Top Banner
. . . . . . Section 2.4 The Product and Quotient Rules V63.0121.006/016, Calculus I February 16, 2010 Announcements I Quiz 2 is February 26, covering §§1.5–2.3 I Midterm I is March 4, covering §§1.1–2.5 I Office Hours W 1:30–2:30, R 9–10 I do get-to-know-you survey by Thursday
127

Lesson 9: The Product and Quotient Rules

Dec 18, 2014

Download

Education

The product rule or Leibniz rule is the rule by which we can differentiate products of functions!
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 9: The Product and Quotient Rules

. . . . . .

Section2.4TheProductandQuotientRules

V63.0121.006/016, CalculusI

February16, 2010

Announcements

I Quiz2isFebruary26, covering§§1.5–2.3I MidtermI isMarch4, covering§§1.1–2.5I OfficeHoursW 1:30–2:30, R 9–10I doget-to-know-yousurveybyThursday

Page 2: Lesson 9: The Product and Quotient Rules

. . . . . .

Outline

Grader’sCorner

DerivativeofaProductDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 3: Lesson 9: The Product and Quotient Rules

. . . . . .

Problem1.5.20

Usethetheoremsoncontinuitytoshow h(x) =sin xx+ 1

is

continuous.

SolutionByTheorem 6, f(x) = sin x and g(x) = x+ 1 arecontinuousbecause f(x) isatrigonometricfunctionand g(x) isapolynomial.

ByTheorem 4, part 5, h(x) =f(x)g(x)

iscontinuouswherever

g(x) ̸= 0.

NoteThefunction h is notarationalfunction. A rationalfunctionisthequotientoftwo polynomials.

Page 4: Lesson 9: The Product and Quotient Rules

. . . . . .

Problem1.5.20

Usethetheoremsoncontinuitytoshow h(x) =sin xx+ 1

is

continuous.

SolutionByTheorem 6, f(x) = sin x and g(x) = x+ 1 arecontinuousbecause f(x) isatrigonometricfunctionand g(x) isapolynomial.

ByTheorem 4, part 5, h(x) =f(x)g(x)

iscontinuouswherever

g(x) ̸= 0.

NoteThefunction h is notarationalfunction. A rationalfunctionisthequotientoftwo polynomials.

Page 5: Lesson 9: The Product and Quotient Rules

. . . . . .

Problem1.5.20

Usethetheoremsoncontinuitytoshow h(x) =sin xx+ 1

is

continuous.

SolutionByTheorem 6, f(x) = sin x and g(x) = x+ 1 arecontinuousbecause f(x) isatrigonometricfunctionand g(x) isapolynomial.

ByTheorem 4, part 5, h(x) =f(x)g(x)

iscontinuouswherever

g(x) ̸= 0.

NoteThefunction h is notarationalfunction. A rationalfunctionisthequotientoftwo polynomials.

Page 6: Lesson 9: The Product and Quotient Rules

. . . . . .

Problem1.6.20

limx→∞

x3 − 2x+ 35− 2x2

= limx→∞

x3

x2· 1− 2/x2 + 3/x3

5/x2 − 2

= limx→∞

x · limx→∞

1− 2/x2 + 3/x3

5/x2 − 2

Sincethefirstfactortendsto ∞ andthesecondfactortendsto−12, theproducttendsto −∞.

Notes

I Makesurethe“lim”isthereineachstageI Donotdoarithmeticwith ∞ onpaper

Page 7: Lesson 9: The Product and Quotient Rules

. . . . . .

Explanations

I Explanationsaregettingmuchbetter.I Please(continueto)formatyourpaperspresentably.

Page 8: Lesson 9: The Product and Quotient Rules

. . . . . .

Outline

Grader’sCorner

DerivativeofaProductDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 9: Lesson 9: The Product and Quotient Rules

. . . . . .

Recollectionandextension

Wehaveshownthatif u and v arefunctions, that

(u+ v)′ = u′ + v′

(u− v)′ = u′ − v′

Whatabout uv?

Page 10: Lesson 9: The Product and Quotient Rules

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

..(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 11: Lesson 9: The Product and Quotient Rules

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.

I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 12: Lesson 9: The Product and Quotient Rules

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.

I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 13: Lesson 9: The Product and Quotient Rules

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 14: Lesson 9: The Product and Quotient Rules

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 15: Lesson 9: The Product and Quotient Rules

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 16: Lesson 9: The Product and Quotient Rules

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.

I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 17: Lesson 9: The Product and Quotient Rules

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 18: Lesson 9: The Product and Quotient Rules

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 19: Lesson 9: The Product and Quotient Rules

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

...∆I = 5× $0.25 = $1.25?

.∆I = 5× $0.25 = $1.25?

Page 20: Lesson 9: The Product and Quotient Rules

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?

.∆I = 5× $0.25 = $1.25?

Page 21: Lesson 9: The Product and Quotient Rules

. . . . . .

Moneymoneymoneymoney

Theanswerdependsonhowmuchyouwork already andyourcurrent wage. Supposeyouwork h hoursandarepaid w. Yougetatimeincreaseof ∆h andawageincreaseof ∆w. Incomeiswagestimeshours, so

∆I = (w+∆w)(h+∆h)−whFOIL= w · h+w ·∆h+∆w · h+∆w ·∆h−wh

= w ·∆h+∆w · h+∆w ·∆h

Page 22: Lesson 9: The Product and Quotient Rules

. . . . . .

A geometricargument

Drawabox:

..w .∆w

.h

.∆h

.wh

.w∆h

.∆wh

.∆w∆h

∆I = w∆h+ h∆w+∆w∆h

Page 23: Lesson 9: The Product and Quotient Rules

. . . . . .

A geometricargument

Drawabox:

..w .∆w

.h

.∆h

.wh

.w∆h

.∆wh

.∆w∆h

∆I = w∆h+ h∆w+∆w∆h

Page 24: Lesson 9: The Product and Quotient Rules

. . . . . .

Suposewagesandhoursarechangingcontinuouslyovertime.Overatimeinterval ∆t, whatistheaveragerateofchangeofincome?

∆I∆t

=w∆h+ h∆w+∆w∆h

∆t

= w∆h∆t

+ h∆w∆t

+∆w∆h∆t

Whatistheinstantaneousrateofchangeofincome?

dIdt

= lim∆t→0

∆I∆t

= wdhdt

+ hdwdt

+ 0

Page 25: Lesson 9: The Product and Quotient Rules

. . . . . .

Suposewagesandhoursarechangingcontinuouslyovertime.Overatimeinterval ∆t, whatistheaveragerateofchangeofincome?

∆I∆t

=w∆h+ h∆w+∆w∆h

∆t

= w∆h∆t

+ h∆w∆t

+∆w∆h∆t

Whatistheinstantaneousrateofchangeofincome?

dIdt

= lim∆t→0

∆I∆t

= wdhdt

+ hdwdt

+ 0

Page 26: Lesson 9: The Product and Quotient Rules

. . . . . .

Eurekamen!

Wehavediscovered

Theorem(TheProductRule)Let u and v bedifferentiableat x. Then

(uv)′(x) = u(x)v′(x) + u′(x)v(x)

inLeibniznotation

ddx

(uv) =dudx

· v+ udvdx

Page 27: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleApplytheproductruleto u = x and v = x2.

Solution

(uv)′(x) = u(x)v′(x) + u′(x)v(x) = x · (2x) + 1 · x2 = 3x2

Thisiswhatwegetthe“normal”way.

Page 28: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleApplytheproductruleto u = x and v = x2.

Solution

(uv)′(x) = u(x)v′(x) + u′(x)v(x) = x · (2x) + 1 · x2 = 3x2

Thisiswhatwegetthe“normal”way.

Page 29: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]

Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x+ 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x+ 3

]

= −5x4 + 12x2 − 2x− 3

Page 30: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x+ 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x+ 3

]

= −5x4 + 12x2 − 2x− 3

Page 31: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x+ 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x+ 3

]= −5x4 + 12x2 − 2x− 3

Page 32: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))(x3 − x+ 1) + (3− x2)

(ddx

(x3 − x+ 1))

= (−2x)(x3 − x+ 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 33: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))(x3 − x+ 1) + (3− x2)

(ddx

(x3 − x+ 1))

= (−2x)(x3 − x+ 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 34: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))(x3 − x+ 1) + (3− x2)

(ddx

(x3 − x+ 1))

= (−2x)(x3 − x+ 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 35: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))(x3 − x+ 1) + (3− x2)

(ddx

(x3 − x+ 1))

= (−2x)(x3 − x+ 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 36: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))(x3 − x+ 1) + (3− x2)

