Top Banner
. . . . . . Section 2.4 The Product and Quotient Rules V63.0121.034, Calculus I September 30, 2009 Announcements I Quiz 2 is next week, covering §§1.4–2.1 I Midterm I is October 14, covering §§1.1–2.4 (today) I Office Hours today 2:30–3:30, check website for current
114

Lesson 9: The Product and Quotient Rule

Dec 18, 2014

Download

Education

How do we differentiate a product? We use the product, or Leibniz rule. The quotient rule is trickier, but we have nice mnemonics for both.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 9: The Product and Quotient Rule

. . . . . .

Section2.4TheProductandQuotientRules

V63.0121.034, CalculusI

September30, 2009

Announcements

I Quiz2isnextweek, covering§§1.4–2.1I MidtermI isOctober14, covering§§1.1–2.4(today)I OfficeHourstoday2:30–3:30, checkwebsiteforcurrent

Page 2: Lesson 9: The Product and Quotient Rule

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 3: Lesson 9: The Product and Quotient Rule

Calculus

. . . . . .

Page 4: Lesson 9: The Product and Quotient Rule

. . . . . .

Recollectionandextension

Wehaveshownthatif u and v arefunctions, that

(u + v)′ = u′ + v′

(u− v)′ = u′ − v′

Whatabout uv?

Page 5: Lesson 9: The Product and Quotient Rule

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

..(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 6: Lesson 9: The Product and Quotient Rule

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.

I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 7: Lesson 9: The Product and Quotient Rule

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.

I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 8: Lesson 9: The Product and Quotient Rule

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 9: Lesson 9: The Product and Quotient Rule

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

Page 10: Lesson 9: The Product and Quotient Rule

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 11: Lesson 9: The Product and Quotient Rule

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.

I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 12: Lesson 9: The Product and Quotient Rule

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 13: Lesson 9: The Product and Quotient Rule

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

Page 14: Lesson 9: The Product and Quotient Rule

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

...∆I = 5× $0.25 = $1.25?

.∆I = 5× $0.25 = $1.25?

Page 15: Lesson 9: The Product and Quotient Rule

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?

.∆I = 5× $0.25 = $1.25?

Page 16: Lesson 9: The Product and Quotient Rule

. . . . . .

Moneymoneymoneymoney

Theanswerdependsonhowmuchyouwork already andyourcurrent wage. Supposeyouwork h hoursandarepaid w. Yougetatimeincreaseof ∆h andawageincreaseof ∆w. Incomeiswagestimeshours, so

∆I = (w + ∆w)(h + ∆h) −whFOIL= w · h + w · ∆h + ∆w · h + ∆w · ∆h−wh

= w · ∆h + ∆w · h + ∆w · ∆h

Page 17: Lesson 9: The Product and Quotient Rule

. . . . . .

A geometricargument

Drawabox:

..w .∆w

.h

.∆h

.wh

.w∆h

.∆wh

.∆w∆h

∆I = w∆h + h∆w + ∆w∆h

Page 18: Lesson 9: The Product and Quotient Rule

. . . . . .

A geometricargument

Drawabox:

..w .∆w

.h

.∆h

.wh

.w∆h

.∆wh

.∆w∆h

∆I = w∆h + h∆w + ∆w∆h

Page 19: Lesson 9: The Product and Quotient Rule

. . . . . .

Suposewagesandhoursarechangingcontinuouslyovertime.Overatimeinterval ∆t, whatistheaveragerateofchangeofincome?

∆I∆t

=w∆h + h∆w + ∆w∆h

∆t

= w∆h∆t

+ h∆w∆t

+ ∆w∆h∆t

Whatistheinstantaneousrateofchangeofincome?

dIdt

= lim∆t→0

∆I∆t

= wdhdt

+ hdwdt

+ 0

Page 20: Lesson 9: The Product and Quotient Rule

. . . . . .

Suposewagesandhoursarechangingcontinuouslyovertime.Overatimeinterval ∆t, whatistheaveragerateofchangeofincome?

∆I∆t

=w∆h + h∆w + ∆w∆h

∆t

= w∆h∆t

+ h∆w∆t

+ ∆w∆h∆t

Whatistheinstantaneousrateofchangeofincome?

dIdt

= lim∆t→0

∆I∆t

= wdhdt

+ hdwdt

+ 0

Page 21: Lesson 9: The Product and Quotient Rule

. . . . . .

