Top Banner
EXPERIMENT MODULE CHEMICAL ENGINEERING EDUCATION LABORATORY LIQUID-GAS CONTACTOR (KGC) CHEMICAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY INSTITUT TEKNOLOGI BANDUNG 2018
27

LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

Apr 21, 2019

Download

Documents

Ngo Ngo
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

EXPERIMENT MODULE

CHEMICAL ENGINEERING EDUCATION LABORATORY

LIQUID-GAS CONTACTOR

(KGC)

CHEMICAL ENGINEERING

FACULTY OF INDUSTRIAL TECHNOLOGY

INSTITUT TEKNOLOGI BANDUNG

2018

Page 2: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 2

Contributors:

Dr. Mubiar Purwasasmita, Dr. Retno Gumilang Dewi, Dr. Ardiyan Harimawan, Kevin

Yonathan, Rosa Citra Aprilia, Darien Theodric

Page 3: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 3

TABLE OF CONTENTS

TABLE OF CONTENTS ............................................................................................................................... 3

LIST OF FIGURES ...................................................................................................................................... 5

LIST OF TABLES ........................................................................................................................................ 6

CHAPTER I................................................................................................................................................ 7

PREFACE .................................................................................................................................................. 7

CHAPTER II .............................................................................................................................................. 8

EXPERIMENT OBJECTIVES AND GOALS ................................................................................................... 8

2.1 Goals ............................................................................................................................................. 8

2.2 Objectives...................................................................................................................................... 8

CHAPTER III ............................................................................................................................................. 9

EXPERIMENTAL DESIGN .......................................................................................................................... 9

3.1 Equipment Layout ......................................................................................................................... 9

3.2 Supporting Equipment ................................................................................................................ 10

3.3 Material/Chemical Substances ................................................................................................... 10

CHAPTER IV ........................................................................................................................................... 11

WORKING PROCEDURE ......................................................................................................................... 11

4.1 Calibration of Flow and Measurement of Monophase Pressure Difference .............................. 11

4.2 Measurement of pressure difference, Hold-Up Volume, and Multiphase Flow Regime ........... 13

BIBLIOGRAPHY ...................................................................................................................................... 14

APPENDIX .............................................................................................................................................. 15

A. Raw Data Table ......................................................................................................................... 15

A.1 Experiment on Counter Current Column ............................................................................... 15

A.2 Experiment on Co-current Column ......................................................................................... 17

B. Calculation Procedure ............................................................................................................... 19

B.1 Calibration of Gas Flowrate .................................................................................................... 19

B.3 Determining Gas Mass Flux .................................................................................................... 21

B.4 Determining Liquid Mass Flux ................................................................................................. 21

B.5 Determining Pressure Difference ........................................................................................... 22

B.6 Determining % Liquid Hold-Up ............................................................................................... 22

B.7 Calculation with Burke-Plummer Equation............................................................................. 24

B.8 Calculation with Blake-Kozeny Equation ................................................................................ 24

B.9 Calculation with Ergun Equation ............................................................................................. 24

Page 4: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 4

C. Specification and Literature Data ................................................................................................ 25

C.1 Physical Properties of Water ............................................................................................. 25

C.2 Other constant value ........................................................................................................ 25

JOB SAFETY ANALYSIS ........................................................................................................................... 26

Page 5: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 5

LIST OF FIGURES

Figure 1. Phase deformation of flow in liquid-gas contactor. ................................................................. 7

Figure 2. Equipment layout. .................................................................................................................... 9

Figure 3. Procedure for flow calibration and measurement of monophase gas pressure difference. .... 11

Figure 4. Procedure of flow calibration and measurement of monophase liquid pressure difference. . 12

Figure 5. Procedure for multiphase flow experiment............................................................................ 13

Page 6: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 6

LIST OF TABLES

Table 1. Data for determining gas flowrate in counter current column. ............................................... 15

Table 2. Data for determining gas flowrate in counter column column. .............................................. 15

Table 3. Data for liquid-gas hydrodinamics experiment in counter current column. ........................... 16

