Top Banner
Matrices and Matrix Algebra Determinants I Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3
711

Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Jun 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Linear Algebra. Session 3

Dr. Marco A Roque Sol

01/30/2018

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 2: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 3: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 4: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix

D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 5: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn)

is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 6: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible

if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 7: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif

all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 8: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are

nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 9: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero;

di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 10: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 11: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D

is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 12: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible

then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 13: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 14: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 15: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting diagonal matrices

Theorem 3.1A diagonal matrix D = diag(d1, d2, · · · .dn) is invertible if and onlyif all diagonal entries are nonzero; di 6= 0 for 1 ≤ i < n

If D is invertible then D−1 = diag(d−11 , d−12 , · · · .d−1n )

d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

−1

=

d−11 0 · · · 0

0 d−12 · · · 0...

.... . .

...0 0 · · · d−1n

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 16: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 17: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 18: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If

all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 19: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,

then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 20: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 21: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)

diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 22: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 23: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 24: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )

diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 25: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 26: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 27: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now

suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 28: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that

di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 29: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0,

for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 30: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i .

Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 31: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then

for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 32: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any

n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 33: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB,

the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 34: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB

is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 35: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero.

Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 36: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence

DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 37: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

If all di 6= 0,then clearly,

diag(d1, d2, · · · .dn)diag(d−11 , d−12 , · · · .d−1n ) =

diag(1, 1, · · · .1) = In

diag(d−11 , d−12 , · · · , d−1n )diag(d1, d2, · · · .dn) =

diag(1, 1, · · · .1) = In

Now suppose that di = 0, for some i . Then for any n × n matrixB, the ith row of the matrix DB is zero. Hence DB 6= In. �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 38: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 39: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 40: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant

of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 41: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 42: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)

is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 43: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by

det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 44: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and

defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 45: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by

det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 46: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 47: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 48: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 49: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)

is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 50: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible

if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 51: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if

det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 52: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 .

If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 53: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0,

then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 54: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 55: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 56: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 57: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 58: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Inverting 2× 2 matrices

The determinant of a 2× 2 matrix

A =

(a bc d

)is denoted by det(A) and defined by det(A) = ad − bc

Theorem 3.2

A matrix

A =

(a bc d

)is invertible if and only if det(A) 6= 0 . If det(A) 6= 0, then

A−1 =

(a bc d

)−1=

1

ad − bc

(d −b−c a

)−1Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 59: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 60: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 61: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B

the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 62: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 63: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)

then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 64: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 65: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 66: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)

In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 67: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case

det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 68: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0

we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 69: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 70: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case

det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 71: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0

the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 72: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0

⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 73: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒

(A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 74: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0

⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 75: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒

(A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 76: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒

(I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 77: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒

B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 78: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0

⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 79: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒

B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 80: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0,

but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 81: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix

is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 82: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!!

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 83: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

proof

Let B the matrix

B =

(d −b−c a

)then

AB = BA =

(ad − bc 0

0 ad − bc

)In the case det(A) = ad − bc 6= 0 we have A−1 = [det(A)]−1B

In the case det(A) = ad − bc = 0 the matrix A is non invertible asotherwise⇒ AB = 0 ⇒ (A−1(AB) = A−10 = 0⇒ (A−1A)B = 0 ⇒ (I2B = 0 ⇒ B = 0⇒ B = 0, but the zero matrix is singular !!!!! �

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 84: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 85: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:

a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 86: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 87: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 88: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 89: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 90: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 91: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 92: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 93: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

System of n linear equations in n variables:a11x1 + a12x2 + · · ·+ a1nxn = b1a21x1 + a22x2 + · · ·+ a2nxn = b2

...am1x1 + am2x2 + · · ·+ amnxn = bm

⇔ Ax = b

where

A =

a11 a12 · · · a1na21 a22 · · · a2n

...an1 an2 · · · ann

x =

x1x2...xn

b =

b1b2...bn

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 94: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 95: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 96: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 97: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 98: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 99: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 100: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 101: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 102: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Theorem 3.3

If the matrix A above, is invertible then the system has a uniquesolution, which is x = A−1b

General results on inverse matrices

Theorem 3.4

Given an n × n matrix A, the following conditions are equivalent:

(i) A is invertible.

(ii) x = 0 is the only solution of the matrix equation Ax = 0.

