Top Banner
Muscle, September 2004 1 Light Scattering Light Scattering predictions. predictions. G. Grehan L. Méès, S. Saengkaew, S. Meunier- Guttin-Cluzel
21

Light Scattering predictions.

Feb 01, 2016

Download

Documents

caia

Light Scattering predictions. G. Grehan L. Méès, S. Saengkaew, S. Meunier-Guttin-Cluzel. Rainbow: Far field scattering Fluorescence : Internal field. Theories. Airy theory (1838): A scalar solution. Could be applied only close of rainbow - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Light Scattering predictions.

Muscle, September 2004 1

Light Scattering predictions.Light Scattering predictions.

G. Grehan

L. Méès, S. Saengkaew, S. Meunier-Guttin-Cluzel

Page 2: Light Scattering predictions.

Muscle, September 2004 2

Rainbow: Far field scatteringFluorescence : Internal field

Page 3: Light Scattering predictions.

Muscle, September 2004 3

TheoriesTheories

• Airy theory (1838): A scalar solution. Could be applied only close of rainbow• Lorenz-Mie theory (1890-1908): rigorous solution of Maxwell equations. All the scattering effects are merged. Extension to multilayered spheres.• Debye theory (1909): post processing of Lorenz-Mie. The different scattering effects could be separated.• Nussenzveig theory (1969) : is “analytical integration” of Debye series, leading to a generalization of Airy. It is clean to have a larger domain of application than Airy

Page 4: Light Scattering predictions.

Muscle, September 2004 4

One particle A cloud (section)

Rainbow

Fluorescence

Airy, Lorenz-Mie, Debye, Nussenzveig

Global

Lorenz-Mie, DebyeInternal field

Multiple scattering

Page 5: Light Scattering predictions.

Muscle, September 2004 5

List of programList of programInternal field and homogeneous sphere: INTGLMT

Internal fields+near field : NEARINT

1or 2 beam(s) impinging on a sphere, internal field : 3D2F (3 dimensions)

2D2F (2dimensions)

DEBYE internal field : INTDEBYE

Far field and homogeneous sphere: DIFFGLMT

Far field and multilayered sphere : MCDIFF

DEBYE Far field : DIFFDEBYE

Far field for pulses : PULSEDIFF

Page 6: Light Scattering predictions.

Muscle, September 2004 6

Rainbow far the rainbow angle Rainbow far the rainbow angle according with Nussenzveigaccording with Nussenzveig

Scattering angle

Geometrical optics angle

Impactparameter

Geometricalrainbow rayimpact parameter

III

IIIIV

V

Page 7: Light Scattering predictions.

Muscle, September 2004 7

Comparison of Lorenz-Mie, Debye, Nussenzveig and Comparison of Lorenz-Mie, Debye, Nussenzveig and Airy predictions for one particleAiry predictions for one particle

Comparison of Lorenz-Mie, Debye, Nussenzveig and Comparison of Lorenz-Mie, Debye, Nussenzveig and Airy predictions for one particleAiry predictions for one particle

Fig 4. Scattering diagram around first rainbow simulated by Lorenz-Mie, Debye, Airy and Nussenzveig theories (d=95.5 µm, m=1.33-0.0i, =500)

Scattering angle

136 138 140 142 144 146 148 150

Nor

med

inte

nsi

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Mie

Fig 4. Scattering diagram around first rainbow simulated by Lorenz-Mie, Debye, Airy and Nussenzveig theories (d=95.5 µm, m=1.33-0.0i, =500)

Scattering angle

136 138 140 142 144 146 148 150

Nor

med

inte

nsi

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Mie Debye, p = 2

Fig 4. Scattering diagram around first rainbow simulated by Lorenz-Mie, Debye, Airy and Nussenzveig theories (d=95.5 µm, m=1.33-0.0i, =500)

Scattering angle

136 138 140 142 144 146 148 150

Nor

med

inte

nsi

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Mie Debye, p = 2NussenzveigAiry

Page 8: Light Scattering predictions.

