Top Banner
. . . . . . Section 5.4 The Fundamental Theorem of Calculus Math 1a Introduction to Calculus April 16, 2008 Announcements Midterm is finished: ¯ x 43, σ 6. Midterm III is Wednesday 4/30 in class Friday 5/2 is Movie Day! Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323
67

Lesson 28: The Fundamental Theorem of Calculus

Dec 26, 2014

Download

Technology

The Fundamental Theorem of Calculus relates the two essential concepts in calculus.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Section5.4TheFundamentalTheoremofCalculus

Math1aIntroductiontoCalculus

April16, 2008

Announcements

◮ Midtermisfinished: x̄ ≈ 43, σ ≈ 6.◮ MidtermIII isWednesday4/30inclass◮ Friday5/2isMovieDay!◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

Page 2: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Announcements

◮ Midtermisfinished: x̄ ≈ 43, σ ≈ 6.◮ MidtermIII isWednesday4/30inclass◮ Friday5/2isMovieDay!◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

Page 3: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Outline

Lasttime: TheSecondFundamentalTheoremofCalculusMyfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

Page 4: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Thedefiniteintegralasalimit

DefinitionIf f isafunctiondefinedon [a,b], the definiteintegralof f from ato b isthenumber∫ b

af(x)dx = lim

∆x→0

n∑i=1

f(ci) ∆x

Page 5: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

Page 6: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

Page 7: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf v(t) representsthevelocityofaparticlemovingrectilinearly,then ∫ t1

t0v(t)dt = s(t1) − s(t0).

Page 8: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf MC(x) representsthemarginalcostofmaking x unitsofaproduct, then

C(x) = C(0) +

∫ x

0MC(q)dq.

Page 9: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf ρ(x) representsthedensityofathinrodatadistanceof x fromitsend, thenthemassoftherodupto x is

m(x) =

∫ x

0ρ(s)ds.

Page 10: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Myfirsttableofintegrals∫[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx∫

xn dx =xn+1

n + 1+ C (n ̸= −1)∫

ex dx = ex + C∫sin x dx = − cos x + C∫cos x dx = sin x + C∫sec2 x dx = tan x + C∫

sec x tan x dx = sec x + C∫1

1 + x2dx = arctan x + C

∫cf(x)dx = c

∫f(x)dx∫

1xdx = ln |x| + C∫

ax dx =ax

ln a+ C∫

csc2 x dx = − cot x + C∫csc x cot x dx = − csc x + C∫

1√1− x2

dx = arcsin x + C

Page 11: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Outline

Lasttime: TheSecondFundamentalTheoremofCalculusMyfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

Page 12: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

Page 13: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

Page 14: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

Page 15: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

Page 16: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

◮ Whenis g increasing?

◮ Whenis g decreasing?◮ Overasmallinterval, what’stheaveragerateofchangeof g?

Page 17: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

◮ Whenis g increasing?◮ Whenis g decreasing?

◮ Overasmallinterval, what’stheaveragerateofchangeof g?

Page 18: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

◮ Whenis g increasing?◮ Whenis g decreasing?◮ Overasmallinterval, what’stheaveragerateofchangeof g?

Page 19: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Theorem(TheFirstFundamentalTheoremofCalculus)Let f beanintegrablefunctionon [a,b] anddefine

g(x) =

∫ x

af(t)dt.

If f iscontinuousat x in (a,b), then g isdifferentiableat x and

g′(x) = f(x).