(iii) The matrix equation Ax = b has a unique solution for anyn-dimensional column vector b.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 103: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 104: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 105: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 106: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 107: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose

that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 108: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of

elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 109: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations

converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 110: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A

into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 111: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix.

Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 112: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then

the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 113: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence of

operations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 114: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts

the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 115: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix

into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 116: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 117: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

(iv) The row echelon form of A has no zero rows.has a unique solution for any n-dimensional column vector b

(v) The reduced row echelon form ofA is the identity matrix.

Theorem 3.5

Suppose that a sequence of elementary row operations converts amatrix A into the identity matrix. Then the same sequence ofoperations converts the identity matrix into the inverse matrix A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 118: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 119: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 120: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 121: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 122: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 123: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix

in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 124: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form,

the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 125: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns

withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 126: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries

equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 127: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows

with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 128: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries.

Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 129: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix,

also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 130: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries

(i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 131: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables

in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 132: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system

oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 133: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations)

equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 134: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of

rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 135: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries

(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 136: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 137: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

For any matrix in row echelon form, the number of columns withleading entries equals the number of rows with leading entries. Fora square matrix, also the number of columns without leadingentries (i.e., the number of free variables in a related system oflinear equations) equals the number of rows without leading entries(i.e., zero rows).

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 138: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 139: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 140: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 141: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 142: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 143: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence

the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 144: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form

of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 145: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A

is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 146: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or

else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 147: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row.

In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 148: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case,

theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 149: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b

always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 150: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has

a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 151: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution.

Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 152: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also,

in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 153: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase

the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 154: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced

row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 155: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form

of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 156: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is

I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 157: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

Invertible case Noninvertible case

Hence the row echelon form of a square matrix A is either stricttriangular or else it has a zero row. In the former case, theequation Ax = b always has a unique solution. Also, in the formercase the reduced row echelon form of A is I .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 158: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 159: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 160: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check

whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 161: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,

given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 162: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by

3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 163: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 164: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 165: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 166: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it

to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 167: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 168: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row:

1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 169: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row:

1 0 10 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 170: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Example 3.2

Check whether the matrix A,given by 3 −2 11 0 1−2 3 0

is invertible.

Solution

We convert it to row echelon form.

Interchange the 1st row with the 2nd row: 1 0 13 −2 1−2 3 0

Add −3 times the 1st row to the 2nd row: 1 0 1

0 −2 −3−2 3 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 171: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add 2 times the 1st row to the 3rd row : 1 0 10 −2 −30 3 2

Multiply the 2nd row by −1/2 : 1 0 1

0 1 3/20 3 2

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 172: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add 2 times the 1st row to the 3rd row :

1 0 10 −2 −30 3 2

Multiply the 2nd row by −1/2 : 1 0 1

0 1 3/20 3 2

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 173: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add 2 times the 1st row to the 3rd row : 1 0 10 −2 −30 3 2

Multiply the 2nd row by −1/2 : 1 0 10 1 3/20 3 2

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 174: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add 2 times the 1st row to the 3rd row : 1 0 10 −2 −30 3 2

Multiply the 2nd row by −1/2 :

1 0 10 1 3/20 3 2

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 175: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add 2 times the 1st row to the 3rd row : 1 0 10 −2 −30 3 2

Multiply the 2nd row by −1/2 : 1 0 1

0 1 3/20 3 2

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 176: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 177: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row:

1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 178: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 10 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 179: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 :

1 0 10 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 180: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 181: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know t

hat the matrix A is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 182: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A

is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 183: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A is invertible.

Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 184: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceed

towards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 185: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceedtowards reduced

row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 186: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3 times the 2nd row to the 3rd row: 1 0 10 1 3/20 0 −5/2

Multiply the 3rd row by −2/5 : 1 0 1

0 1 3/20 0 1

We already know that the matrix A is invertible. Lets proceedtowards reduced row echelon form .

