Top Banner

of 16

Linear Algebraic theft

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Linear Algebraic theft

    1/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    1.

    Ans.

    A =

    1+ i 1

    2- i 3

    A' =

    1 - i 2 + i1 3

    Adjoint

    = 1.0000 + 1.0000i 2.0000 - 1.0000i

    1.0000 + 0.0000i 3.0000 + 0.0000i

    Conjugate of 1-i =1+i

    (1+i)A* =

    0.0000 + 2.0000i 3.0000 + 1.0000i

    1.0000 + 1.0000i 3.0000 + 3.0000i

    (1-i)A=

    2.0000 + 0.0000i 1.0000 - 1.0000i

    1.0000 - 3.0000i 3.0000 - 3.0000i

    ((1-i)A)*=

    0.0000 + 2.0000i 3.0000 + 1.0000i

    1.0000 + 1.0000i 3.0000 + 3.0000i

    We have just verifed that

    (cA)*=conj(c) A*

    Next wed show Adjoint of Adjoint of A is A

    Adjoint of AAdjoint

    = 1.0000 + 1.0000i 2.0000 - 1.0000i

    1.0000 3.0000

    (adjoint of A)=

    1.0000 - 1.0000i 1.0000 + 0.0000i

    2.0000 + 1.0000i 3.0000 + 0.0000i

    adjoint of adjoint of A = conjugate of A =

    1+ i 1

    2- i 3

  • 8/10/2019 Linear Algebraic theft

    2/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    Let B =

    1.0000 + 3.0000i 2.0000 + 3.0000i

    4.0000 - 2.0000i 6.0000 + 3.0000iB=

    1.0000 - 3.0000i 4.0000 + 2.0000i

    2.0000 - 3.0000i 6.0000 - 3.0000i

    B*=

    1.0000 + 3.0000i 4.0000 - 2.0000i

    2.0000 + 3.0000i 6.0000 + 3.0000i

    A*+B*=

    2.0000 + 4.0000i 6.0000 - 3.0000i

    3.0000 + 3.0000i 9.0000 + 3.0000i

    (A+B) =

    2.0000 + 4.0000i 3.0000 + 3.0000i6.0000 - 3.0000i 9.0000 + 3.0000i

    (A+B)=

    2.0000 - 4.0000i 6.0000 + 3.0000i

    3.0000 - 3.0000i 9.0000 - 3.0000i

    (A+B)*=

    2.0000 + 4.0000i 6.0000 - 3.0000i

    3.0000 + 3.0000i 9.0000 + 3.0000i

    =A*+B* (verified)

    AB=

    2.0000 + 2.0000i 5.0000 + 8.0000i

    17.0000 - 1.0000i 25.0000 +13.0000i

    (AB)=

    2.0000 - 2.0000i 17.0000 + 1.0000i

    5.0000 - 8.0000i 25.0000 -13.0000i

    (AB)*=

    2.0000 + 2.0000i 17.0000 - 1.0000i

    5.0000 + 8.0000i 25.0000 +13.0000i

    B*A* .. (from previous computed B* and A*)

    = 2.0000 + 2.0000i 17.0000 - 1.0000i

    5.0000 + 8.0000i 25.0000 +13.0000i

    =(AB)* (thus verified)

    3.

  • 8/10/2019 Linear Algebraic theft

    3/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    Ans. = [ + , + , (+ ) + ] = [ , , ( ) + ]5.

    A=1 0 0

    0 2 00 0 3

    1 =1.0000 0 0

    0 0.5000 0

    0 0 0.3333

    L =

    3 0 5

    1 1 0

    0 -1 1

    (L*)A=ALL*= ALA-1

    L*=(A-1)LA

    =

    3.0000 2.0000 0

    0 1.0000 -1.5000

    1.6667 0 1.0000

    7.

