Top Banner
Paul M.J. Van den Hof, Karthik Ramaswamy, Arne Dankers and Giulio Bottegal www.sysdynet.eu 58 th IEEE Conf. Decision and Control (CDC 2019), Nice France www.pvandenhof.nl [email protected] Local module identification in dynamic networks with correlated noise – the full input case
22

Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Jul 12, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Paul M.J. Van den Hof, Karthik Ramaswamy, Arne Dankers and Giulio Bottegal

www.sysdynet.eu58th IEEE Conf. Decision and Control (CDC 2019), Nice France www.pvandenhof.nl

[email protected]

Local module identification in dynamic networks with correlated noise –the full input case

Page 2: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Introduction – dynamic networks

Decentralized process control

2

Autonomous driving

www.envidia.com

Smart power grid

Metabolic network Hydrocarbon reservoirs

Pierre et al. (2012)

Hillen (2012) Mansoori (2014)

Page 3: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Dynamic network setup

3

ri external excitationvi process noisewi node signal

P.M.J. Van den Hof, A.G. Dankers, P.S.C. Heuberger and X. Bombois. Automatica, 2013.

Page 4: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Dynamic network setup

4

Assumptions:• Total of L nodes• Network is well-posed and stable• Modules are dynamic, may be unstable• Disturbances are stationary stochastic and

can be correlated

Page 5: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Single module identification

5

For a network with known topology:• Identify on the basis of measured signals• Which signals to measure? Preference for local measurements

Page 6: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Single module identification

6

w1 w2

w6 w7

w8

G21 w3G32 w4G43 w5G54

G61 G37G26 G27

G12 G23 G34 G45

G18 G84

G76

v6 v7

v1 v2 v3 v4 v5

v8

r1

r4 r5

r8

0 0

0

0 0

00

0 0

0

00

0

0 0

Identifiying is part of a multi-input, single-output problem

Page 7: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Single module identification

7

Multi-input single-output identification problemto be addressed by a closed-loop identification method

Options:

1. Indirect identification2. Direct identificationwk

wj

G21

vk

vj

0

wn Gjn

vn0

wi Gji

vi0

wm Gjm

vm0

Gjk0

Page 8: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Single module identification

8

[1] VdHof et al., Automatica 2013[2] Gevers et al., SYSID 2018; Bazanella et al., CDC 2019

wk

wj

G21

vk

vj

0

wn Gjn

vn0

wi Gji

vi0

wm Gjm

vm0

Gjk0

r1

r2

r3

r4

1. Indirect identification[1][2]

- sufficient number of external excitations r- estimate and consistently, and

determine

- consistent estimate, also if correlated- noise signals not used for estimation

(no minimum variance) - freedom in location of r-signals

(e.g. directly on )- we do not necessarily need all inputs to

to be included in [3]

[3] Dankers et al., IEEE-TAC, 2016

Page 9: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

- Estimate transfer and modelthe disturbance process on the output.

- consistent estimate and ML properties- provided there is enough excitation,- and uncorrelated with other signals- input signal set can be further reduced[2]

Single module identification

wk

wj

G21

vk

vj

0

wn Gjn

vn0

wi Gji

vi0

wm Gjm

vm0

Gjk0

r1

r2

r3

r4

2. Direct identification[1]

[1] VdHof et al., Automatica 2013[2] Dankers et al., IEEE-TAC, 2016; Dankers et al., IFAC 2017

9

Page 10: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

- Estimate transfer and modelthe disturbance process on the output.

- consistent estimate and ML properties- provided there is enough excitation,- and uncorrelated with other signals- input signal set can be further reduced[2]

Single module identification

wk

wj

G21

vk

vj

0

wn Gjn

vn0

wi Gji

vi0

wm Gjm

vm0

Gjk0

r1

r2

r3

r4

2. Direct identification[1]

[1] VdHof et al., Automatica 2013[2] Dankers et al., IEEE-TAC, 2016; Dankers et al., IFAC 2017

10

How to deal with correlations between signals in the direct method?

Page 11: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Direct identification

11

Currently available results

For a consistent and minimum variance estimate(direct method) there is one additional condition: • absence of confounding variables, [1][2] i.e.

correlated disturbances on inputs and outputs

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

wk

wj

G21

vk

vj

0

wn Gjn

vn0

wi Gji

vi0

wm Gjm

vm0

Gjk0

Two different types of confounding variables:

• Direct-type: is correlated to any term in

• Indirect-type: is correlated to any otherthat has a path to

Page 12: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Direct identification of can be consistent provided that v1 and v2 are uncorrelated

Direct confounding variables

12

w1 w2G

G

v2

r10

0

21

12

v1

r2Back to the (classical) closed-loop problem:

In case of correlation between v1 and v2 (direct confounding variable): MIMO approachjoint prediction of and leads to ML results,

model and both as input and output,and model the joint disturbance process

Joint estimation of and : Joint–direct method[1,2,3,4].

[1] P.M.J. Van den Hof et al. Proc. 56th IEEE CDC, 2017 [2] H.H.M. Weerts et al., Automatica, Dec. 2018.[3] T.S. Ng, G.C. Goodwin, B.D.O. Anderson, Automatica, 1977 [4] B.D.O. Anderson and M. Gevers, Automatica 1982.

