Top Banner
Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008
28

Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

Local Reverse Time Migration with Extrapolated VSP Green’s

Function

Xiang Xiao

UTAM, Univ. of Utah

Feb. 7, 2008

Page 2: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

2

Outline

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusions

Motivation Theory Numerical Tests Conclusion

Page 3: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

3

VSP Forward Modeling

s

x

g

Motivation

D(g|s)

VSP data

Theory Numerical Tests Conclusion

Page 4: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

4

Reverse Time Migration

s

x

g

Motivation

D(g|s)

VSP data

Theory Numerical Tests Conclusion

Page 5: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

5

Reverse Time Migration

s

x

G(x|g) g

G(x|s)

BackwardD(g|s)

Forwardsource

m(x) ~ s

~ ds G(x|s)

Forward source

G(x|g)* D(g|s)dg

Backward data

g

*

Motivation Theory Numerical Tests Conclusion

Page 6: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

6

Reverse Time Migration

s

x

G(x|g) g

G(x|s)

BackwardD(g,s)

Forwardsource

Motivation Theory Numerical Tests Conclusion

Forward source:1) Need salt velocity model, hard to build.

2) Model-based, model not perfect.

3) Need to estimate the statics, anisotropy, etc.

Page 7: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

7

s

g

g’

x

VSPSWP Interferometry

Migrate virtual source gather D(g|g’) Limitation:

1) s and x are at different side;2) Image near vertical structures;

Motivation Theory Numerical Tests Conclusion

Page 8: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

8

Outline

Motivation Theory Numerical Tests Conclusions

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusion

Page 9: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

9

Local Reverse Time Migration, Key Idea

(a) VSP data: P(g|s)=T(g|s)+R(g|s)

Transmission T(g|s)

s

g

Reflection R(g|s)

x

TheoryMotivation Theory Numerical Tests Conclusions

Page 10: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

10

Local Reverse Time Migration, Key Idea(a) VSP data: P(g|s)=T(g|s)+R(g|s)

T(g|s)

s

gR(g|s)

x

s

(b) Backward reflection

R(g|s)g

x

R(x|s)= G(x|g)*R(g|s)g

(c) Backward Transmission

T(g|s)

s

g

x

T(x|s)= G(x|g)*T(g|s)

g

(d) Crosscorrelation:

m(x)= R(x|s)*T(x|s)g

TheoryMotivation Theory Numerical Tests Conclusions

Local VSP Green’s function

R(g|s)g

x

Page 11: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

11

m(x) ~ s

~ dsg’

G(x|g’)* D(g’|s) dg’

Backward D(g’|s)

G(x|g)* D(g|s)dg

Backward D(g|s)

g

*

x1(1)

(2)

x2

x3

(3)

s

g

g’

Illumination Zones

(1) specular zone, (2)diffraction zone, (3) unreliable zone,

TheoryMotivation Numerical Tests Conclusions

Page 12: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

12

Benefits

• Target oriented!

Introduction Numerical Tests

– Only a local velocity model near the well is needed.

– Salt and overburden is avoided.

– Fast and easy to perform.

• Source statics are automatically accounted for.

• Immune to salt-related interbed cross-talk.

Theory Conclusions

Page 13: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

13

Outline

Motivation Theory Numerical Tests Conclusions

• Motivation

• Theory

• Numerical Tests– Sigsbee VSP data set– GOM VSP data set

• Conclusion

Page 14: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

14

Sigsbee P-wave Velocity Model0

Dep

th (

km)

9.2

4500

1500

m/s

-12.5 12.5Offset (km)

279 shots

150 receivers

Motivation Theory Numerical Tests Conclusions

Page 15: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

15

Local Reverse Time Migration Results

4.6

9.2

Dep

th (

km)

-3 3Offset (km)

True modelMigration image

f = fault

f

d

d

(1)

(2)

(3)

(1) specular zone (2) diffraction zone(3) unreliable zone

d = diffractor

Motivation Theory Numerical Tests Conclusions

Page 16: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

16

Outline

Introduction Theory Numerical Tests Conclusions

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusion

Page 17: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

17

Dep

th

(m)

Offset (m)4878

0 1829

0

GOM VSP Well and Source LocationSource @150 m offset

Introduction Theory Numerical Tests Conclusions

2800 m

3200 m

Salt

82 receivers

Page 18: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

18

P-to-S ratio = 2.7

Velocity ProfileS WaveP Wave

Dep

th

(m)

0

45000 5000 0 5000

2800 m

3200 m

Salt

GOM Data

Incorrect velocity model

P-to-S ratio = 1.6

Introduction Theory Numerical Tests Conclusions

Velocity (m/s) Velocity (m/s)

Page 19: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

19

Z-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations

Introduction Theory Numerical Tests Conclusions

Page 20: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

20

X-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations Direct S

Introduction Theory Numerical Tests Conclusions

Page 21: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

21

Local Reverse Time Migration Result

(1)

(2)

(3)

(1) specular zone, (2) diffraction zone, (3) unreliable zone

0D

epth

(km

)

9

0 25Offset (km)

Introduction Theory Numerical Tests Conclusions

Page 22: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

22

Conclusions

• Target oriented!

Introduction Theory Numerical Tests Conclusions

– Only local well model is needed.

– Salt and overburden is avoided.

– Fast and easy to perform.

• Source statics are automatically accounted for.

• Immune to salt-related interbed cross-talk.

Page 23: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

23

Thank you!

• Thank the sponsors of the 2007 UTAM consortium for their support.

Page 24: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

24

VSP WEM0

Dep

th (

km)

90 25Offset (km)

SSP WEM 0

Dep

th (

km)

9

Page 25: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

25

s

s

x

G2

s

(a) Approximate G2

x

G1 gForwardwavelet

(b) Compute G1

x

g’ G2

data D(g’|s)Backward

x

G1 g G2

(c) Migrate data D(g|s)

D(g|s)

s

Flow Chart

Page 26: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

26

ss

(a) Approximate G2 x

G2

x

g’data D(g’|s)Backward

g = s’

(b) Approximate G1 x

g’

x

g’ G1 Forward

Data D(g’|s’)

G1

x

(c) Migrate data D(g|s)

G1 G2

D(g|s) sg

SSP+VSP Imaging

Theory

Page 27: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

27

(b) Backproject reflections

R(x|s)= G(x|g)*R(g|s)g

R(g|s)g

x

Page 28: Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.

28

Outline

Motivation Theory Numerical Tests Conclusions

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusions