Top Banner
. . . . . . Section 1.6 Limits involving Infinity V63.0121.006/016, Calculus I February 3, 2010 Announcements I Office Hours: M,W 1:30–2:30, R 9–10 (CIWW 726) I Written Assignment #2 due today. I WebAssignments due Tuesday. I First Quiz: Friday February 12 in recitation (§§1.1–1.4)
74

Lesson 6: Limits Involving Infinity

Jul 04, 2015

Download

Education

Infinity is a tricky thing. It's tempting to treat it as a special number, but that can lead to trouble. In this slideshow we look at the different kinds of infinite limits and limits at infinity.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 6: Limits Involving Infinity

. . . . . .

Section1.6LimitsinvolvingInfinity

V63.0121.006/016, CalculusI

February3, 2010

Announcements

I OfficeHours: M,W 1:30–2:30, R 9–10(CIWW 726)I WrittenAssignment#2duetoday.I WebAssignmentsdueTuesday.I FirstQuiz: FridayFebruary12inrecitation(§§1.1–1.4)

Page 2: Lesson 6: Limits Involving Infinity

. . . . . .

Recallthedefinitionoflimit

DefinitionWewrite

limx→a

f(x) = L

andsay

“thelimitof f(x), as x approaches a, equals L”

ifwecanmakethevaluesof f(x) arbitrarilycloseto L (asclosetoL aswelike)bytaking x tobesufficientlycloseto a (oneithersideof a)butnotequalto a.

Page 3: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 4: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 5: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 6: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 7: Lesson 6: Limits Involving Infinity

. . . . . .

Outline

InfiniteLimitsVerticalAsymptotesInfiniteLimitsweKnowLimit“Laws”withInfiniteLimitsIndeterminateLimitforms

Limitsat ∞AlgebraicratesofgrowthRationalizingtogetalimit

Page 8: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 9: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 10: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 11: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 12: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 13: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 14: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 15: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 16: Lesson 6: Limits Involving Infinity

. . . . . .

NegativeInfinity

DefinitionThenotation

limx→a

f(x) = −∞

meansthatthevaluesof f(x) canbemadearbitrarilylargenegative (aslargeasweplease)bytaking x sufficientlycloseto abutnotequalto a.

I Wecallanumber large or small basedonitsabsolutevalue.So −1, 000, 000 isalarge(negative)number.

Page 17: Lesson 6: Limits Involving Infinity

. . . . . .

NegativeInfinity

DefinitionThenotation

limx→a

f(x) = −∞

meansthatthevaluesof f(x) canbemadearbitrarilylargenegative (aslargeasweplease)bytaking x sufficientlycloseto abutnotequalto a.

I Wecallanumber large or small basedonitsabsolutevalue.So −1, 000, 000 isalarge(negative)number.

Page 18: Lesson 6: Limits Involving Infinity

. . . . . .

VerticalAsymptotes

DefinitionTheline x = a iscalleda verticalasymptote ofthecurve y = f(x)ifatleastoneofthefollowingistrue:

I limx→a

f(x) = ∞

I limx→a+

f(x) = ∞

I limx→a−

f(x) = ∞

I limx→a

f(x) = −∞

I limx→a+

f(x) = −∞

I limx→a−

f(x) = −∞

Page 19: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimitsweKnow

I limx→0+

1x= ∞

I limx→0−

1x= −∞

I limx→0

1x2

= ∞

. .x

.y

.

.

.

.

.

.

.

.

.

.

.

.

Page 20: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimitsweKnow

I limx→0+

1x= ∞

I limx→0−

1x= −∞

I limx→0

1x2

= ∞

. .x

.y

.

.

.

.

.

.

.

.

.

.

.

.

Page 21: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimitsweKnow

I limx→0+

1x= ∞

I limx→0−

1x= −∞

I limx→0

1x2

= ∞

. .x

.y

.

.

.

.

.

.

.

.

.

.

.

.

Page 22: Lesson 6: Limits Involving Infinity

. . . . . .

Findinglimitsattroublespots

ExampleLet

f(x) =x2 + 2

x2 − 3x+ 2

Find limx→a−

f(x) and limx→a+

f(x) foreach a atwhich f isnot

continuous.

SolutionThedenominatorfactorsas (x− 1)(x− 2). Wecanrecordthesignsofthefactorsonthenumberline.

Page 23: Lesson 6: Limits Involving Infinity

. . . . . .

Findinglimitsattroublespots

ExampleLet

f(x) =x2 + 2

x2 − 3x+ 2

Find limx→a−

f(x) and limx→a+

f(x) foreach a atwhich f isnot

continuous.

SolutionThedenominatorfactorsas (x− 1)(x− 2). Wecanrecordthesignsofthefactorsonthenumberline.

Page 24: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞ .+∞ .+

So

limx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 25: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞ .+∞ .+

So

limx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 26: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞ .+∞ .+

So

limx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 27: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞ .+∞ .+

So

limx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 28: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+

.+∞ .−∞ .− .−∞ .+∞ .+

So

limx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 29: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞

.−∞ .− .−∞ .+∞ .+

Solim

x→1−f(x) = +∞

limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 30: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞

.− .−∞ .+∞ .+

Solim

x→1−f(x) = +∞

limx→2−

f(x) = −∞

limx→1+

f(x) = −∞

limx→2+

f(x) = +∞

Page 31: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .−

.−∞ .+∞ .+

Solim

x→1−f(x) = +∞

limx→2−

f(x) = −∞

limx→1+

f(x) = −∞

limx→2+

f(x) = +∞

Page 32: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞

.+∞ .+

Solim

x→1−f(x) = +∞ lim

x→2−f(x) = −∞

limx→1+

f(x) = −∞

limx→2+

f(x) = +∞

Page 33: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞ .+∞

.+

Solim

x→1−f(x) = +∞ lim

x→2−f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 34: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞ .+∞

.+

Solim

x→1−f(x) = +∞ lim

x→2−f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 35: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(x− 1).− .

.1

.0 .+

.(x− 2).− .

.2

.0 .+

.(x2 + 2).+

.f(x)..1

..2

.+ .+∞ .−∞ .− .−∞ .+∞ .+

Solim

x→1−f(x) = +∞ lim

x→2−f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 36: Lesson 6: Limits Involving Infinity

. . . . . .

InEnglish, now

Toexplainthelimit, youcansay:“As x → 1−, thenumeratorapproaches 3, andthedenominatorapproaches 0 whileremainingpositive. Sothelimitis +∞.”

Page 37: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 38: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 39: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 40: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 41: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 42: Lesson 6: Limits Involving Infinity

. . . . . .

LimitLaws(?) withinfinitelimits

I If limx→a

f(x) = ∞ and limx→a

g(x) = ∞, then limx→a

(f(x) + g(x)) = ∞.

Thatis,

..∞+∞ = ∞

I If limx→a

f(x) = −∞ and limx→a

g(x) = −∞, then

limx→a

(f(x) + g(x)) = −∞. Thatis,

..−∞−∞ = −∞

Page 43: Lesson 6: Limits Involving Infinity

. . . . . .

RulesofThumb withinfinitelimits

I If limx→a

f(x) = ∞ and limx→a

g(x) = ∞, then limx→a

(f(x) + g(x)) = ∞.

Thatis,

..∞+∞ = ∞

I If limx→a

f(x) = −∞ and limx→a

g(x) = −∞, then

limx→a

(f(x) + g(x)) = −∞. Thatis,

..−∞−∞ = −∞

Page 44: Lesson 6: Limits Involving Infinity

. . . . . .

RulesofThumbwithinfinitelimits

I If limx→a

f(x) = L and limx→a

g(x) = ±∞, then

limx→a

(f(x) + g(x)) = ±∞. Thatis,

..L+∞ = ∞L−∞ = −∞

Page 45: Lesson 6: Limits Involving Infinity

. . . . . .

RulesofThumbwithinfinitelimitsKids, don’ttrythisathome!

I Theproductofafinitelimitandaninfinitelimitisinfinite ifthefinitelimitisnot0.

..L · ∞ =

{∞ if L > 0

−∞ if L < 0.

..L · (−∞) =

{−∞ if L > 0

∞ if L < 0.

Page 46: Lesson 6: Limits Involving Infinity

. . . . . .

MultiplyinginfinitelimitsKids, don’ttrythisathome!

I Theproductoftwoinfinitelimitsisinfinite.

..

∞ ·∞ = ∞∞ · (−∞) = −∞

(−∞) · (−∞) = ∞

Page 47: Lesson 6: Limits Involving Infinity

. . . . . .

DividingbyInfinityKids, don’ttrythisathome!

I Thequotientofafinitelimitbyaninfinitelimitiszero:

..L∞

= 0

Page 48: Lesson 6: Limits Involving Infinity

. . . . . .

Dividingbyzeroisstillnotallowed

..

10= ∞

Thereareexamplesofsuchlimitformswherethelimitis ∞, −∞,undecidedbetweenthetwo, ortrulyneither.

Page 49: Lesson 6: Limits Involving Infinity

. . . . . .

IndeterminateLimitforms

LimitsoftheformL0are indeterminate. Thereisnorulefor

evaluatingsuchaform; thelimitmustbeexaminedmoreclosely.Considerthese:

limx→0

1x2

= ∞ limx→0

−1x2

= −∞

limx→0+

1x= ∞ lim

x→0−

1x= −∞

Worst, limx→0

1x sin(1/x)

isoftheformL0, butthelimitdoesnot

exist, evenintheleft-orright-handsense. Thereareinfinitelymanyverticalasymptotesarbitrarilycloseto0!

Page 50: Lesson 6: Limits Involving Infinity

. . . . . .

IndeterminateLimitforms

Limitsoftheform 0 · ∞ and ∞−∞ arealsoindeterminate.

Example

I Thelimit limx→0+

sin x · 1xisoftheform 0 · ∞, buttheansweris

1.

I Thelimit limx→0+

sin2 x · 1xisoftheform 0 ·∞, buttheansweris

0.

I Thelimit limx→0+

sin x · 1x2

isoftheform 0 · ∞, buttheansweris∞.

Limitsofindeterminateformsmayormaynot“exist.” Itwilldependonthecontext.

Page 51: Lesson 6: Limits Involving Infinity

. . . . . .

IndeterminateformsarelikeTugOfWar

Whichsidewinsdependsonwhichsideisstronger.

Page 52: Lesson 6: Limits Involving Infinity

. . . . . .

Outline

InfiniteLimitsVerticalAsymptotesInfiniteLimitsweKnowLimit“Laws”withInfiniteLimitsIndeterminateLimitforms

Limitsat ∞AlgebraicratesofgrowthRationalizingtogetalimit

Page 53: Lesson 6: Limits Involving Infinity

. . . . . .

DefinitionLet f beafunctiondefinedonsomeinterval (a,∞). Then

limx→∞

f(x) = L

meansthatthevaluesof f(x) canbemadeascloseto L aswelike, bytaking x sufficientlylarge.

DefinitionTheline y = L isacalleda horizontalasymptote ofthecurvey = f(x) ifeither

limx→∞

f(x) = L or limx→−∞

f(x) = L.

y = L isa horizontal line!

Page 54: Lesson 6: Limits Involving Infinity

. . . . . .

DefinitionLet f beafunctiondefinedonsomeinterval (a,∞). Then

limx→∞

f(x) = L

meansthatthevaluesof f(x) canbemadeascloseto L aswelike, bytaking x sufficientlylarge.

DefinitionTheline y = L isacalleda horizontalasymptote ofthecurvey = f(x) ifeither

limx→∞

f(x) = L or limx→−∞

f(x) = L.

y = L isa horizontal line!

Page 55: Lesson 6: Limits Involving Infinity

. . . . . .

DefinitionLet f beafunctiondefinedonsomeinterval (a,∞). Then

limx→∞

f(x) = L

meansthatthevaluesof f(x) canbemadeascloseto L aswelike, bytaking x sufficientlylarge.

DefinitionTheline y = L isacalleda horizontalasymptote ofthecurvey = f(x) ifeither

limx→∞

f(x) = L or limx→−∞

f(x) = L.

y = L isa horizontal line!

Page 56: Lesson 6: Limits Involving Infinity

. . . . . .

Basiclimitsatinfinity

TheoremLet n beapositiveinteger. Then

I limx→∞

1xn

= 0

I limx→−∞

1xn

= 0

Page 57: Lesson 6: Limits Involving Infinity

. . . . . .

Usingthelimitlawstocomputelimitsat ∞

ExampleFind

limx→∞

2x3 + 3x+ 14x3 + 5x2 + 7

ifitexists.

A doesnotexist

B 1/2

C 0

D ∞

Page 58: Lesson 6: Limits Involving Infinity

. . . . . .

Usingthelimitlawstocomputelimitsat ∞

ExampleFind

limx→∞

2x3 + 3x+ 14x3 + 5x2 + 7

ifitexists.

A doesnotexist

B 1/2

C 0

D ∞

Page 59: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionFactoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

2x3 + 3x+ 14x3 + 5x2 + 7

=x3(2+ 3/x2 + 1/x3)

x3(4+ 5/x + 7/x3)

limx→∞

2x3 + 3x+ 14x3 + 5x2 + 7

= limx→∞

2+ 3/x2 + 1/x3

4+ 5/x + 7/x3

=2+ 0+ 04+ 0+ 0

=12

UpshotWhenfindinglimitsofalgebraicexpressionsatinfinity, lookatthe highestdegreeterms.

Page 60: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionFactoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

2x3 + 3x+ 14x3 + 5x2 + 7

=x3(2+ 3/x2 + 1/x3)

x3(4+ 5/x + 7/x3)

limx→∞

2x3 + 3x+ 14x3 + 5x2 + 7

= limx→∞

2+ 3/x2 + 1/x3

4+ 5/x + 7/x3

=2+ 0+ 04+ 0+ 0

=12

UpshotWhenfindinglimitsofalgebraicexpressionsatinfinity, lookatthe highestdegreeterms.