Table 4. Data for determining gas flowrate in co-current column. ....................................................... 17

Table 5. Data for determining liquid flowrate in co-current column. ................................................... 17

Table 6. Data for liquid-gas hydrodinamics experiment in co-current column. ................................... 18

Page 7: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 7

CHAPTER I

PREFACE

The two-phase gas-liquid reactor is an example of the simplest polyphase reactor. It is called

polyphase because the reactor contacts two distinct phases including the insoluble phases. In

general, chemical process in operations take place in many phases at the same time. The two

phase liquid-gas reactor is often called a bubble reactor that can be cocurrent or counter

current. The difference between two phase flows in this reactor with the dispersion flow of

solids such as sedimentation, ion exchange, and so forth is the possibility of change in the

size of the gas bubbles along the stream. The liquid-gas contactor module will discuss about

hydrodinamic properties of two phase flow.

The novelty in a multiphase reactor that never occurs in a homogeneous reactor is the

distribution of phase spaces consisting of bubbles, droplets, films, ridges, and so on. This

distribution occurs due to the forces involved, the morphology of the column, volumetric

flowrate of each phase, and the nature of each fluid. Various types of flow that can occur in

the cocurrent liquid gas flow to the top in a column are shown in Figure 1.

Figure 1. Phase deformation of flow in liquid-gas contactor.

Page 8: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 8

CHAPTER II

EXPERIMENT OBJECTIVES AND GOALS

2.1 Goals

The purpose of this practicum is to understand the characteristics of gas-liquid contactor

systems especially the hydrodynamics of the two phase system.

2.2 Objectives

The objectives achieved at the end of the practicum are that students can observe the flow

regime, measure the liquid hold-up, pressure difference for different variations of gas/liquid

flow rate. Compare the above characteristics for the three main equipments.

Page 9: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 9

CHAPTER III

EXPERIMENTAL DESIGN

3.1 Equipment Layout

Figure 2. Equipment layout.

Keterangan:

1. Packed Column (Co-current dan counter current)

2. Wet test meter

3. Water tank

4. Water rotameter

5. Gas rotameter

6. Manometer

7. Measuring cup

L = water flow; G = gas flow; z = column height; D = column diameter

Page 10: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 10

3.2 Supporting Equipment

1. Stopwatch

2. Wet test meter

3. Screwdriver

3.3 Material/Chemical Substances

1. Air

2. Water

Page 11: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 11

CHAPTER IV

WORKING PROCEDURE

4.1 Calibration of Flow and Measurement of Monophase Pressure Difference

Flow calibration is done for gas and liquid phase with procedure shown in Figure 4.1 and

Figure 4.2.

Start

Connect hose output of gas

rotameter to wet-test meter

Adjust rotameter scale

End

Measure time needed for one full

rotation of wet-test meter

Measure pressure difference

Connect hose output of rotameter

scale to column

Rotameter

scale data

Air volume

and time

Repeat with other

variation of rotameter

scale

Monophase

gas pressure

difference

Figure 3. Procedure for flow calibration and measurement of monophase gas pressure difference.

Page 12: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 12

Start

Channel the water flow into the

column

Adjust rotameter scale

End

Store 1 L of water coming out of

column and record the time

Measure pressure difference

Rotameter

scale data

Air volume

and time

Repeat with other

variation of rotameter

scale

Monophase

gas pressure

difference

Figure 4. Procedure of flow calibration and measurement of monophase liquid pressure difference.

Page 13: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 13

4.2 Measurement of pressure difference, Hold-Up Volume, and Multiphase Flow

Regime

Start

Channel the water flow and gas

into the column

Adjust rotameter scale for each

flow

End

Measure the pressure difference

and observe the flow regime in

column

Shut down both fluid flow and

store water left in column

Rotameter

scale data

Pressure

difference and

multiphase

flow regime

Repeat with other

variation of rotameter

scale

Water hold-

up volume

Figure 5. Procedure for multiphase flow experiment.