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 187: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 188: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row:

1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 189: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 00 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 190: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row:

1 0 00 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 191: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 192: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1,

in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 193: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case,

we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 194: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need

to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 195: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply

the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 196: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of

elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 197: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations

( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 198: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)

to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 199: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the

identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 200: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Add −3/2 times the 3rd row to the 2nd row: 1 0 10 1 00 0 1

Add −1 times the 3rd row to the 1st row: 1 0 0

0 1 00 0 1

To obtain A−1, in this case, we need to apply the followingsequence of elementary row operations ( same applied to A before)to the identity matrix:

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 201: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 202: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 203: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 204: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 205: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 206: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 207: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 208: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 209: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1) Interchange the 1st row with the 2nd row.

2) Add −3 times the 1st row to the 2nd row.

3) Add 2 times the 1st row to the 3rd row.

4) Multiply the 2nd row by −1/2 :

5) Add −3 times the 2nd row to the 3rd row.

6) Multiply the 3rd row by −2/5

7) Add −3/2 times the 3rd row to the 2nd row.

8) Add −1 times the 3rd row to the 1st row.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 210: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 211: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way

to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 212: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute

the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 213: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1

is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 214: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices

A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 215: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I

into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 216: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one

3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 217: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix

(a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 218: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I )

(called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 219: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called

TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 220: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix),

and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 221: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations

to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 222: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix,

until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 223: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A

is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 224: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and

the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 225: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be

automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 226: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed

into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 227: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 228: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 229: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 230: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 231: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 232: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

A convenient way to compute the inverse matrix A−1 is to writethe matrices A and I into one 3× 6 matrix (a|I ) (called TheAugmented Matrix), and apply elementary row operations to thisnew matrix, until A is transformed into I and the identity matrix Iwill be automatically transformed into A−1

A =

3 −2 01 0 1−2 3 0

I =

1 0 00 1 00 0 1

(A|I ) =

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 233: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Interchange the 1st row with the 2nd row: 1 0 1 0 1 0

3 −2 0 1 0 0−2 3 0 0 0 1

Add −3 times the 1st row to the 2nd row: 1 0 1 0 1 0

0 −2 −3 1 −3 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 234: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Interchange the 1st row with the 2nd row: 1 0 1 0 1 03 −2 0 1 0 0−2 3 0 0 0 1

Add −3 times the 1st row to the 2nd row: 1 0 1 0 1 0

0 −2 −3 1 −3 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 235: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Interchange the 1st row with the 2nd row:

1 0 1 0 1 03 −2 0 1 0 0−2 3 0 0 0 1

Add −3 times the 1st row to the 2nd row: 1 0 1 0 1 0

0 −2 −3 1 −3 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 236: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Interchange the 1st row with the 2nd row: 1 0 1 0 1 0

3 −2 0 1 0 0−2 3 0 0 0 1

Add −3 times the 1st row to the 2nd row: 1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 237: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Interchange the 1st row with the 2nd row: 1 0 1 0 1 0

3 −2 0 1 0 0−2 3 0 0 0 1

Add −3 times the 1st row to the 2nd row:

1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 238: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

3 −2 0 1 0 01 0 1 0 1 0−2 3 0 0 0 1

Interchange the 1st row with the 2nd row: 1 0 1 0 1 0

3 −2 0 1 0 0−2 3 0 0 0 1

Add −3 times the 1st row to the 2nd row: 1 0 1 0 1 0

0 −2 −3 1 −3 0−2 3 0 0 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 239: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Add 2 times the 1st row to the 3rd row. 1 0 1 0 1 0

0 −2 −3 1 −3 00 3 2 0 2 1

Multiply the 2nd row by −1/2 : 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 3 2 0 2 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 240: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Add 2 times the 1st row to the 3rd row. 1 0 1 0 1 00 −2 −3 1 −3 00 3 2 0 2 1

Multiply the 2nd row by −1/2 : 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 3 2 0 2 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 241: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Add 2 times the 1st row to the 3rd row.

