Top Banner
Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson
61

Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Jan 18, 2018

Download

Documents

Toby Flowers

Power Consumption in CMOS-Based DSP Systems
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms

T. ArslanA.T. ErdoganS. MasupeC. Chun-Fu

D. Thompson

Page 2: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Contents

• Introduction to power consumption• Introduction to Main Concepts• Low Power Design Methodology• IP implementations• Results and conclusions

Page 3: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Power Consumption in CMOS-Based DSP Systems

Vdd

VoutinV

C L

I sc Idy

Idd = I sc Idy+

I sc

V

Idy

V

t

out

in

P k.C.V . f I .V I Vave dd sc dd l dd 2

Power ReductionMethods

Reduce

C*= k.C

ReduceVdd

Page 4: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

• Supply Voltage Reduction

• Clock Gating

Disadvantage:

• Added design effort

Common Approaches to Low Power Design

Page 5: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Systematic Low Power Design Approach

Exploit Algorithmic Correlations and Redundancies within an algorithm, then Map to hardware.

Page 6: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Verilog/VHDL

DSP AlgorithmLibrary

PerformanceCriteria

Block,Segmentation, etc.

Multiplier SC,Bus SC CAD

SynthesisComponent

Library

Ordering algorithm

Data representation

Netlist

Systematic Design Implementation Framework

Page 7: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Rapid Design and IP-Based Integration Platforms

. . .

P

IPy

IPx

. . .

Page 8: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Developed IPs

Page 9: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Parameterisation Options

Page 10: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Synthesis(Buildgate)

System Design(Verilog)

Verification(Behavioural Simulation)

Technology-SpecificNetlist

Verification(Gate-Level Simulation)

Verification(Post-Layout Simulation)

Floorplanning,Placement & Routing(Silicon Ensemble)

I/O PadsPlacement

Tape-out Verification(Dracula DRC/ERC/LVS)

SystemSpecifications

Layout

Design Flow for Filter IPs

Page 11: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

FIR Filter Implementation

Page 12: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Typical Single Multiplier DSP Processor Architecture

Multiplier

Adder

Output register

Control

ADCinput

x(n)

DACoutput

y(n)

Data busCoefficient bus

Datamemory

Coefficientmemory

Multiplier-accumulator(MAC)

Page 13: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Transpose Direct Form (TDF) FIR Structure

x(n)

z-1z-1

h(0) h(1) h(2)

y(n)

h(N-1)

z-1. . .

. . .

. . .

stage0 stage1stage1. . . stageN-1

PCV1(n)PCV1(n) PCV2(n) PCVN-1(n)PCV0(n)

Page 14: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Multiplier

Adder

Control

ADCinput

x(n)

DACoutput

y(n)

Data bus I

Coefficient bus

PCVMCoefficient

memory

Data bus II

Modified DSP Processor Architecture for TDF FIR Filter Implementation

Page 15: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

An Example SFG for IP2

Page 16: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Coefficient Memory Configuration with Coefficient Ordering

Order coefficients such that adjacent coefficients are highly correlated.

Filter Design(Matlab)

FilterSpecifications

Coefficient Set

Coefficient Ordering(C Routine)

OrderedCoefficient Set

Memory Configuration(C Routine)

Coefficient Words

Page 17: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Coefficient Word:

SF : Shift FlagSF = 1 shiftSF = 0 no shiftPCVMA : Pre-Calculated Value Memory Address

h(k) PCVMA SF

Page 18: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Coefficient Word Decomposition (Verilog Code)

Page 19: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

An Example SFG for IP3

Page 20: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Memory Operations (Verilog Code)

Page 21: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Software Implementation Example for IP3

Page 22: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Power Evaluation

Page 23: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Filter Specifications

Lowpass filter specifications

Filter # Passband(kHz)

Stopband(kHz)

Passbandripple(dB)

Stopbandattenuation

(dB)

Windowfunction

Filterlength

1 0 - 1.5 2 - 4 0.1 50 Hamming 532 0 - 1.2 1.7 - 5 0.01 40 Kaiser 713 0 - 3.375 5.625 - 10 0.002 90 - 424 0 - 1 1.5 - 5 0.0135 56 - 615 0 - 1.5 2 - 4 0.1 50 Blackman 89

Bandpass filter specifications

Filter # Stopband(kHz)

Passband(kHz)

Stopband(kHz)

Passbandripple(dB)

Stopbandattenuation

(dB)

Windowfunction

Filterlength

1 0 - 0.1 0.15 - 0.25 0.3 - 0.5 0.1 60 Kaiser 732 0 - 0.45 0.9 - 1.1 1.55 - 7.5 0.8 30 - 343 0 -5 8 - 12 15 - 44.14 0.00868 60 Kaiser 544 0 - 1 2 - 3.5 4.25 - 5 0.13 56.4 - 325 0 - 0.1 1.375-3.625 4 - 5 0.1 68.4 - 80

Page 24: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000sw

itche

d ca

paci

tanc

e (p

F)

IP1 IP2 IP3

PCVM buscoefficient busdata busmultiplier

25%

54%

Power Reductions Achieved (wordlength = 16 bit)

Page 25: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

An example of a 6-tap FIR filter with block size of 3

Page 26: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Power Reductions for IP4 (wordlength = 16 bit)

0

100

200

300

400

500

600

700

800

900

switc

hed

capa

cita

nce

(pF)

1 2 4 8 16

Block Size

coefficient busdata busmultiplier

40% 42%

50%53%

Page 27: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Reductions in Number of Memory Accesses (%)

0

10

20

30

40

50

60

70

80

90

100

Red

uctio

n (%

)