Page 14: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 14

BIBLIOGRAPHY

Mc Cabe, W.L. Unit Operation of Chemical Engineering, 3rd

ed, McGraw-Hill Book Co.,

New York. 1993. pp. 455-457

Manual-manual oleh M. Purwasasmita:

Petunjuk Praktikum Kontaktor Gas-Cair, 1985

Menentukan Parameter Perpindahan Massa dalam Reaktor Gas-Cair dengan Metode

Kimia, 1986

Modelisasi Aliran Dua Fasa, 1986

Page 15: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 15

APPENDIX

A. Raw Data Table

A.1 Experiment on Counter Current Column

A.1.1 Gas flowrate in counter current column.

Table 1. Data for determining gas flowrate in counter current column.

Scale Volume (L) Time (s)

1

2

3

4

...

n

A.1.2 Liquid flowrate in counter current column

Table 2. Data for determining gas flowrate in counter column column.

Scale Volume (L) Time (s)

1

2

3

4

...

n

Page 16: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 16

A.1.3 Liquid-Gas Hydrodinamics in Counter Current Column

Table 3. Data for liquid-gas hydrodinamics experiment in counter current column.

Rotameter Scale Δh

(cmH2O)

Liquid Hold

Up (mL)

Flow

Regime Gas (G) Liquid (L)

1

1

2

...

n

2

1

2

...

n

...

1

2

...

n

n

1

2

...

n

Page 17: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 17

A.2 Experiment on Co-current Column

A.2.1 Gas flowrate in co-current column.

Table 4. Data for determining gas flowrate in co-current column.

Scale Volume (L) Time (s)

1

2

3

4

...

n

A.2.2 Liquid flowrate in co-current column.

Table 5. Data for determining liquid flowrate in co-current column.

Scale Volume (L) Time (s)

1

2

3

4

...

n

Page 18: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 18

A.2.3 Liquid-Gas hydrodinamics on co-current column.

Table 6. Data for liquid-gas hydrodinamics experiment in co-current column.

Rotameter Scale Δh

(cmH2O)

Liquid Hold

Up (mL) Flow Regime

Gas (G) Liquid (L)

1

1

2

...

n

2

1

2

...

n

...

1

2

...

n

n

1

2

...

n

Page 19: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 19

B. Calculation Procedure

B.1 Calibration of Gas Flowrate

From the calibration data of gas flowrate, we can obtain the relationship between gas scale,

gas volume, and flow time.

From above formula, we can obtain the relationship between Qscale and Qreal in a linear

equation.

Say we get the data:

G Scale Volume (L) Time (s) Q (L/s)

5 2 27.34 0.073

10 2 12.83 0.156

15 2 8.49 0.236

20 2 6.27 0.319

25 2 5.03 0.398

30 2 4.14 0.483

35 2 3.5 0.571

40 2 3.08 0.649

Plotting calibration curve of Qscale to Qreal will result in:

Page 20: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 20

Then we obtained following equation

Qreal = 0,0165 Qscale – 0,0107

Jika Q scale = 3, then the real gas flowrate in L/s is:

Qreal = 0,0165 x 3 – 0,0107 = 0,0388 L/s

B.2 Calibration of Liquid Flowrate

From the calibration data of gas flowrate, we can obtain the relationship between liquid scale,

liquid volume, and flow time.

From above formula, we can obtain the relationship between Qscale and Qreal in a linear

equation.

Say we get the data:

Q scale Volume (L) Time (s) Q (L/s)

62 0.17 5.39 0.032

66 0.17 4.98 0.034

74 0.17 4.18 0.041

76 0.17 4.11 0.041

80 0.17 3.44 0.049

84 0.17 3.13 0.054

88 0.17 2.9 0.059

92 0.17 2.77 0.061

Page 21: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 21

98 0.17 2.5 0.068

Plotting calibration curve of Qscale to Qreal will result in:

Then we obtain the following equation:

Qreal = 0,0011 Qscale – 0,0363

Jika Qscale = 60, then real liquid flowrate in L/s is:

Qreal = 0,0011 *60 – 0,0363 = 0,0297 L/s

B.3 Determining Gas Mass Flux

Equation used:

where: ρG = air density

QG = air volumetric flowrate

A = column cross-sectional area

Then for QG = 0,0388 L/s, we obtain:

