073.08.02.0 )()()()()( tWtTtPtLth scaling ⋅⋅⋅⋅=−−α )(

    6)( 21 mot

    rr

    rdp PPVP

    TVCSCtW −+=

    Combustion efficiency and Burn rate correlation

    Heat Transfer correlation

    Finite Element Analysis of Wall Temperatures

  • LTC University ConsortiumLTC University Consortium

    400

    410

    420

    430

    440

    450

    460

    470

    0 20 40 60

    Time[sec]

    Wal

    l tem

    pera

    ture

    [K]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    BM

    EP [b

    ar]

    Twall

    BMEP

    Point4

    Point3

    Thermal Management:Wall Temperature Effects

    0

    10

    20

    30

    40

    50

    60

    -20 0 20 40Crank Angle [degree]

    Pres

    sure

    [bar

    ]

    Steady state at P3

    Transient at P3 withhot walls of P4

    370

    375

    380

    385

    390

    395

    400

    0 20 40 60

    Time[sec]

    Wal

    l tem

    pera

    ture

    [K]

    1.2

    1.4

    1.6

    1.8

    BM

    EP [b

    ar]

    Twall

    BMEP

    Point2

    Point1

    Early ignition timing and excessive pressure rise rate

    Hot to cold

    Cold to hot

    Misfire

  • LTC University ConsortiumLTC University Consortium

    0

    1

    2

    3

    4

    5

    0 1000 2000 3000 4000

    RPM

    BM

    EP

    [bar

    ]

    HCCI operation depends on load history:Transient wall temperatures affect the range

    0

    1

    2

    3

    4

    5

    0 1000 2000 3000 4000

    RPM

    BM

    EP

    [bar

    ]

    RANGE WITH STEADY STATE WALL TEMP

    RANGE WITH TRANSIENT WALL TEMP

    INITIALLY COLD WALLS

    INITIALLY HOT WALLS

    0

    1

    2

    3

    4

    5

    0 1000 2000 3000 4000

    RPM

    BM

    EP

    [bar

    ]

    INITIALLY MID-RANGE WALLS

    • Engine with rebreathing:• Residual fraction adjusted for optimal combustion

    • Compression ratio = 12.5

  • LTC University ConsortiumLTC University Consortium

    Target RGF =

    RGFsteady + (ΔTwall x Gain),

    ΔTwall = Twallcurrent – Twallsteady

    RPM

    BM

    EP

    [bar

    ]

    Gain for RGF to compensate for Twall effects

    500 1000 1500 2000 2500 3000 3500 4000 45000

    1

    2

    3

    4

    5

    6

    7

    -0.4

    -0.35

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    RPM

    BM

    EP

    [bar

    ]

    Contour of Residual Gas Fraction [%]

    500 1000 1500 2000 2500 3000 3500 4000 45000

    1

    2

    3

    4

    5

    6

    7

    20

    25

    30

    35

    40

    45

    50

    55

    RPM

    BM

    EP

    [bar

    ]

    Contour of Piston Surface Temperatures [K]

    500 1000 1500 2000 2500 3000 3500 4000 45000

    1

    2

    3

    4

    5

    6

    7

    420

    440

    460

    480

    500

    520

    Current Twall Gain for RGF to compensate for ΔTwall

    = f (rpm, bmep)

    Steady Twall= f (rpm, bmep)

    Optimal Steady RGFfor the best BSFC= f (rpm, bmep)

    EngineEx. Pressure PID control

    Fuel rate PID controlTarget

    Load Torque

    Schematic Diagram Twall Compensation

  • LTC University ConsortiumLTC University Consortium

    BSFC

    210

    220

    230

    240

    250

    260

    270

    5 10 15 20 25 30 35

    Time [sec]

    bsfc

    [g/k

    W.h

    ]

    Transient Simulation in HCCI Regime – Cold Walls

    • Brake specific fuel consumption– Overall better BSFC with

    compensation for the cold Twall

    Compensation

    Piston surface temperature

    400

    410

    420

    430

    440

    450

    460

    470

    5 10 15 20 25 30 35

    Time [sec]

    Wal

    l tem

    pera

    ture

    [K]

    Mapped steady state piston surface temperature

    Calculated transient piston surface temperature

    No compensation

    RPM

    BM

    EP

    [bar

    ]

    500 1000 1500 2000 2500 3000 3500 4000 45000

    1

    2

    3

    4

    5

    6

    7

  • LTC University ConsortiumLTC University Consortium

    Acknowledgements• University of Michigan

    Dr. Aris Babajimopoulos, Dr. George Lavoie, Dr. Zoran Filipi, Prof. Margaret Wooldridge, Dr. Chris Depcik,Brad Zigler, Jason Martz, Orgun Guralp, Mark Hoffman, Kyoung-Joon Chang, Yanbin Mo, Alex Knafl

    • General Motors Research LaboratoriesRod Rask, Paul Najt, Tang Wei Kuo, Pat Szymkowicz

    • Lawrence Livermore National LaboratoriesSalvador Aceves, Dan Flowers

    • Sandia National LaboratoriesJohn Dec, Magnus Sjoberg

  • LTC University ConsortiumLTC University Consortium

    Thank you!

    Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission EnginesBig PictureLow Temperature CombustionLTC Consortium TasksEngine University Consortium Set-UpsThermal and Compositional Stratification: Near-wall Conditions and Mixture PreparationSpark-Assisted Concepts: Expand the LTC Operating RangeFrom In-cylinder to SystemsExpanding the LTC Range: Turbo-charging and Exhaust Heat RecuperationAftertreatment Options for LTC EngineThermal Management: Predictive HCCI Engine System SimulationThermal Management: Wall Temperature EffectsHCCI operation depends on load history: Transient wall temperatures affect the rangeSchematic Diagram Twall CompensationTransient Simulation in HCCI Regime – Cold WallsAcknowledgementsThank you!