Top Banner
MicroAssembly Technologies 1 Low-Cost MEMS Initiators Chopin Hua
16

Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Apr 27, 2018

Download

Documents

HaAnh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

MicroAssembly Technologies 1

Low-Cost MEMS InitiatorsChopin Hua

Page 2: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Team

Chopin HuaDr. Michael CohnKevin ChangBrian KirbyRoss Millenacker

Dr. Brian FuchsAnthony DiStasio

Becki AmendtWayne Hanson

MicroAssembly Technologies 2

Page 3: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

MicroAssembly Technologies 3

MEMS Background

• Applications beyond Munitions– Airbag initiators– Stability Control– Televisions

• Benefits using MEMS– Low cost– Reliability– More intelligent systems– Scalability

Page 4: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

...

Conventional One-at-a-Time Our Solution: Thousands-at-a Time

Batch Assembly

• Assembly/Packaging is Expensive– Each Part Must Undergo Many Steps

• Unique Capability– One Hundred Steps vs. Tens of Thousands– Reduce Cost by >10X

MicroAssembly Technologies 4

Page 5: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

MEMS Initiators

• M100 Drop-In Replacement– Batch Processing = Lower Cost, Higher Reliability– Commercial Applications

• Mining, Construction, Oil Drilling• Silicon Bridge Initiator

– For Navy IHDIV S&A devices– Applications

• 40 MM Grenades• Mine Countermeasure Dart

MicroAssembly Technologies 5

Page 6: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Initiators for M100 Replacement

• Three Layer Design• Tungsten Heating Element• Batch Processes

– Fabrication– Loading– Packaging

MicroAssembly Technologies 6

Page 7: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

1st Generation M100 Replacement

• Pyrex Substrate• Tungsten Bridgewire• Fired at 3V off 100µF cap• Pyrex Substrates Pose Process

Issues

MicroAssembly Technologies 7

Microdetonator Devices

Page 8: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

2nd Generation M100 Replacement

• Pyrex Substrates and Silicon Substrates

• Devices on Pyrex Substrate fired at 3V

• Devices on Silicon Substrate fired at 5V (thermal loss)

MicroAssembly Technologies 8

Page 9: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Heater Substrate Modeling

• Silicon with thick oxide layer possible• Long CVD process is not ideal• Quartz substrate more cost effective

MicroAssembly Technologies 9

Page 10: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

MicroAssembly Technologies 10

3rd Generation M100 Replacement

• Quartz Substrate• Lower parasitic resistances• Higher energy dissipation over bridgewire• Neyer Test on 3rd generation devices

• 23 devices tested• μ=1.6088 V σ=0.0966 V• All-fire at 2.0 V• No-fire at 1.2 V

Page 11: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

MicroAssembly Technologies 11

4th Generation M100 Replacement

• Lower parasitic resistances• Higher energy dissipation over bridgewire• Neyer Test on 4th generation devices

• 30 devices tested• μ=1.2097 V σ=0.0220 V• All-fire at 1.6 V• No-fire at 0.7 V• Dent into Aluminum: 0.020”

Page 12: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Initiators for S&A Device

MicroAssembly Technologies 12

• Navy IHDIV S&A devices• SOI MEMS Process for Safe & Arm Device• Silicon Semiconductor Bridge (SCB) Initiator• Integrated Initiators Fabricated in Batch

Semiconductor Processes

Page 13: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

NSWC Silicon Bridge Initiator• Composed of a silicon bridge• Unique geometry used for MEMS S&A device

(bridge volume ~ 20,000 µm3, dimensions in the 10's of µm)

• Bursts and forms plasma when voltage is applied• Plasma crosses air gap (2-5 µm) to initiate primary

explosive

MicroAssembly Technologies 13

Page 14: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Silicon Bridge Test Setup• Navy IHDIV devices• Explosive train feasibility study with various geometries

tested• Plasma initiates lead styphnate/silver azide pellet• Sending metal flyer into and initiating EDF-11 strip (12-

40 mils thick)• EDF-11 charge transfers to PBXN-5 pellet

MicroAssembly Technologies 14

Aluminum Dent Block

InitiatorHybridPellet

Flyer Plate Material

EDF-11 PBXN-5 Pellet

Page 15: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Silicon Bridge Testing

• Flyer successfully initiated thin layer of EDF-11 (15/17 times in various geometries / thicknesses)

• EDF-11 successfully initiated PBXN-5 pellet (4/6 times)

• Dent block analysis underway at NSWC IH

MicroAssembly Technologies 15

Initiator with Aluminum Dent Block Dent Block After Successful Charge Transfer

Page 16: Low-Cost MEMS Initiators Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker Dr. Brian Fuchs Anthony DiStasio Becki Amendt Wayne Hanson MicroAssembly Technologies

Summary

• M100 Drop-In Replacement– More Reliable (σ=0.0220 V)– Meets Firing Requirements

• All-Fire at 1.6 V off 100µF cap• No-Fire at 0.7 V off 100µF cap

• Silicon Bridge Initiator– Successfully Initiated Explosive Train– Semiconductor processing: Firing characteristics can be

easily changed per application– Fast Acting (µs range), Low Energy (~5 mJ), Very

Efficient

MicroAssembly Technologies 16