Muscle, September 2004 8

Rainbow far the rainbow angle Rainbow far the rainbow angle according with Nussenzveigaccording with Nussenzveig

Scattering angle

130 135 140 145 150 155 160

Nor

med

Int

ensi

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nussenzveig, Eqs (19) and (20)Debye, p = 2

Page 9: Light Scattering predictions.

Muscle, September 2004 9

y = -0.2523x + 1.2807

y = -0.1642x + 1.1722

y = -0.0946x + 1.0982

y = -0.0593x + 1.0639

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-2 0 2 4 6 8 10

Z

Inte

nsit

y R

atio

Deb

ye/N

usse

nzve

ig) 10 micron

20 micron

50 micron

100 micron

Comparision scattering diagrame between Debye & Nussenzveig without and with coef160°For water (m=1.333)

Scattering Angle

125 130 135 140 145 150 155 160 165

No

rmal

ized

sca

tter

ing

Inte

nsi

ty

0.0

.2

.4

.6

.8

1.0

1.2

Debye 20 micronOriginal Nus20 micron

Comparision scattering diagrame between Debye & Nussenzveig without and with coef160°For water (m=1.333)

Scattering Angle

125 130 135 140 145 150 155 160 165

No

rmal

ized

sca

tter

ing

Inte

nsi

ty

0.0

.2

.4

.6

.8

1.0

1.2

Debye 20 micronNus160° 20 micronOriginal Nus20 micron

Comparision scattering diagrame between Debye & Nussenzveig without and with coef160°For water (m=1.333)

Scattering Angle

125 130 135 140 145 150 155 160 165

No

rmal

ized

sca

tter

ing

Inte

nsi

ty

0.0

.2

.4

.6

.8

1.0

1.2

Debye 10 micronDebye 20 micronDebye 50 micronCol 1 vs Debye_100 Nus160° 10 micronNus160° 20 micronNus160° 50 micronNus160° 100 micronOriginal_Nus 10 micronOriginal Nus20 micronOriginal_Nus50 micronOriginal_Nus100 micron

D<=15 Y= -0.2523Z+1.2807Y= -0.1642Z+1.1722Y= -0.0946Z+1.0982Y= -0.0593Z+1.0639

15>D<=35 35>D<=75 75>D<=150

mhRh

Z ,3/23/1

211

Z is the argument of Airy function

Page 10: Light Scattering predictions.

Muscle, September 2004 10

Fig 6 Comparison scattering diagram between Lorenz-Mie, Debye (p=0+2) and Nussenzveig (p=0+2)

Scattering angle135 140 145 150 155 160

Nor

med

sca

tter

ed in

ten

sity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nussenzveig, p = 0 and 2Debye p = 0 and 2 Lorenz-Mie

Comparison of Lorenz-Mie, Debye and Nussenzveig Comparison of Lorenz-Mie, Debye and Nussenzveig predictions for one particle predictions for one particle

Comparison of Lorenz-Mie, Debye and Nussenzveig Comparison of Lorenz-Mie, Debye and Nussenzveig predictions for one particle predictions for one particle

Page 11: Light Scattering predictions.

Muscle, September 2004 11

Fig 7. Global rainbow distribution simulated by Lorenze-Mie, Nussenzveig Theory

(mean diameter = 50 micron, rms = 200)

Angle125 130 135 140 145 150 155 160 165

Nor

mal

ized

In

ten

sity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lorenz-Mie Nussenzveig Original

Fig 7. Global rainbow distribution simulated by Lorenz-Mie, Nussenzveig Theory

(mean diameter = 50 micron, rms = 200)

Angle125 130 135 140 145 150 155 160 165

Nor

mal

ized

Int

ensi

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lorenz-Mie Nussenzveig by add coefficientNussenzveig Original

Comparison of Lorenz-Mie, Debye and Nussenzveig Comparison of Lorenz-Mie, Debye and Nussenzveig predictions for cloud of particle predictions for cloud of particle

Comparison of Lorenz-Mie, Debye and Nussenzveig Comparison of Lorenz-Mie, Debye and Nussenzveig predictions for cloud of particle predictions for cloud of particle

Page 12: Light Scattering predictions.