(ddx

(x3 − x+ 1))

= (−2x)(x3 − x+ 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 37: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))(x3 − x+ 1) + (3− x2)

(ddx

(x3 − x+ 1))

= (−2x)(x3 − x+ 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 38: Lesson 9: The Product and Quotient Rules

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x+ 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))(x3 − x+ 1) + (3− x2)

(ddx

(x3 − x+ 1))

= (−2x)(x3 − x+ 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 39: Lesson 9: The Product and Quotient Rules

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x

=

(ddx

x)sin x+ x

(ddx

sin x)

= 1 · sin x+ x · cos x= sin x+ x cos x

Page 40: Lesson 9: The Product and Quotient Rules

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =(

ddx

x)sin x+ x

(ddx

sin x)

= 1 · sin x+ x · cos x= sin x+ x cos x

Page 41: Lesson 9: The Product and Quotient Rules

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =(

ddx

x)sin x+ x

(ddx

sin x)

= 1 · sin x+ x · cos x

= sin x+ x cos x

Page 42: Lesson 9: The Product and Quotient Rules

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =(

ddx

x)sin x+ x

(ddx

sin x)

= 1 · sin x+ x · cos x= sin x+ x cos x

Page 43: Lesson 9: The Product and Quotient Rules

. . . . . .

Mnemonic

Let u = “hi” and v = “ho”. Then

(uv)′ = vu′ + uv′ = “hodeehiplushideeho”

Page 44: Lesson 9: The Product and Quotient Rules

. . . . . .

Musicalinterlude

I jazzbandleaderandsinger

I hitsong“MinnietheMoocher”featuring“hideho”chorus

I playedCurtisin TheBluesBrothers

CabCalloway1907–1994

Page 45: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′

= ((uv)w)′

..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 46: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′

= ((uv)w)′

..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 47: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 48: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 49: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 50: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 51: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 52: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 53: Lesson 9: The Product and Quotient Rules

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w+ (uv)w′..

.Applytheproductrule

to u and v

= (u′v+ uv′)w+ (uv)w′

= u′vw+ uv′w+ uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 54: Lesson 9: The Product and Quotient Rules

. . . . . .

Outline

Grader’sCorner

DerivativeofaProductDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 55: Lesson 9: The Product and Quotient Rules

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v+Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 56: Lesson 9: The Product and Quotient Rules

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v+Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 57: Lesson 9: The Product and Quotient Rules

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v+Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 58: Lesson 9: The Product and Quotient Rules

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v+Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 59: Lesson 9: The Product and Quotient Rules

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v+Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 60: Lesson 9: The Product and Quotient Rules

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v+Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 61: Lesson 9: The Product and Quotient Rules

. . . . . .

VerifyingExample

Example

Verifythequotientrulebycomputingddx

(x2

x

)andcomparingit

toddx

(x).

Solution

ddx

(x2

x

)=

x ddx

(x2)− x2 d

dx (x)x2

=x · 2x− x2 · 1

x2

=x2

x2= 1 =

ddx

(x)

Page 62: Lesson 9: The Product and Quotient Rules

. . . . . .

VerifyingExample

Example

Verifythequotientrulebycomputingddx

(x2

x

)andcomparingit

toddx

(x).

Solution

ddx

(x2

x

)=

x ddx

(x2)− x2 d

dx (x)x2

=x · 2x− x2 · 1

x2

=x2

x2= 1 =

ddx

(x)

Page 63: Lesson 9: The Product and Quotient Rules

. . . . . .

Examples

Example

1.ddx

2x+ 53x− 2

2.ddx

2x+ 1x2 − 1

3.ddt

t− 1t2 + t+ 2

Answers

1. − 19(3x− 2)2

2. −2(x2 + x+ 1

)(x2 − 1)2

3.−t2 + 2t+ 3

(t2 + t+ 2)2

Page 64: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 65: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 66: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 67: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 68: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 69: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 70: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 71: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 72: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 73: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 74: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 75: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 76: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2

= − 19(3x− 2)2

Page 77: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontofirstexample

ddx

2x+ 53x− 2

=(3x− 2) d

dx(2x+ 5)− (2x+ 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2)− (2x+ 5)(3)

(3x− 2)2

=(6x− 4)− (6x+ 15)

(3x− 2)2= − 19

(3x− 2)2

Page 78: Lesson 9: The Product and Quotient Rules

. . . . . .