  • 8/10/2019 Linear Algebraic theft

    4/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    Set G(t) =g(t)*e^(-t^2)Claim D is adjoint of D

    Replace G(t) for g(t) in the proof below:

    7.2

    1 1 + 1 2 = 2 3 + 2 2 = 0 , = 0 = 3 1 1 +

    1 2 =33(1-i)x =y (Check the other is redundant as (1+i)y=(1+i)(1-i)x=2x)

    1 11 4 1 1 + 1 2 =00

    Again 2 112 Orthonormailation yeilds:

    1 = 11 + 11 =1 + 2 =3, similarly c2 =1/3

  • 8/10/2019 Linear Algebraic theft

    5/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    We get,3^(1/2)/3

    3^(1/2)*(1/3 - i/3)

    as an orthonormal basis

    2 0 0 1 0 0 2 = (1 )((2 )2 1) = 0, = 1 , 1, 3

    2 0

    0 1 0 0 2 = 2 0

    0 1 0 0 2

    Corresponding Eigen Vectors are:

    0 0.7071i 0.7071i

    i 0 00 -0.7071 0.7071

    Now we need to find an orthogonal basis

    Applying Gram-Schmidth, we get: (Setting u1=w1,u1=-1*w2, and

    u3=w3)

    0 - 0.7071i +0.7071i

    - i 0 0

    0 0.7071 0.7071

    as the orthogonal basis.

  • 8/10/2019 Linear Algebraic theft

    6/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    We are done.

    (A*A)*=A*A** (adjoint of products)

    =A*A (Involutiveness of adjoint)

    We can set apart eigenvalues of A as:

    Those which are positive. These would be positive in AA(since

    eig(A^2)=

    ^2 for each in A), ditto in A*A

    Those which are negative, shall also be positive in AA, ditto in A*A

    Those which are complex. Now since we take onjugates their product

    is also positive, in AA* (not in AA) .

    7.3

    The symmetric Positive definite matrix is A

    6 22 3

    Constraint, cos^2 theta +sin^2 theta =1:

    5,7.2

  • 8/10/2019 Linear Algebraic theft

    7/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    XX=1 = 2 =, = 2 =(6

    )(3

    )

    4 = 0 ,

    = 2,7

    Eigen value are 2 and 7Min is 2 max is 7

    However, we see that the vector is of cos theta and sin theta,

    We know that trigonometric functions are oscillating functions there arecountably infinite values of maxima and minima over Rn

    Normalised eigen vectors are:

    0.4472 -0.8944

    -0.8944 -0.4472

    such that theta =cos-1(0.4472) sin-1(-0.8944), accounting for osscilatingnatures, there are infinite of such points.

    Similarly, theta =cos-1 (-0.8944) sin-1(-(0.4472), also representcountably infinite of such points.

    5.

    In case all diagonal elements are positive:

    f is a unit circle or sphere in form a^2+b^2=1

    In case they are not all positive they can represent a parabola in C, which

    means a parabola, provided sum of squares of all positive entries

    outweigh the sum square of all non-negative entries by more than1.

    5

  • 8/10/2019 Linear Algebraic theft

    8/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    We have an entire family of polynomials of power three can be covered

    in 3*3 matrix. F=1 fixes a curve, given coefficients.

    This can also be understood in terms of eigenvalues.

    f(x) has one optima, and at most 3 eigen values. Then at most 2

    saddle points. Else 1 saddle point.7.

    The relevant symmetric positive definite matrix

    A =1 0 0

    0 2 00 0 3

    = 2 =By defn of unit circle, = 2

    =det(A)=(1-)(2-)(3-)=0=1,2 OR 31 is ,minima, 2 is saddle point 3 is maxima.

    5,7.3

  • 8/10/2019 Linear Algebraic theft

    9/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    Finding eigen vectors:0.4472 is for -0.8944 for max.

    -0.8944 min -0.4472

    max x1^2 +x2^2+x3^2

    A=1 0 00 1 00 0 1

    G =

    1 1 0

    0 1 10 0 1

    G-1A=

    1 -1 1

    0 1 -1

    0 0 1

    eigenvalues of G-1A

    =1

    Corresponding eigen vectors0.4472 -0.8944-0.8944 -0.4472

    Give us the maxima.

    Proof. Consider a finite dimensional orthonormal basis B =

    {e1, . . . , en} in V . Ris a linear operator. Then [R]B= ([R(e1)]B, . . . , [T

    (en)]B).