B.4 Determining Liquid Mass Flux

Page 22: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 22

where: ρL = liquid density

QL = liquid volumetric flowrate

A = luas penampang kolom

Then for QL = 0,0297 L/s we obtain:

L = 21,343 kg/m3.s

B.5 Determining Pressure Difference

Equation used:

ΔP = Δh

dimana: ΔP = pressure difference

ρL = liquid density (water)

g = gravitational acceleration

Δh = height difference in manometer

If we know that

ρL (at T experiment) = 996,757 kg/m3

g = 9,8 m/s2

Δh (measured in experiment) = 7,4 cm

Then

B.6 Determining % Liquid Hold-Up

If we obtain liquid hold up of 860 mL in 2L overall column volume after we turn off the gas

flow, the the %HU is :

Page 23: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 23

Page 24: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 24

B.7 Calculation with Burke-Plummer Equation

Where

P0-PL = pressure difference

L = column length

hB = Burke-Plummer constant

ρ = flow density

v0 = superficial flow

ε = bed porosity

B.8 Calculation with Blake-Kozeny Equation

P0-PL =pressure difference

L = column length

hB = Burke-Plummer constant

μ = liquid viscosity

v0 = superficial flow

ε = bed porosity

B.9 Calculation with Ergun Equation

(

)

Page 25: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 25

C. Specification and Literature Data

C.1 Physical Properties of Water

(source : Geankoplis, C. J., 1993, Transport Process and Unit Operations, 3rd

ed., New

Jersey : Prentice-Hall. hal. 862.)

C.2 Other constant value

g (gravitational acceleration) = 9.8 m/s2

ρ mercury = 13.5 kg/m3

Mr air = 28.97 g/mol

R (gas constant) = 8314.34 m3.Pa/kg mol K

Page 26: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 26

JOB SAFETY ANALYSIS

No Material Properties Countermeasures

1 Water

(H2O)

Liquid, odorless,

colorless BM = 18.02

g/mol

pH = 7

BP = 100 oC

Vapor pressure =

2.3 kPa

Density = 0.62

kg/m3

No special countermeasures needed.

2 Air Gas, odorless,

colorless BM = 46 g/mol

BP = -194.3 oC

MP = -216.2 oC

Density = 1.59

kg/m3

No special countermeasures needed.

Accidents that may happen Countermeasures

Slip caused by water puddle when

storing water for determining liquid

hold up.

Make sure all hose connections are coupled well to prevent

water leakage which results to water puddle. Clean if

there’s water puddle.

Water overflow due to big gas flow

(counter-current column)

Make sure the gas flowrate is not too big to minimize the

differene between gas flowrate and liquid flowrate.

Safety Gear

Labcoat Goggle

Equipment Check

make sure hose connections are properly

connected

Make sure hose for gas/water flow into the

column is connected well.

make sure electricity in pump and compressor

is properly connected.

Calibration of liquid/gas flowrate

make sure hose connections are

properly connected

Careful in discharging gas, may cause

explosion

Experiment

Make sure air and water supply hose to

column are properly connected to avoid

explosion or water leakage.

After Experiment

Close all liquid and air line.

Clean water puddle

Cut all electricity connection on pump and

compressor

Clean tank from water

Page 27: LIQUID-GAS CONTACTOR (KGC) - labtkitb.files.wordpress.com fileMODUL KONTAKTOR GAS CAIR (KGC) KGC – 2018 5 LIST OF FIGURES Figure 1. Phase deformation of flow in liquid-gas contactor.....

INSTRUCTIONAL LABORATORY

CHEMICAL ENGINEERING FTI - ITB

MODUL KONTAKTOR GAS CAIR (KGC)

KGC – 2018 27

Problems that may occur :

1. Very small pressure difference can be observed due to manometer giving less

sensitive reading.

2. Air or water got into the manometer, causing it unable to read the pressure accurately.

Asisten Pembimbing Koordinator Lab TK