Examples

Example

1.ddx

2x+ 53x− 2

2.ddx

2x+ 1x2 − 1

3.ddt

t− 1t2 + t+ 2

Answers

1. − 19(3x− 2)2

2. −2(x2 + x+ 1

)(x2 − 1)2

3.−t2 + 2t+ 3

(t2 + t+ 2)2

Page 79: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontosecondexample

ddx

2x+ 1x2 − 1

=(x2 − 1)(2)− (2x+ 1)(2x)

(x2 − 1)2

=(2x2 − 2)− (4x2 + 2x)

(x2 − 1)2

= −2(x2 + x+ 1

)(x2 − 1)2

Page 80: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontosecondexample

ddx

2x+ 1x2 − 1

=(x2 − 1)(2)− (2x+ 1)(2x)

(x2 − 1)2

=(2x2 − 2)− (4x2 + 2x)

(x2 − 1)2

= −2(x2 + x+ 1

)(x2 − 1)2

Page 81: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontosecondexample

ddx

2x+ 1x2 − 1

=(x2 − 1)(2)− (2x+ 1)(2x)

(x2 − 1)2

=(2x2 − 2)− (4x2 + 2x)

(x2 − 1)2

= −2(x2 + x+ 1

)(x2 − 1)2

Page 82: Lesson 9: The Product and Quotient Rules

. . . . . .

Examples

Example

1.ddx

2x+ 53x− 2

2.ddx

2x+ 1x2 − 1

3.ddt

t− 1t2 + t+ 2

Answers

1. − 19(3x− 2)2

2. −2(x2 + x+ 1

)(x2 − 1)2

3.−t2 + 2t+ 3

(t2 + t+ 2)2

Page 83: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t+ 2

=(t2 + t+ 2)(1)− (t− 1)(2t+ 1)

(t2 + t+ 2)2

=(t2 + t+ 2)− (2t2 − t− 1)

(t2 + t+ 2)2

=−t2 + 2t+ 3(t2 + t+ 2)2

Page 84: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t+ 2

=(t2 + t+ 2)(1)− (t− 1)(2t+ 1)

(t2 + t+ 2)2

=(t2 + t+ 2)− (2t2 − t− 1)

(t2 + t+ 2)2

=−t2 + 2t+ 3(t2 + t+ 2)2

Page 85: Lesson 9: The Product and Quotient Rules

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t+ 2

=(t2 + t+ 2)(1)− (t− 1)(2t+ 1)

(t2 + t+ 2)2

=(t2 + t+ 2)− (2t2 − t− 1)

(t2 + t+ 2)2

=−t2 + 2t+ 3(t2 + t+ 2)2

Page 86: Lesson 9: The Product and Quotient Rules

. . . . . .

Examples

Example

1.ddx

2x+ 53x− 2

2.ddx

2x+ 1x2 − 1

3.ddt

t− 1t2 + t+ 2

Answers

1. − 19(3x− 2)2

2. −2(x2 + x+ 1

)(x2 − 1)2

3.−t2 + 2t+ 3

(t2 + t+ 2)2

Page 87: Lesson 9: The Product and Quotient Rules

. . . . . .

Mnemonic

Let u = “hi” and v = “lo”. Then(uv

)′=

vu′ − uv′

v2= “lodeehiminushideelooverlolo”

Page 88: Lesson 9: The Product and Quotient Rules

. . . . . .

Outline

Grader’sCorner

DerivativeofaProductDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 89: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)

=cos x · cos x− sin x · (− sin x)

cos2 x

=cos2 x+ sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 90: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)

=cos x · cos x− sin x · (− sin x)

cos2 x

=cos2 x+ sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 91: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x+ sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 92: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x+ sin2 x

cos2 x

=1

cos2 x= sec2 x

Page 93: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x+ sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 94: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x+ sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 95: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Solution

ddx

cot x =ddx

(cos xsin x

)

=sin x · (− sin x)− cos x · cos x

sin2 x

=− sin2 x− cos2 x

sin2 x= − 1

sin2 x= − csc2 x

Page 96: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Solution

ddx

cot x =ddx

(cos xsin x

)