1 0 1 0 1 00 −2 −3 1 −3 00 3 2 0 2 1

Multiply the 2nd row by −1/2 : 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 3 2 0 2 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 242: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Add 2 times the 1st row to the 3rd row. 1 0 1 0 1 0

0 −2 −3 1 −3 00 3 2 0 2 1

Multiply the 2nd row by −1/2 : 1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 243: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Add 2 times the 1st row to the 3rd row. 1 0 1 0 1 0

0 −2 −3 1 −3 00 3 2 0 2 1

Multiply the 2nd row by −1/2 :

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 244: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 −2 −3 1 −3 0−2 3 0 0 0 1

Add 2 times the 1st row to the 3rd row. 1 0 1 0 1 0

0 −2 −3 1 −3 00 3 2 0 2 1

Multiply the 2nd row by −1/2 : 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 3 2 0 2 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 245: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Add −3 times the 2nd row to the 3rd row. 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 5/2 −3/5 1 0

Multiply the 3rd row by −2/5 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 246: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Add −3 times the 2nd row to the 3rd row. 1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 5/2 −3/5 1 0

Multiply the 3rd row by −2/5 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 247: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Add −3 times the 2nd row to the 3rd row.

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 5/2 −3/5 1 0

Multiply the 3rd row by −2/5 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 248: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Add −3 times the 2nd row to the 3rd row. 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 5/2 −3/5 1 0

Multiply the 3rd row by −2/5 1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 249: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Add −3 times the 2nd row to the 3rd row. 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 5/2 −3/5 1 0

Multiply the 3rd row by −2/5

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 250: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 3 2 0 2 1

Add −3 times the 2nd row to the 3rd row. 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 5/2 −3/5 1 0

Multiply the 3rd row by −2/5 1 0 1 0 1 0

0 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 251: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Add −3/2 times the 3rd row to the 2nd row. 1 0 1 0 1 0

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

Add −1 times the 3rd row to the 1st row. 1 0 0 3/5 0 2/5

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

= (I |A−1)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 252: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Add −3/2 times the 3rd row to the 2nd row. 1 0 1 0 1 00 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

Add −1 times the 3rd row to the 1st row. 1 0 0 3/5 0 2/5

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

= (I |A−1)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 253: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Add −3/2 times the 3rd row to the 2nd row.

1 0 1 0 1 00 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

Add −1 times the 3rd row to the 1st row. 1 0 0 3/5 0 2/5

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

= (I |A−1)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 254: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Add −3/2 times the 3rd row to the 2nd row. 1 0 1 0 1 0

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

Add −1 times the 3rd row to the 1st row. 1 0 0 3/5 0 2/50 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

= (I |A−1)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 255: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Add −3/2 times the 3rd row to the 2nd row. 1 0 1 0 1 0

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

Add −1 times the 3rd row to the 1st row.

1 0 0 3/5 0 2/50 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

= (I |A−1)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 256: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

1 0 1 0 1 00 1 3/2 −1/2 3/2 00 0 1 −3/5 1 −2/5

Add −3/2 times the 3rd row to the 2nd row. 1 0 1 0 1 0

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

Add −1 times the 3rd row to the 1st row. 1 0 0 3/5 0 2/5

0 1 0 2/5 0 3/50 0 1 −3/5 1 −2/5

= (I |A−1)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 257: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is 3 −2 1

1 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 258: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is 3 −2 1

1 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 259: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1

3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is 3 −2 1

1 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 260: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=

1

5

3 0 22 0 3−3 5 −2

That is 3 −2 1

1 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 261: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is 3 −2 11 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 262: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is

3 −2 11 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 263: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is 3 −2 1

1 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 264: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is 3 −2 1

1 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 265: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus

3 −2 11 0 1−2 3 0

−1 3/5 0 2/52/5 0 3/5−3/5 1 −2/5

=1

5

3 0 22 0 3−3 5 −2

That is 3 −2 1

1 0 1−2 3 0

1

5

3 0 22 0 3−3 5 −2

=

1 0 00 1 00 0 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 266: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 267: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw

( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 268: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5)

that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 269: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way

to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 270: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to compute

the inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 271: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix

A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 272: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1

is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 273: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices

A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 274: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I

into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 275: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix

(A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 276: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I )

and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 277: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary

row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 278: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations

to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 279: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 280: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 281: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 282: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any

elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 283: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation

can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 284: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated

as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 285: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by

a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 286: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain

( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 287: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

We already saw ( Theorem 3.5) that a convenient way to computethe inverse matrix A−1 is to merge the matrices A and I into onematrix (A|I ) and apply elementary row operations to this newmatrix.

Question: Why does it work?

Proposition

Any elementary row operation can be simulated as leftmultiplication by a certain ( elementary ) matrix

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 288: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 289: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 290: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 291: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix

EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 292: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA

can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 293: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained

from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 294: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A,

multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 295: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying

the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 296: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row

byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 297: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr .

(The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 298: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE

can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 299: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained

from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 300: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A,

multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 301: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ith

column by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 302: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn

by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 303: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

1)

E =

1 0. . .

1r

1

0. . .

1

row i

The matrix EA can be obtained from A, multiplying the ith row byr . (The matrix AE can be obtained from A, multiplying the ithcolumn by r)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 304: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 305: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 306: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 307: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix

EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 308: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA

can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 309: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained

from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 310: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A,

adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 311: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times

the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 312: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith row

to the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 313: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row.

(The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 314: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix

AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 315: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE

can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 316: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained

from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 317: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A,

adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 318: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes

the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 319: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column

to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 320: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the

ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 321: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

2)

E =

1 0...

. . .... · · · 1...

.... . .

0 · · · r · · · 1...

......

. . .

0 · · · 0 · · · 0 · · · 1

row i

row j

The matrix EA can be obtained from A, adding r times the ith rowto the jth row. (The matrix AE can be obtained from A, adding rtimes the jth column to the ith column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 322: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 323: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 324: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 325: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix

EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 326: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA

can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 327: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained

from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 328: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A,

interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 329: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging

the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 330: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith row

with the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 331: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row.

(The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 332: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix

AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 333: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE

can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 334: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained

from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 335: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,

interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 336: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column

with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 337: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Elementary matrices

3)

E =

1 0. . .

0 · · · 1...

. . ....

1 · · · 0. . .

0 1

row i

row j

The matrix EA can be obtained from A, interchanging the ith rowwith the jth row. (The matrix AE can be obtained from A,interchanging the ith column with the jth column)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 338: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 339: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus,

assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 340: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that

a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 341: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A

can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 342: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted

to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 343: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix

by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 344: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of

elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 345: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations.

ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 346: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A

where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 347: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,

E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 348: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2,

· · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 349: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,

Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 350: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,

Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 351: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek

are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 352: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices s

imulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 353: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 354: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying

the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 355: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence

of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 356: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations

to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 357: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,

we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 358: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain

the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 359: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 360: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I =

EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 361: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus,

BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 362: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I .

Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 363: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover,

B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 364: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible

since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 365: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matrices

are invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 366: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible.

It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 367: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows

that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 368: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I ,

then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 369: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then

A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 370: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1,

soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 371: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Thus, assume that a square matrix A can be converted to theidentity matrix by a sequence of elementary row operations. ThenEkEk−1 · · ·E2E1A where E1,E2, · · · ,Ek−1,Ek are elementarymatrices simulating those operations.

Applying the same sequence of operations to the identity matrix,we obtain the matrix

B = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1

Thus, BA = I . Moreover, B is invertible since elementary matricesare invertible. It follows that B−1(BA) = B−1I , then A = B−1, soB = A−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 372: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 373: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 374: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given

a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 375: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A

the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 376: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A,

denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 377: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT ,

is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 378: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix

whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 379: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows

are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 380: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A

(and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 381: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns

are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 382: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A )

That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 383: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is,

if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 384: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij),

then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 385: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij)

where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 386: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji .

Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 387: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,

for instance (1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 388: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance

(1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 389: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 390: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

145

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 391: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=

(1 4 5

) 1 2

2 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 392: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 393: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 394: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Transpose of a matrix

Given a matrix A the transpose of A, denoted by AT , is thematrix whose rows are columns of A (and whose columns are rowsof A ) That is, if A = (aij), then AT = (bij) where bij = aji . Thus,for instance (

1 2 34 5 6

)T

=

1 42 53 6

1

45

T

=(

1 4 5)

1 22 05

T

=

(1 22 0

)Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 395: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 396: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 397: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 398: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 399: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 400: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 401: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 402: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Properties of transposes

(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

(A1A2 · · ·Ak)T = ATk A

Tk−1 · · ·AT

2 AT1

(A−1)T = (AT )−1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 403: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 404: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 405: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 406: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix

A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 407: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A

is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 408: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be

symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 409: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric

if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 410: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 411: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example,

any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 412: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix

is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 413: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 414: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 415: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any

square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 416: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A

the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 417: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and

C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 418: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Matrices, matrix algebra

Definition

A square matrix A is said to be symmetric if A = AT

For example, any diagonal matrix is symmetric.