Eurekamen!

Wehavediscovered

Theorem(TheProductRule)Let u and v bedifferentiableat x. Then

(uv)′(x) = u(x)v′(x) + u′(x)v(x)

inLeibniznotation

ddx

(uv) =dudx

· v + udvdx

Page 22: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleApplytheproductruleto u = x and v = x2.

Solution

(uv)′(x) = u(x)v′(x) + u′(x)v(x) = x · (2x) + 1 · x2 = 3x2

Thisiswhatwegetthe“normal”way.

Page 23: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleApplytheproductruleto u = x and v = x2.

Solution

(uv)′(x) = u(x)v′(x) + u′(x)v(x) = x · (2x) + 1 · x2 = 3x2

Thisiswhatwegetthe“normal”way.

Page 24: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]

Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x + 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x + 3

]

= −5x4 + 12x2 − 2x− 3

Page 25: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x + 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x + 3

]

= −5x4 + 12x2 − 2x− 3

Page 26: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x + 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x + 3

]= −5x4 + 12x2 − 2x− 3

Page 27: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)

= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 28: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 29: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 30: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 31: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 32: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 33: Lesson 9: The Product and Quotient Rule

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

Page 34: Lesson 9: The Product and Quotient Rule

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x

=

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x= sin x + x cos x

Page 35: Lesson 9: The Product and Quotient Rule

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x= sin x + x cos x

Page 36: Lesson 9: The Product and Quotient Rule

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x

= sin x + x cos x

Page 37: Lesson 9: The Product and Quotient Rule

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x= sin x + x cos x

Page 38: Lesson 9: The Product and Quotient Rule

. . . . . .

Mnemonic

Let u = “hi” and v = “ho”. Then

(uv)′ = vu′ + uv′ = “hodeehiplushideeho”

Page 39: Lesson 9: The Product and Quotient Rule

. . . . . .

Musicalinterlude

I jazzbandleaderandsinger

I hitsong“MinnietheMoocher”featuring“hideho”chorus

I playedCurtisin TheBluesBrothers

CabCalloway1907–1994

Page 40: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′

= ((uv)w)′

..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 41: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′

= ((uv)w)′

..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 42: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 43: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 44: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 45: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 46: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 47: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 48: Lesson 9: The Product and Quotient Rule

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

Page 49: Lesson 9: The Product and Quotient Rule

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 50: Lesson 9: The Product and Quotient Rule

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 51: Lesson 9: The Product and Quotient Rule

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 52: Lesson 9: The Product and Quotient Rule

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 53: Lesson 9: The Product and Quotient Rule

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 54: Lesson 9: The Product and Quotient Rule

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 55: Lesson 9: The Product and Quotient Rule

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

Page 56: Lesson 9: The Product and Quotient Rule

. . . . . .

VerifyingExample

Example

Verifythequotientrulebycomputingddx

(x2

x

)andcomparingit

toddx

(x).

Solution

ddx

(x2

x

)=

x ddx

(x2

)− x2 d

dx (x)x2

=x · 2x− x2 · 1

x2

=x2

x2= 1 =

ddx

(x)

Page 57: Lesson 9: The Product and Quotient Rule

. . . . . .

VerifyingExample

Example

Verifythequotientrulebycomputingddx

(x2

x

)andcomparingit

toddx

(x).

Solution

ddx

(x2

x

)=

x ddx

(x2

)− x2 d

dx (x)x2

=x · 2x− x2 · 1

x2

=x2

x2= 1 =

ddx

(x)

Page 58: Lesson 9: The Product and Quotient Rule

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

Page 59: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 60: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 61: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 62: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 63: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 64: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 65: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 66: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 67: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 68: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 69: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 70: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 71: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2

= − 19(3x− 2)2

Page 72: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

Page 73: Lesson 9: The Product and Quotient Rule

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

Page 74: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontosecondexample

ddx

2x + 1x2 − 1

=(x2 − 1)(2) − (2x + 1)(2x)

(x2 − 1)2

=(2x2 − 2) − (4x2 + 2x)