Muscle, September 2004 12

Scattering angle

120 125 130 135 140 145 150

Nor

med

inte

nsit

y

0.0

0.2

0.4

0.6

0.8

1.0nk=0.0005 nk=0.001 nk=0.0025 nk=0.005

Effect of an imagining part of the refractive index

maximum Refractive index

nk=0.0005 139.60 1.330

nk=0.001 139.63 1.3299

nk=0.025 139.58 1.3298

nk=0.005 /////// ///////

Page 13: Light Scattering predictions.

Muscle, September 2004 13

Refractive index at center is nc

Refractive index at surface is ns

The law is :

1

1)(

b

bx

csce

ennnn

Page 14: Light Scattering predictions.

Muscle, September 2004 14

Behaviour of the radial raf ractive index

Normad radius

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Rea

l par

t of

ref

ract

ive

index

1.325

1.330

1.335

1.340

1.345

1.350

1.355

1.360

1.365

b = -2 b = 2 b = -6 b = 6

Global rainbow f or a particle with gradient. The ref racive index at centeris equal to 1.33 and at surf ace to 1.36.

Scattering angle

120 130 140 150 160N

orm

ed int

ensi

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b = -2 b = 2 b = -6 b = 6

Page 15: Light Scattering predictions.

Muscle, September 2004 15

b=2 1.3259

b=-2 1.3459

b=6 1.3198

b=-6 1.3578

Page 16: Light Scattering predictions.

Muscle, September 2004 16

2D model

Two steps:•Excitation by the laser•Collection in a given solid angle of the fluorescence

Page 17: Light Scattering predictions.

Muscle, September 2004 17

2D model : Excitation map

Internal intensity (in log-scale) created by a beam with a beam waist diameter equal to 20 µm, and a wavelength equal to 0.6 µm. The particle is a water droplet with a diameter equal to 100 µm and a complex refractive index equal to 1.33 – 0.0 i. The parameter is the impact location of the beam: (a) = 50 µm (on the edge of the droplet), (b) = 30 µm and (c) = 0 µm (on the symmetry axis of the droplet).

Page 18: Light Scattering predictions.

Muscle, September 2004 18

2D model : Detection map

Page 19: Light Scattering predictions.

Muscle, September 2004 19

Map of fluorescence emission. The particle is a water droplet of 100 µm on which impinges a laser beam with a diameter equal to 20 µm, and for an impact location equal to 50 µm (Fig. 2a). The parameter is the location of the collecting lens: (a) 0°, (b) 90° and (c) 180°. 

2D model : Answer

Page 20: Light Scattering predictions.

Muscle, September 2004 20

2D model

Diagram of fluorescence for a water droplet of 100 µm. The parameter is the impact location which runs from 60 µm to –60 µm by steps of 10 µm. The left figure is in linear scale while rigth figure is in logarithm scale.

 

Logarithm scale

0 5 10 15 20

0

5

10

15

20

05101520

0

5

10

15

20

0

12

3

4

5

6

60 µm50 µm40 µm30 µm20 µm10 µm0 µm-10 µm-20 µm-30 µm-40 µm-50 µm-60 µm

Logarithm scale

0.01 0.1 1 10

0.01

0.1

1

10

0.010.1110

0.01

0.1

1

10

0

12

3

4

5

6

60 µm50 µm40 µm30 µm20 µm10 µm0 µm-10 µm-20 µm-30 µm-40 µm-50 µm-60 µm

Page 21: Light Scattering predictions.

Muscle, September 2004 21

3D model : Excitation map