Direct confounding variables: add a predicted output and model the correlated disturbances

Page 13: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Indirect confounding variables

13

wk

wj

G21

vk

vj

0

wn Gjn

vn0

wi Gji

vi0

wm Gjm

vm0

Gjk0

wa

va

wb

vb

If and are correlated, then the effect of the confounding variable can be “blocked” by

• measuring a node on each path fromto , and

• including the “blocking nodes” as predictor inputs in the model

A.G. Dankers et al., Proc. IFAC World Congress, 2017.

Page 14: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

General algorithm philosophy1) Start with output of target module and its predictor inputs2) Handle direct confounding variables

• Add inputs to predicted outputs • Add predicted inputs for the modified outputs• Repeat step 2

3) Handle indirect confounding variables • Add predictor inputs

14

�̅�𝐺

Page 15: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Sets of signals:• Only predictor inputs • Only predicted output • Both predictor inputs and predicted outputs

Direct identification : Identification of can be consistent with ML properties

MIMO identification setup

15

�̅�𝐺

Target module

𝐺𝐺𝑗𝑗𝑗𝑗

Page 16: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

v8

v7

w8

w7 G57

G68

Full input caseWe include all in-neighbors of the predicted outputs as predictor inputs

Maximum use of information in the signals

16

w2

w1

G12

v2

v1

w4 G14

v4

w5 G45

w6 G26

v6

G32

w3

G43

G13v3

v5

Network with 𝑣𝑣1 correlated with 𝑣𝑣3 and 𝑣𝑣6.

Page 17: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

v8

v7

w8

w7 G57

G68

Full input caseWe include all in-neighbors of the predicted outputs as predictor inputs

Maximum use of information in the signals

Handling direct confounding variable

17

w2

w1

G12

v2

v1

w4 G14

v4

w5 G45

w6 G26

v6

G32

w3

G43

G13v3

v5

Network with 𝑣𝑣1 correlated with 𝑣𝑣3 and 𝑣𝑣6.

Page 18: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

w2

w1

G12

v2

v1

w4 G14

v4

w5 G45

w6 G26

v6

G32

w3

G43

G13v3

v5

w2

w1

G12

v2

v1

w4 G14

v4

w5 G45

w6 G26

v6

G32

w3

G43

G13v3

v5

v8

v7

w8

w7 G57

G68

Full input caseWe include all in-neighbors of the predicted outputs as predictor inputs

Maximum use of information in the signals

Handling indirect confounding variable

18

Network with 𝑣𝑣1 correlated with 𝑣𝑣3 and 𝑣𝑣6.Direct identification:

Page 19: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Generalization of result

19

Conditions for consistent (and ML) estimation of :

• System in the model set• Any indirect confounding variable for

is blocked by a node in • There are no confounding variables for• There are no direct or unmeasured paths from to• There is persistence of excitation, i.e. at a sufficient number of

frequencies, withand the innovation process of

• All modules in are strictly proper or satisfy some technical delay conditions

𝐺𝐺𝑗𝑗𝑗𝑗�̅�𝐺

Page 20: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Summary

• Methods for consistent and minimum variance estimation of a single module

• For direct method: treatment of confounding variables / correlated disturbances

• Particular situation: full-input case. Can be generalized to other setups to create more flexibility in choice of sensors[1].

• A priori known modules can be accounted for

• Generalizing towards combining direct and indirect approach: Ramaswamy et al. (later in this session)

20

[1] K..R. Ramaswamy et al., ArXiv, 2018.

Page 21: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Further reading • P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks

with prediction error methods - basic methods for consistent module estimates. Automatica, Vol. 49, no. 10, pp. 2994-3006.

• A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods - predictor input selection. IEEE Trans. Autom. Contr., 61 (4), pp. 937-952, 2016.

• H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of linear dynamic networks. Automatica, 89, pp. 247-258, March 2018.

• H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-reduced noise. Automatica, 98, pp. 256-268, December 2018.

• H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Single module identifiability in linear dynamic networks. Proc. 57th IEEE CDC 2018, ArXiv 1803.02586.

• K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2018). Local module identification in dynamic networks using regularized kernel-based methods. Proc. 57th IEEE CDC 2018.

• K.R. Ramaswamy, P.M.J. Van den Hof and A.G. Dankers(2019). Generalized sensing and actuation schemes for local module identification in dynamic networks. Proc. 58th IEEE 2019 CDC.

• K.R. Ramaswamy and P.M.J. Van den Hof (2019). A local direct method for module identification in dynamic networks with correlated noise. Submitted for publication. ArXiv:1908.00976.

21Papers available at www.pvandenhof.nl

Page 22: Local module identification in dynamic networks with ... · Single module identification 6 w 1 w 2 w 6 w 7 w 8 G 21 G 32 w 3 G 43 w 4 G 54 w 5 G 61 G 26 G 27 G 37 G 12 G 23 G 34 G

Data-driven modeling in linear dynamic networks22

.

The end