=sin x · (− sin x)− cos x · cos x

sin2 x

=− sin2 x− cos2 x

sin2 x= − 1

sin2 x= − csc2 x

Page 97: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Solution

ddx

cot x =ddx

(cos xsin x

)=

sin x · (− sin x)− cos x · cos xsin2 x

=− sin2 x− cos2 x

sin2 x= − 1

sin2 x= − csc2 x

Page 98: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Solution

ddx

cot x =ddx

(cos xsin x

)=

sin x · (− sin x)− cos x · cos xsin2 x

=− sin2 x− cos2 x

sin2 x

= − 1sin2 x

= − csc2 x

Page 99: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Solution

ddx

cot x =ddx

(cos xsin x

)=

sin x · (− sin x)− cos x · cos xsin2 x

=− sin2 x− cos2 x

sin2 x= − 1

sin2 x

= − csc2 x

Page 100: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Solution

ddx

cot x =ddx

(cos xsin x

)=

sin x · (− sin x)− cos x · cos xsin2 x

=− sin2 x− cos2 x

sin2 x= − 1

sin2 x= − csc2 x

Page 101: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)

=cos x · 0− 1 · (− sin x)

cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 102: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)

=cos x · 0− 1 · (− sin x)

cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 103: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 104: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 105: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 106: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 107: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Solution

ddx

csc x =ddx

(1

sin x

)

=sin x · 0− 1 · (cos x)

sin2 x

= − cos xsin2 x

= − 1sin x

· cos xsin x

= − csc x cot x

Page 108: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Solution

ddx

csc x =ddx

(1

sin x

)

=sin x · 0− 1 · (cos x)

sin2 x

= − cos xsin2 x

= − 1sin x

· cos xsin x

= − csc x cot x

Page 109: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Solution

ddx

csc x =ddx

(1

sin x

)=

sin x · 0− 1 · (cos x)sin2 x

= − cos xsin2 x

= − 1sin x

· cos xsin x

= − csc x cot x

Page 110: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Solution

ddx

csc x =ddx

(1

sin x

)=

sin x · 0− 1 · (cos x)sin2 x

= − cos xsin2 x

= − 1sin x

· cos xsin x

= − csc x cot x

Page 111: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Solution

ddx

csc x =ddx

(1

sin x

)=

sin x · 0− 1 · (cos x)sin2 x

= − cos xsin2 x

= − 1sin x

· cos xsin x

= − csc x cot x

Page 112: Lesson 9: The Product and Quotient Rules

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Solution

ddx

csc x =ddx

(1

sin x

)=

sin x · 0− 1 · (cos x)sin2 x

= − cos xsin2 x

= − 1sin x

· cos xsin x

= − csc x cot x

Page 113: Lesson 9: The Product and Quotient Rules

. . . . . .

Recap: Derivativesoftrigonometricfunctions

y y′

sin x cos x

cos x − sin x

tan x sec2 x

cot x − csc2 x

sec x sec x tan x

csc x − csc x cot x

I Functionscomeinpairs(sin/cos, tan/cot, sec/csc)

I Derivativesofpairsfollowsimilarpatterns,withfunctionsandco-functionsswitchedandanextrasign.

Page 114: Lesson 9: The Product and Quotient Rules

. . . . . .

Outline

Grader’sCorner

DerivativeofaProductDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 115: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n+ 1)xn

Page 116: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n.

Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n+ 1)xn

Page 117: Lesson 9: The Product and Quotient Rules

. . . . . .

PrincipleofMathematicalInduction

.

.Suppose S(1) istrue and S(n + 1)is true wheneverS(n) is true. ThenS(n) is true for alln.

.

.Imagecredit: KoolSkatkat

Page 118: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n+ 1)xn

Page 119: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n+ 1)xn

Page 120: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n+ 1)xn

Page 121: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n+ 1)xn

Page 122: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 123: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 124: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 125: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 126: Lesson 9: The Product and Quotient Rules

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n= −nx−n−1

Page 127: Lesson 9: The Product and Quotient Rules

. . . . . .

Whathavewelearnedtoday?

I TheProductRule: (uv)′ = u′v+ uv′

I TheQuotientRule:(uv

)′=

vu′ − uv′

v2I Derivativesoftangent/cotangent, secant/cosecant

ddx

tan x = sec2 xddx

sec x = sec x tan x

ddx

cot x = − csc2 xddx

csc x = − csc x cot x

I ThePowerRuleistrueforallwholenumberpowers,includingnegativepowers:

ddx

xn = nxn−1