Page 20: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=

1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 21: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 22: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 23: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 24: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 25: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 26: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 27: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

MeettheMathematician: JamesGregory

◮ Scottish, 1638-1675◮ AstronomerandGeometer

◮ Conceivedtranscendentalnumbersandfoundevidencethatπ wastranscendental

◮ Provedageometricversionof1FTC asalemmabutdidn’ttakeitfurther

Page 28: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

MeettheMathematician: IsaacBarrow

◮ English, 1630-1677◮ ProfessorofGreek,theology, andmathematicsatCambridge

◮ Hadafamousstudent

Page 29: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

MeettheMathematician: IsaacNewton

◮ English, 1643–1727◮ ProfessoratCambridge(England)

◮ PhilosophiaeNaturalisPrincipiaMathematicapublished1687

Page 30: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

MeettheMathematician: GottfriedLeibniz

◮ German, 1646–1716◮ Eminentphilosopheraswellasmathematician

◮ Contemporarilydisgracedbythecalculusprioritydispute

Page 31: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

◮ddx

∫ x

af(t)dt = f(x)

◮ ∫ b

aF′(x)dx = F(b) − F(a).

Page 32: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

◮ddx

∫ x

af(t)dt = f(x)

◮ ∫ b

aF′(x)dx = F(b) − F(a).

Page 33: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Outline

Lasttime: TheSecondFundamentalTheoremofCalculusMyfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

Page 34: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

Page 35: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

Page 36: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

Page 37: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

Page 38: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 39: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve.

Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 40: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =

2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 41: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 42: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 43: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 44: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Otherfunctionsdefinedbyintegrals

◮ Thefuturevalueofanasset:

FV(t) =

∫ ∞

tπ(τ)e−rτ dτ

where π(τ) istheprofitabilityattime τ and r isthediscountrate.

◮ Theconsumersurplusofagood:

CS(p∗) =

∫ p∗

0f(p)dp

where f(p) isthedemandfunctionand p∗ istheequilibriumprice(dependsonsupply)

Page 45: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Outline

Lasttime: TheSecondFundamentalTheoremofCalculusMyfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

Page 46: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Page 47: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’svelocityattime t = 5?

Page 48: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’svelocityattime t = 5?

SolutionRecallthatbytheFTC wehave

s′(t) = f(t).

So s′(5) = f(5) = 2.

Page 49: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Istheaccelerationofthepar-ticleattime t = 5 positiveornegative?

Page 50: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Istheaccelerationofthepar-ticleattime t = 5 positiveornegative?

SolutionWehave s′′(5) = f′(5), whichlooksnegativefromthegraph.

Page 51: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’spositionattime t = 3?

Page 52: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’spositionattime t = 3?

SolutionSinceon [0,3], f(x) = x, wehave

s(3) =

∫ 3

0x dx =

92.

Page 53: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

Page 54: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

Solution

Page 55: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionThecriticalpointsof s arethezerosof s′ = f.

Page 56: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionBylookingatthegraph, weseethat f ispositivefromt = 0 to t = 6, thennegativefrom t = 6 to t = 9.

Page 57: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionTherefore s isincreasingon[0, 6], thendecreasingon[6, 9]. Soitslargestvalueisatt = 6.

Page 58: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Approximately when is theaccelerationzero?

Page 59: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Approximately when is theaccelerationzero?

Solutions′′ = 0 when f′ = 0, whichhappensat t = 4 and t = 7.5(approximately)

Page 60: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whenistheparticlemovingtowardtheorigin? Awayfromtheorigin?

Page 61: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whenistheparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionTheparticleismovingawayfromtheoriginwhen s > 0and s′ > 0.

Page 62: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whenistheparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionSince s(0) = 0 and s′ > 0 on(0, 6), weknowtheparticleismovingawayfromtheoriginthen.

Page 63: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whenistheparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionAfter t = 6, s′ < 0, sotheparticleismovingtowardtheorigin.

Page 64: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

Page 65: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionWehave s(9) =∫ 6

0f(x)dx +

∫ 9

6f(x)dx,

wheretheleftintegralispositiveandtherightintegralisnegative.

Page 66: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionInordertodecidewhethers(9) ispositiveornegative,weneedtodecideifthefirstareaismorepositivethanthesecondareaisnegative.

Page 67: Lesson 28: The Fundamental Theorem of Calculus

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionThisappearstobethecase,so s(9) ispositive.