Proposition

For any square matrix A the matrices B = AAT and C = A + AT ,are symmetric.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 419: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 420: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition

of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 421: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant

is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 422: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated

asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 423: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no

simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 424: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 425: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic):

We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 426: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate

properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 427: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that

thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 428: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant

should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 429: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 430: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive):

The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 431: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of

an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 432: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix

isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 433: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined

in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 434: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of

determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 435: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of

certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 436: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 437: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original):

An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 438: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit

(but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 439: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)

formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 440: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula

is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 441: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

The general definition of the determinant is quite complicated asthere is no simple explicit formula

Approach 1 (Axiomatic): We formulate properties that thedeterminant should have.

Approach 2 (Inductive): The determinant of an n × n matrix isdefined in terms of determinants of certain (n − 1)× (n − 1)matrices.

Approach 3 (Original): An explicit (but very complicated)formula is provided.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 442: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 443: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 444: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R):

The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 445: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of

n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 446: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices

with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 447: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 448: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 449: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists

a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 450: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R

(called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 451: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant)

with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 452: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following

properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 453: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 454: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of

a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 455: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix

is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 456: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by

a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 457: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r ,

the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 458: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinant

is also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 459: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 460: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add

a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 461: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of

a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 462: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix

multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 463: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by

a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 464: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar

to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 465: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow,

the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 466: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains

the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 467: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 468: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange

two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 469: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows

of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 470: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix,

the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 471: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinant

changes its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 472: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 473: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4:

det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 474: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 1 (Axiomatic)

Mn×n(R): The set of n × n matrices with real entries.

AXIOMS

There exists a unique function det :Mn×n(R) −→ R (called thedeterminant) with the following properties

A1 If a row of a matrix is multiplied by a scalar r , the determinantis also multiplied by r

A2 If we add a row of a matrix multiplied by a scalar to anotherrow, the determinant remains the same

A3 If we interchange two rows of a matrix, the determinantchanges its sign;

A4: det(I ) = 1

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 475: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 476: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 477: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A

is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 478: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and

B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 479: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A

applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 480: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary

row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 481: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations.

Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 482: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0

if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 483: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only if

det(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 484: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 485: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 486: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0

whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 487: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever

the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 488: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B

has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 489: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 490: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 491: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0

if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 492: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if

the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 493: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix

is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 494: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.6

Suppose A is a square matrix and B is obtained from A applyingelementary row operations. Then det(A) = 0 if and only ifdet(B) = 0.

Theorem 3.7

det(B) = 0 whenever the matrix B has a zero row

Theorem 3.8

det(A) = 0 if and only if the matrix is not invertible.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 495: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 496: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof:

Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 497: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be

the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 498: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row

echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 499: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A.

IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 500: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible

then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 501: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ;

otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 502: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B

has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 503: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 504: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument

proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 505: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties

(A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 506: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4)

areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 507: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough

to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 508: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate

any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 509: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 510: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 511: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A

has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 512: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two

proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 513: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then

det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 514: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Idea of the proof: Let B be the reduced row echelon form of A. IfA is invertible then B = I ; otherwise B has a zero row .

Remark. The same argument proves that properties (A1)(A4) areenough to evaluate any determinant.

Theorem 3.9

If a matrix A has two proportional rows then det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 515: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Row echelon form of a square matrix

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

det(A) 6= 0 det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 516: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Row echelon form of a square matrix

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

det(A) 6= 0 det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 517: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Row echelon form of a square matrix

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

det(A) 6= 0 det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 518: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Row echelon form of a square matrix

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

det(A) 6= 0 det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 519: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Row echelon form of a square matrix

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

det(A) 6= 0 det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 520: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Row echelon form of a square matrix

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

det(A) 6= 0

det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 521: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Row echelon form of a square matrix

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� ∗ ∗ ∗ ∗� ∗ ∗ ∗

� ∗ ∗� ∗

� ∗ ∗ ∗ ∗ ∗ ∗� ∗ ∗ ∗ ∗ ∗

� � ∗ ∗ ∗� ∗ ∗

� �

det(A) 6= 0 det(A) = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 522: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 523: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 524: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 525: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 526: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier

we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 527: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed

the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 528: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A

into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 529: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrix

using elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 530: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary

row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 531: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 532: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included

two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 533: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications,

by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 534: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and

by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 535: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, and

one row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 536: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 537: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 538: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence

det(A) = −5det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 539: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5

det(I ) = − 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 540: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) =

− 5

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 541: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

As an example, we have the matrix

A =

3 −2 01 0 1−2 3 0

Earlier we have transformed the matrix A into the identity matrixusing elementary row operations.