    Recall that for an orthonormal basis, the scalar product of vectors in V isequal to the standard scalar product in Rn of their respective coordinate

    column (or row) vectors. If Ris orthogonal, the set of vectors R(e1), .

  • 8/10/2019 Linear Algebraic theft

    10/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    . . , [R (en)is orthonormal (since e1, . . . , en is orthonormal). Hence thecolumns [R (e1)]B, . . . , R (en)]Bare orthonormal, so A = [R]Bis an

    orthogonal matrix. Conversely, assume that the matrix A = [R ]Bis

    orthogonal. That implies that the vectors R (e1), . . . ,[R(en) is an

    orthonormal set. Thus, Rpreserves all pairwise scalar products of theelements of the basis B. It follows then that Rpre- serves all scalar

    products of vectors of V , i.e., T is an orthogonal operator.

    If:

    Only IF:

    . To see this, set x = eiin (5.6.1) to observe ui*ui= 1 for each i, and then

    set x = ej+ ejfor j kto obtain 0 = +=2()By setting x = ej+ iek in the eqn above, it also follows

    that 0 = 2Im()This guarantees that U is unitary

    Let D = andBbe

    By definition, the change of basis matrix Mhas the property that

  • 8/10/2019 Linear Algebraic theft

    11/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    Had vi been othonormal would be , .

    Let A be the matrix. Det(A-)= (1/5)(1-)(-1)(i+)(-4i)=(4/5)i(1-)(i+)=0= 0.8944 + 0.4472i-0.4472 - 0.8944i

    Eigen Vector for 1

    15 2525

    5

    =

  • 8/10/2019 Linear Algebraic theft

    12/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    Solving, and normalising, yields:

    0.8944

    -0.4472

    1

    52

    525 5 = 0

    0

    Solving yields:

    0.4472i

    -0.8944i

    P=

    0.8944 + 0.4472i

    -0.4472 - 0.8944i

    PAP-1=

    -0.2683 - 0.7155i 0

    0 0.7155 + 0.2683i

    Ans.

    The solution to this matrix As axis cn be given by AX=X

    Implies(A-I)x=

    *x =0

    The solution is (by method of simple substituition)0.4472

    -0.8944

    Which is the required axis.

    Eigenvectors of A corresponding to 1=

    0.4472

    -1 1 0

    0.7071 -1 0.70710.7071 0 -1.707

  • 8/10/2019 Linear Algebraic theft

    13/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    -0.8944Now acos(.4722)and asin(-.8944)=-1.1071

    Which is the required rotation.

    Eig vector corresponding to axis of rotation-0.8944

    -0.4472

    eigenvalues =

    -0.5000 + 0.8660i 0.0000 + 0.0000i 0.0000 + 0.0000i

    0.0000 + 0.0000i -0.5000 - 0.8660i 0.0000 + 0.0000i

    0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

    Sum of eigenvalues= 0 =1 +cos(2theta)theta=arcos(0)= 1.5708

    In case the underlying space is Real, U*=U shall have the same

    eigenvalues as U. U and U* commute, so eigenvalues of sum =sum of

    eigenvalues.In real space this means {2*eigenvalues of U }

    In complex space it means {2*Real(eigenvalues of U)}

    7.51

    13

  • 8/10/2019 Linear Algebraic theft

    14/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    7.5.3

    1

  • 8/10/2019 Linear Algebraic theft

    15/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    Solving the eigenvalue equations we get3 = 0( 1) = 0, = 1,0,1-1 0 1

    -ix2=-x1 -ix2=0 -ix2=x1

    ix1=-x2 (x2 free) ix1=0 ix1=x2 (x2 free)

    x3 free x3 free x3 free

    -0.5000 + 0.8660i 0.0000 + 0.0000i 0.0000 + 0.0000i

    0.0000 + 0.0000i -0.5000 - 0.8660i 0.0000 + 0.0000i

    0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

    could be a basis

    Enough to evaluate 4=14 = 4=1 , =1, || = 1But then it is Unitary.

    3

  • 8/10/2019 Linear Algebraic theft

    16/16

    COPIED

    Subh

    rodipSengup

    ta

    Unautho

    risedm

    ixing

    ofanswers.

    7.