(x2 − 1)2

= −2

(x2 + x + 1

)(x2 − 1)2

Page 75: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontosecondexample

ddx

2x + 1x2 − 1

=(x2 − 1)(2) − (2x + 1)(2x)

(x2 − 1)2

=(2x2 − 2) − (4x2 + 2x)

(x2 − 1)2

= −2

(x2 + x + 1

)(x2 − 1)2

Page 76: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontosecondexample

ddx

2x + 1x2 − 1

=(x2 − 1)(2) − (2x + 1)(2x)

(x2 − 1)2

=(2x2 − 2) − (4x2 + 2x)

(x2 − 1)2

= −2

(x2 + x + 1

)(x2 − 1)2

Page 77: Lesson 9: The Product and Quotient Rule

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

Page 78: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t + 2

=(t2 + t + 2)(1) − (t− 1)(2t + 1)

(t2 + t + 2)2

=(t2 + t + 2) − (2t2 − t− 1)

(t2 + t + 2)2

=−t2 + 2t + 3(t2 + t + 2)2

Page 79: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t + 2

=(t2 + t + 2)(1) − (t− 1)(2t + 1)

(t2 + t + 2)2

=(t2 + t + 2) − (2t2 − t− 1)

(t2 + t + 2)2

=−t2 + 2t + 3(t2 + t + 2)2

Page 80: Lesson 9: The Product and Quotient Rule

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t + 2

=(t2 + t + 2)(1) − (t− 1)(2t + 1)

(t2 + t + 2)2

=(t2 + t + 2) − (2t2 − t− 1)

(t2 + t + 2)2

=−t2 + 2t + 3(t2 + t + 2)2

Page 81: Lesson 9: The Product and Quotient Rule

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

Page 82: Lesson 9: The Product and Quotient Rule

. . . . . .

Mnemonic

Let u = “hi” and v = “lo”. Then(uv

)′=

vu′ − uv′

v2= “lodeehiminushideelooverlolo”

Page 83: Lesson 9: The Product and Quotient Rule

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 84: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)

=cos x · cos x− sin x · (− sin x)

cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 85: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)

=cos x · cos x− sin x · (− sin x)

cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 86: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 87: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x

=1

cos2 x= sec2 x

Page 88: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 89: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

Page 90: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Page 91: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

Page 92: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)

=cos x · 0− 1 · (− sin x)

cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 93: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)

=cos x · 0− 1 · (− sin x)

cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 94: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 95: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 96: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 97: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

Page 98: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Page 99: Lesson 9: The Product and Quotient Rule

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

Page 100: Lesson 9: The Product and Quotient Rule

. . . . . .

Recap: Derivativesoftrigonometricfunctions

y y′

sin x cos x

cos x − sin x

tan x sec2 x

cot x − csc2 x

sec x sec x tan x

csc x − csc x cot x

I Functionscomeinpairs(sin/cos, tan/cot, sec/csc)

I Derivativesofpairsfollowsimilarpatterns,withfunctionsandco-functionsswitchedandanextrasign.

Page 101: Lesson 9: The Product and Quotient Rule

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentandCotangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Page 102: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

Page 103: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n.

Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

Page 104: Lesson 9: The Product and Quotient Rule

. . . . . .

PrincipleofMathematicalInduction

.

.Suppose S(1) istrue and S(n + 1)is true wheneverS(n) is true. ThenS(n) is true for alln.

.

.Imagecredit: KoolSkatkat

Page 105: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

Page 106: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

Page 107: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

Page 108: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

Page 109: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 110: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 111: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 112: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

Page 113: Lesson 9: The Product and Quotient Rule

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n= −nx−n−1

Page 114: Lesson 9: The Product and Quotient Rule

. . . . . .

Whathavewelearnedtoday?

I TheProductRule: (uv)′ = u′v + uv′

I TheQuotientRule:(uv

)′=

vu′ − uv′

v2I Derivativesoftangent/cotangent, secant/cosecant

ddx

tan x = sec2 xddx

sec x = sec x tan x

ddx

cot x = − csc2 xddx

csc x = − csc x cot x

I ThePowerRuleistrueforallwholenumberpowers,includingnegativepowers:

ddx

xn = nxn−1