These included two row multiplications, by −0.5 and by −0.4, andone row exchange.

It follows that

det(I ) = −(−0.5)(−0.4)det(A) = (−0.2)det(A)

Hence det(A) = −5det(I ) = − 5Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 542: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 543: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 544: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system

{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 545: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 546: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 547: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where

we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 548: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice

that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 549: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount

ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 550: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc

playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 551: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole

in the solution is a combination of the elements of the matrix(a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 552: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution

is a combination of the elements of the matrix(a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 553: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination

of the elements of the matrix(a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 554: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements

of the matrix(a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 555: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix

(a bc d

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 556: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Approach 2 (Inductive)

Let’s start by considering a 2× 2 system{ax + by = ecx + dy = f

whose solution is given by

x =ed − bf

ad − bcy =

af − ce

ad − bc

where we can notice that the amount ad − bc playing an importantrole in the solution is a combination of the elements of the matrix(

a bc d

)Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 557: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 558: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way,

if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 559: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider

a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 560: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3

systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 561: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 system

a11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 562: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 563: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find,

the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 564: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions

for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 565: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables

have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 566: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator

thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 567: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 568: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 569: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which

also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 570: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays

an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 571: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role

in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 572: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set.

Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 573: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus,

thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 574: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be

a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 575: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point

of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 576: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept

of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 577: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

In a similar way, if we consider a 3× 3 systema11x + a12y + a13 = b1a21x + a22y + a23 = b2a31x + a32y + a33 = b3

we find, the solutions for the variables have in the denominator thequantity

a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+

a13(a21a32 − a22a31)

which also plays an important role in the solution set. Thus, thiscould be a practical starting point of the concept of determinant.

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 578: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 579: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing

the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 580: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant,

let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 581: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start

with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 582: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple

of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 583: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 584: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 585: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition

Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 586: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A

a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 587: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix

of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 588: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A

is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 589: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrix

obtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 590: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying

k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 591: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and

k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 592: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows

of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 593: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and

deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 594: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and

rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 595: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 596: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 597: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

(2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 598: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Before introducing the concept of determinant, let’s start with acouple of definitions

Submatrices

Definition Given a matrix A a k × k submatrix of A is a matrixobtained by specifying k columns and k rows of A and deleting theother columns and rows.

1 2 3 410 20 30 403 5 7 9

⇒ ∗ 2 ∗ 4∗ ∗ ∗ ∗∗ 5 ∗ 9

⇒ (2 45 9

)

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 599: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 600: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 601: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given

an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 602: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n

matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 603: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij),

let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 604: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij ,

denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 605: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote

the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 606: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant

ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 607: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe

(n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 608: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix

obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 609: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by

deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 610: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand

the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 611: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column

of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 612: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number

obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 613: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained

in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 614: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way

iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 615: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor

of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 616: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 617: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 618: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A

there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 619: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A

denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 620: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and

definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 621: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 622: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1

A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 623: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11

|A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 624: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 625: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2

A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 626: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)

|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 627: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ =

a11a22 − a12a21

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 628: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Minors

Given an n× n matrix A = (aij), let Mij , denote the determinant ofthe (n − 1)× (n − 1) submatrix obtained by deleting the ith rowand the jth column of A. That number obtained in this way iscalled the ij-minor of A

Definition

Associated to every n × n matrix A there is a real number calledthe determinant of A denoted by |A| or det(A) and definedinductivly as follows

n = 1 A = a11 |A| = a11

n = 2 A =

(a11 a12a21 a22

)|A| =

∣∣∣∣a11 a12a21 a22

∣∣∣∣ = a11a22 − a12a21Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 629: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 630: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3