Page 61: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 62: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 63: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionAgain, factoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

xx2 + 1

=x(1)

x2(1+ 1/x2)=

1x· 11+ 1/x2

limx→∞

xx2 + 1

= limx→∞

1x

11+ 1/x2

= limx→∞

1x· limx→∞

11+ 1/x2

= 0 · 11+ 0

= 0.

RemarkHadthehigherpowerbeeninthenumerator, thelimitwouldhavebeen ∞.

Page 64: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 65: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 66: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionAgain, factoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

xx2 + 1

=x(1)

x2(1+ 1/x2)=

1x· 11+ 1/x2

limx→∞

xx2 + 1

= limx→∞

1x

11+ 1/x2

= limx→∞

1x· limx→∞

11+ 1/x2

= 0 · 11+ 0

= 0.

RemarkHadthehigherpowerbeeninthenumerator, thelimitwouldhavebeen ∞.

Page 67: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind

limx→∞

√3x4 + 7x2 + 3

..√3x4 + 7 ∼

√3x4 =

√3x2

AnswerThelimitis

√3.

Page 68: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind

limx→∞

√3x4 + 7x2 + 3

..√3x4 + 7 ∼

√3x4 =

√3x2

AnswerThelimitis

√3.

Page 69: Lesson 6: Limits Involving Infinity

. . . . . .

Solution

limx→∞

√3x4 + 7x2 + 3

= limx→∞

√x4(3+ 7/x4)

x2(1+ 3/x2)

= limx→∞

x2√

(3+ 7/x4)

x2(1+ 3/x2)

= limx→∞

√(3+ 7/x4)

1+ 3/x2

=

√3+ 01+ 0

=√3.

Page 70: Lesson 6: Limits Involving Infinity

. . . . . .

Rationalizingtogetalimit

ExampleCompute lim

x→∞

(√4x2 + 17− 2x

).

SolutionThislimitisoftheform ∞−∞, whichwecannotuse. Sowerationalizethenumerator(thedenominatoris 1)togetanexpressionthatwecanusethelimitlawson.

limx→∞

(√4x2 + 17− 2x

)= lim

x→∞

(√4x2 + 17− 2x

)·√4x2 + 17+ 2x√4x2 + 17+ 2x

= limx→∞

(4x2 + 17)− 4x2√4x2 + 17+ 2x

= limx→∞

17√4x2 + 17+ 2x

= 0

Page 71: Lesson 6: Limits Involving Infinity

. . . . . .

Rationalizingtogetalimit

ExampleCompute lim

x→∞

(√4x2 + 17− 2x

).

SolutionThislimitisoftheform ∞−∞, whichwecannotuse. Sowerationalizethenumerator(thedenominatoris 1)togetanexpressionthatwecanusethelimitlawson.

limx→∞

(√4x2 + 17− 2x

)= lim

x→∞

(√4x2 + 17− 2x

)·√4x2 + 17+ 2x√4x2 + 17+ 2x

= limx→∞

(4x2 + 17)− 4x2√4x2 + 17+ 2x

= limx→∞

17√4x2 + 17+ 2x

= 0

Page 72: Lesson 6: Limits Involving Infinity

. . . . . .

Kickitupanotch

ExampleCompute lim

x→∞

(√4x2 + 17x− 2x

).

SolutionSametrick, differentanswer:

limx→∞

(√4x2 + 17x− 2x

)= lim

x→∞

(√4x2 + 17x− 2x

)·√4x2 + 17+ 2x√4x2 + 17x+ 2x

= limx→∞

(4x2 + 17x)− 4x2√4x2 + 17x+ 2x

= limx→∞

17x√4x2 + 17x+ 2x

= limx→∞

17√4+ 17/x+ 2

=174

Page 73: Lesson 6: Limits Involving Infinity

. . . . . .

Kickitupanotch

ExampleCompute lim

x→∞

(√4x2 + 17x− 2x

).

SolutionSametrick, differentanswer:

limx→∞

(√4x2 + 17x− 2x

)= lim

x→∞

(√4x2 + 17x− 2x

)·√4x2 + 17+ 2x√4x2 + 17x+ 2x

= limx→∞

(4x2 + 17x)− 4x2√4x2 + 17x+ 2x

= limx→∞

17x√4x2 + 17x+ 2x

= limx→∞

17√4+ 17/x+ 2

=174

Page 74: Lesson 6: Limits Involving Infinity

. . . . . .

Summary

I Infinityisamorecomplicatedconceptthanasinglenumber.Therearerulesofthumb, buttherearealsoexceptions.

I Takeatwo-prongedapproachtolimitsinvolvinginfinity:I Lookattheexpressiontoguessthelimit.I Uselimitrulesandalgebratoverifyit.