2 4 8 16

Block Size

Data memoryCoefficient memory

Page 28: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Coefficient Set

Coefficient Set1 Coefficient Set2

Data Set

Shifter

Multiplier

Adder

Output

Coefficient Segmentation Algorithm

Page 29: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Example Segmentations

Page 30: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Example Segmentations

Page 31: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Coefficient Segmentation Algorithm for Two’s Complement Coding

Begin

H = (h0, h1, … , hL-1)

i = 0, k = 0

2i >= hk i = i + 1

sk = 2i-1

sk = - 2i

k > L -1i = 0

k = k + 1

End

No

No

No

Yes

Yes

Yes

3 hk <= 0

mk = 0

sk = hkNo

Yes

2 2i != hk

1

mk = hk-sk

mk = hk-sk

Page 32: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Coefficient Segmentation Algorithm for Sign-Magnitude Coding

Begin

H = (h0, h1, … , hL-1)

i = 0, k = 0

2i >= hk i = i + 1

mk = hk - 2 i-1

sk = 2 i-1hk

- 2i < hk - 2i-1

mk = hk - 2i

sk = 2i

hk < 0

mk = - mk

sk = - sk

k > L -1i = 0

k = k + 1

End

No

No

No

No

Yes

Yes

Yes

Yes

1

2

3

Page 33: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Total switching activity of H and M coefficient sets with Two’s Complement Coding

Page 34: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Total switching activity of H and M coefficient sets with Sign-Magnitude Coding

Page 35: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

MSB(coefficient)

(two’s complement)

(sign magnitude)

Multiplier(two’s)

Add/Sub

Acc

Control

CoefficientMemory

DataMemory

Output

Simplified Filter Architecture for Mixed-Mode Multiplication

Page 36: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

( sign magnitude)

( sign magnitude)

Multiplier(sign)

Add

Acc

Control

CoefficientMemory

DataMemory

Sign two’s

Output

Simplified Filter Architecture for Sign-Magnitude Multiplication

Page 37: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

0

51015202530354045

#Tra

nsiti

ons/

sam

ple

b0 b2 b4 b6 b8 b10

b12

b14

Bit Position

conventionalsegmentation

Example Switching Activity Distribution with Two’s Complement Coding (N=89, W=16)

Page 38: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

05101520253035404550

#Tra

nsiti

ons/

sam

ple

b0 b2 b4 b6 b8 b10

b12

b14

Bit Position

conventionalsegmentation

Example Switching Activity Distribution with Sign-Magnitude Coding (N=89, W=16)

Page 39: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Two’s complement Mixed mode Sign-magnitudeMultipliersize Algorithm swcap/sample

(pF)Reduction

(%)swcap/sample

(pF)Reduction

(%)swcap/sample

(pF)Reduction

(%)conventional 497 294 1628-bitsegmentation 236 52.52 222 24.49 81 50.00conventional 3862 2511 217316-bitsegmentation 2058 46.71 1806 28.08 1452 33.18conventional 14795 12281 1145824-bitsegmentation 11051 25.31 10283 16.27 9367 18.25

Power Reductions Achieved with Coefficient Segmentation

Page 40: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

0

500

1000

1500

2000

2500

3000

3500

4000

switc

hed

capa

cita

nce

(pF)

twos mixed signData representation

conventionalsegmentation

Power Reduction in Multiplier Circuit (wordlength = 16 bit)

47% 35%53% 44%

62%

Page 41: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

0

500

1000

1500

2000

2500

3000

3500

4000

twos mixed sign

Data representation

multipliershifter

switc

hed

capa

cita

nce

(pF) 46%

35%

51%44%

61%

Power Reduction (wordlength = 16 bit)

Page 42: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Power Reduction at Coefficient Bus (wordlength = 16 bit)

0

50

100

150

200

250

300

350

400

switc

hed

capa

cita

nce

(pF)

twos mixed sign

Data representation

conventionalsegmentation

49% 37%54%

37%

54%

Page 43: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

DCT Implementation Scheme

Page 44: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

2-D DCT Implementation Approach

Page 45: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Simplified Architecture of the DCT Processor

Page 46: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Conventional Programmable FIR Filter Architecture

Page 47: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

TDF with Coefficient Ordering Programmable FIR Filter Architecture

Page 48: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Power Reduction (%)

Page 49: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

IP1

tNC

ResetLoad

Clock

DataCoefficient

Output

Of/Uf

Top View of IP1

Page 50: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Block Report for IP1

Page 51: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

IP2

tNC

ResetLoad

Clock

DataCoefficient

Output

Of/Uf

Top View of IP2

Page 52: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Block Report for IP2

Page 53: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

IP3

tNC

ResetLoad

Clock

DataCoefficient Word

Output

Of/Uf

Top View of IP3

Page 54: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Block Report for IP3

Page 55: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

0

2000

4000

6000

8000

10000

12000

14000

16000

Are

a

8-bit 16-bit 24-bit

Wordlength

IP1IP2IP3

Area Comparison

Page 56: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Top View of IP4

IP4

tNC

ResetLoad

Clock

DataCoefficient

Output

Of/UfBlock Size

Page 57: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

IP5

tNC

ResetLoad

Clock

DataCoefficient Word

Output

Of/Uf

Top View of IP5

Page 58: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Top View of IP6

Page 59: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Case Study: a 34-tap bandpass filter

Page 60: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Area and Power Characteristics for the Example Filter

Page 61: Low Power IP Design Methodology for Rapid Development of DSP Intensive SOC Platforms T. Arslan A.T. Erdogan S. Masupe C. Chun-Fu D. Thompson.

Conclusions

• A methodology for Low Power Implementation of DSP functions has been presented.

• The methodology has been used to develop a number of IPs.

• Significant reductions in Power is reported.

• Power reduction is achieved in the multiplier and system buses.

• Methodology can be used for prototyping other DSP functions.