A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 631: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 632: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 633: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 634: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣−

a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 635: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 636: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+

a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 637: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 638: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

n = 3 A =

a11 a12 a13a21 a22 a23a31 a32 a33

|A| =

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣ =

a11

∣∣∣∣a22 a23a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23a31 a33

∣∣∣∣+ a13

∣∣∣∣a11 a12a31 a32

∣∣∣∣ = a11a22a33+

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 639: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 640: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 +

a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 641: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 −

a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 642: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 −

a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 643: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 −

a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 644: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 645: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+

a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 646: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−

a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 647: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 −

a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 648: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣

Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 649: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now,

for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 650: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4,

if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 651: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j

be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 652: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors

to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 653: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow,

then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 654: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 655: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 =

a11a22a33 + a12a23a31+a13a21a32 − a31a22a13−a32a23a11 − a33a21a12

=

∣∣∣∣∣∣∣∣a11 a12 a13 a11 a12a21 a22 a23 a21 a22a31 a32 a33 a31 a32

− − − + + +

∣∣∣∣∣∣∣∣Now, for n ≥ 4, if let M1j be the corresponding minors to the firstrow, then we have

|A| =n∑

j=1

(−1)1+ja1jM1j

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 656: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 657: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 658: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any

1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 659: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n

we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 660: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 661: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 662: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 663: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 664: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.10

For any 1 ≤ k ,m ≤ n we have that

det(A) =n∑

j=1

(−1)k+jakjMij

(expansion by the k − th row )

det(A) =n∑

i=1

(−1)i+maimMij

(expansion by the m − th row )

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 665: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 666: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 667: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A,

if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 668: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 669: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 670: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 671: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 672: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 673: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.11

Given an n × n matrix A, if B is an n × n matrix obtained from Aby

1) Additive law for rows

Suppose that matrices X ,Y ,Z are identical except for the ith row.The the ith row of Z is the sum of the ith rows of X and Y then

det(Z ) = det(X ) + det(Y )

a1 + a′1 a2 + a′2 a3 + a′3b1 b2 b3c1 c2 c3

=

a1 a2 a3b1 b2 b3c1 c2 c3

+

a′1 a′2 a′3b1 b2 b3c1 c2 c3

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 674: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 675: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then

|B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 676: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|

∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 677: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 678: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 679: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 680: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣

2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 681: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then

|B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 682: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then

|B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 683: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|

4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 684: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then

|B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 685: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

2) Adding a multiple of the ith row to the jth row then |B| = |A|∣∣∣∣∣∣a1 + rb1 a2 + rb2 a3 + rb3

b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣rb1 rb2 rb3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣a1 a2 a3b1 b2 b3c1 c2 c3

∣∣∣∣∣∣2) Interchanging two rows, then |B| = −|A|3) Interchanging two rows, then |B| = −|A|4) Multiplying a row by a nonzero scalar α then |B| = α|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 686: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 687: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 688: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 689: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence,

for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 690: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property

of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 691: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants

involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 692: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows

of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 693: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix

there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 694: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is

an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 695: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property

involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 696: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columns

of a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 697: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 698: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 699: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then

|A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 700: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 701: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then

|A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 702: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

Theorem 3.12

1) |AT | = |A|

( As a consequence, for every property of determinants involvingrows of a matrix there is an analogous property involving columnsof a matrix. )

2) |AB| = |A||B|

3) If A has a row (column) of zeros, then |A| = 0

4) If A has a two identical rows (columns), then |A| = 0

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 703: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 704: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then

|A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 705: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 706: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then

|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 707: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 708: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then

|A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 709: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 710: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then

|rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3

Page 711: Linear Algebra. Session 3 - Texas A&M Universityroquesol/Math_304... · Linear Algebra. Session 3 Dr. Marco A Roque Sol 01/30/2018 Dr. Marco A Roque Sol Linear Algebra. Session 3.

Matrices and Matrix AlgebraDeterminants I

Determinants I

5) If two rows (columns) of A are proportional, then |A| = 0

6) If A is an upper (lower) triangular matrix, then|A| = a11a22a33 · · · ann

7) If A is an invertible matrix, then |A−1| = |A|−1

8) If A is an n × n matrix and r ∈ R, then |rA| = rn|A|

Dr. Marco A Roque Sol Linear Algebra. Session 3