Top Banner
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook (Kurizki group, Michael Aizenman) Weizmann Institute of Science, Israel
64

Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling

Nir Davidson

Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook(Kurizki group, Michael Aizenman)

Weizmann Institute of Science, Israel

Page 2: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

• Efficiency of quantum memories depends on optical depth

• Strong nonlinearity per photon

• Collective coupling to SC circuits

• Unique model system!

Why dense atomic ensembles?

Page 3: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Quantum memories

2010 : - Us, Kuzmich, Porto, Rosenbusch, Bloch.…

Page 4: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Experimental setup

• Magneto optical trapping• Sisyphus cooling• Raman sideband cooling• Evaporative cooling

Page 5: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Experimental setup

• Magneto optical trapping• Sisyphus cooling• Raman sideband cooling• Evaporative cooling

KT 51

1100 scol

Hzrosc )640285(2,

100OD

5103N

05.0

Page 6: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Experimental setup

• Magneto optical trapping• Sisyphus cooling• Raman sideband cooling• Evaporative cooling

WMW

52S½ ,F=1

B=3.2G

d

m=-1

WRF

m=1

52S½ ,F=2

Page 7: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Experimental setup

• Magneto optical trapping• Sisyphus cooling• Raman sideband cooling• Evaporative cooling

WMW

52S½ ,F=1

B=3.2G

d

m=-1

WRF

m=1

52S½ ,F=2

Page 8: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

• Collisional narrowing • Spectrum with discrete fluctuations

• Motional broadening • Dynamical decoupling

• Bath spectral characterization

Outline

Page 9: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Motional narrowing

Page 10: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Page 11: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Collisional narrowing

2

2

Control field detuning is dc

212

10 21

2

1)( tiet d

133 scol

13 scol

0

<0

x

t

tGaussian

Exponent

)()( tietR 2/)(2 te

Page 12: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Experimental results

Collisional narrowed decay time

Inhomogeneous decay time

22 1

col

Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

Page 13: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Experimental results

Data collapse!

2

Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

Page 14: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Page 15: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Mott insulator suppresses collisions

• Mott-Insulator with exactly one atom per site

• ~80 Hz EIT lines

• ~250 msec storage time for light

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, PRL 2010

Page 16: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Time

Randomizing event

dP

d

De

tun

ing

Discrete Vs continuous fluctuations

• Kubo-Anderson model

22)(0 tH d

Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)

Page 17: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Time

Randomizing event

dP

d

De

tun

ing

Discrete Vs continuous fluctuations

• Cold collisions in atomic ensembles

Time

Randomizing event

dP

d

De

tun

ing

• Kubo-Anderson model

22)(0 tH d

Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)

Page 18: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

• Telegraph noise in semiconductors

• Single molecule spectroscopy

Discrete fluctuations

Page 19: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Solution of the discrete model

)()( tietR

Without collisions:tt d )(

With collisions:

)(~

1

)(~

)(~

0

0

sR

sRsR

A. Brissaud and U. Frisch, J. Math. Phys. 15, 524 (1974).

Time

Randomizing event

dP

d

Det

unin

g

Page 20: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Atoms in 3D harmonic trap

0

<0

x

2

1

kT

C

ePd

dd

20 )(

Density of states for 3D

harmonic trap

Boltzmann factor

2

32

10

00 1)()(

dd d tdePtR ti

1),1(

2),1(

2)(

~11

210 sYsHssR

Page 21: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

How do we measure the parameters?

• 1 is measured in low density with

2

32

10 /1)(

ttR

0

Page 22: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

• is measured by inducing oscillations in the waist of the atomic cloud and observing their decay:

Page 23: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Comparing theory to experiment

)(~

1

)(~

)(~

0

0

sR

sRsR

1),1(

2),1(

2)(

~ 20 sYsHssR )(tR)(0 dP

Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)

Page 24: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Comparison to Kubo’s model

Bloembergen et al, PRA 1984

Page 25: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Can fluctuations broaden the spectrum ?

2

)1(

20

21

0 )1()(

r

rPdddExample: Student’s t-distribution

Motional narrowing

d

A. Burnstein, Chem. Phys. Lett. 83, 335 (1981).

Page 26: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Can fluctuations broaden the spectrum ?

2

)1(

20

21

0 )1()(

r

rPdddExample: Student’s t-distribution

Motional narrowingMotional broadening

ddd ,

A. Burnstein, Chem. Phys. Lett. 83, 335 (1981).

Page 27: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Can fluctuations broaden the spectrum ?

Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

Page 28: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Mathematical proof for stable distributions

α - characteristic exponent of a stable distributionGaussian: α=2, Cauchy: α=1, Levi: α=1/2

Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

d TT )(0

where

Page 29: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Motional broadening: exponential decay

Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

Page 30: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Effect of cutoff

Motional broadening persists until cutoff is sampled

Page 31: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Relation to Zeno and anti Zeno

Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

Page 32: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Suppression of collisional decoherence by dynamical decoupling

Page 33: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Echo fails at high densities

Page 34: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Dynamical Decoupling

Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

Page 35: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Process tomography of DD

Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

Page 36: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Process tomography of non-linear Hamiltonian“twist” of the Bloch sphere

Rubidium 87: a11+a22-2*a12 = 0.3% of a11 and a22

Page 37: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Continuous Rabi pulse

Measuring the bath spectrum

tSetR )()( W

)(),( 2 ttttF Dirac W d

0

),()(

)(tFSd

etR

S()F(t)

W

The decay rate is

G. Gordon et. al., J. Phys. B: At. Mol. Opt. Phys. 42, 223001 (2009)

Page 38: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Measured collisional bath spectrum

Trap oscillation frequency

Lorentzian

I. Almog et. al., submitted (2011)

Page 39: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Measured decay vs predictions from bath spectrum

I. Almog et. al., submitted (2011)

Page 40: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Anomalous diffusion of atoms in a 1D dissipative lattice

Page 41: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Motional broadening in real space

vx d

Q=1.0

Q=1.57

Page 42: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Measurements of 1D anomalous diffusion

Ballistic

Diffusion

Page 43: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Self similarity

)()( /1/1 txtxt

-2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

x 10-3

Position [mm]

Spa

cial

dis

trib

utio

n

=1.25 t=60 msec

t=52 msec

t=44 msec

t=36 msec

t=28 msec

t=20 msect=12 msec

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 107

0

2

4

6

8

10

12

x 10-5

Position t-1/ [mm sec-1/]

Spa

cial

dis

trib

utio

n t

1/ [

sec1/

]

t=60 msec

t=52 msec

t=44 msec

t=36 msect=28 msec

t=20 msec

t=12 msec

Page 44: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Collisional narrowing PRL 105 093001 (2010)

Discrete fluctuationsPRL 104, 253003 (2010)

Dynamical decoupling PRL 105 053201 (2010)

Collisional broadening PRA, in press (2011)

Time

Randomizing event

dP

d

Det

unin

g

Bath characterization submitted (2011)

Anomalous diffusion in preparation (2011)

Summary

Page 45: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

• Collisional narrowing Y. Sagi, I. Almog and ND, PRL 105 093001 (2010)

• Spectrum with discrete fluctuations Y. Sagi, I. Almog, R. Pugatch and ND, PRL 104, 253003 (2010)

• Motional broadening Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and ND, submitted (2010)

• Dynamical decoupling Y.Sagi, I. Almog and ND, PRL 105 053201 (2010)

• Bath spectral charecterizationI. Almog et. al., submitted (2011)

Outline

Page 46: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

How to create a Power-law velocity distribution?

• Don’t be in thermal equilibrium !• Sisyphus cooling scheme:

Y. Castin, J. Dalibrad, C. Cohen-Tannoudji (1990)

rE

U

v

vvP 44

20

2

0 )1()(

Page 47: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Measurements of 1D anomalous diffusion

Ballistic

Diffusion

Page 48: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Measurements of 1D anomalous diffusion

It is possible to measure both the spatial atomic

distribution and the velocity distribution (by a

time of flight method).

Page 49: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Direct observation of anomalous diffusion

tFWHM 2

Page 50: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

1D anomalous diffusion

2

2

tFWHMBallistic

Normal diffusion

Page 51: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Self similarity in the experiment

)()( /1/1 txtxt

-2 -1 0 1 2 3

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4x 10

-3

Position [mm]

Spa

cial

dis

trib

utio

n

=1.8 t=60 msec

t=52 msec

t=44 msec

t=36 msec

t=28 msec

t=20 msect=12 msec

-6 -4 -2 0 2 4 6

x 106

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10-4

Position t-1/ [mm sec-1/]S

paci

al d

istr

ibut

ion

t1/

[

sec1/

]

t=60 msec

t=52 msec

t=44 msec

t=36 msect=28 msec

t=20 msec

t=12 msec

Page 52: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Self similarity in the experiment (2)

)()( /1/1 txtxt

-2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

x 10-3

Position [mm]

Spa

cial

dis

trib

utio

n

=1.25 t=60 msec

t=52 msec

t=44 msec

t=36 msec

t=28 msec

t=20 msect=12 msec

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 107

0

2

4

6

8

10

12

x 10-5

Position t-1/ [mm sec-1/]S

paci

al d

istr

ibut

ion

t1/

[

sec1/

]

t=60 msec

t=52 msec

t=44 msec

t=36 msect=28 msec

t=20 msec

t=12 msec

Page 53: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Effect of cutoff

Motional broadening persists until cutoff is sampled

Page 54: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Optimal DD sequence for a Lorentzian bath

G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).

Page 55: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Process tomography of non-linear Hamiltonian

Page 56: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Mott insulator suppresses collisions

• Mott-Insulator with exactly one atom per site

• ~80 Hz EIT lines

• ~250 msec storage time for light

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, PRL 2010

Page 57: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Measured collisional bath spectrum

Axial oscillation frequency

Radial oscillation frequency

Lorentzian part

Page 58: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

• An ensemble of oscillators with a distribution of resonant frequencies.

• If is a Gaussian process, the dephasing is given in terms of the correlation function

by: • For a Poissonian fluctuations,

we obtain:

Gaussian theory: Kubo’s model

)()(1

)(2

dd

d

tt

)(td

])(exp[)(0

2 t

dttR d

e)(

122

)(

te t

etR d

Page 59: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

The solution of the model)()( tietR

Without collisions:tt d )(

With collisions:

)(~

1

)(~

)(~

0

0

sR

sRsR

Where the tilde stands for the Laplace transform.

)(~

)(~

)( iRiRS The spectrum can be calculated by:

Page 60: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Page 61: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Page 62: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Measuring the bath spectrum

Page 63: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

B

Page 64: Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.

Dephasing of optically trapped atoms

0

<0

x

2)(2 xU

1)(1 xU

2

21 )(

0

tie

td

12

)()(

xIxU

2112 )()()( xUxUxU

5106 In our experiment

MHz2.0Hz10

)()( tietR 2/)(2 te For Gaussian phase

distribution