Top Banner
Section 5.5 Integration by Substitution V63.0121.006/016, Calculus I New York University April 27, 2010 Announcements I April 29: Movie Day I April 30: Quiz 5 on §§5.1–5.4 I Monday, May 10, 12:00noon Final Exam: I SILV 703 (Section 16) I MEYR 121/122 (Section 6) . . . . . .
75

Lesson 26: Integration by Substitution (slides)

May 12, 2015

Download

Documents

Integration by substitution is the chain rule in reverse!
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 26: Integration by Substitution (slides)

Section 5.5Integration by Substitution

V63.0121.006/016, Calculus I

New York University

April 27, 2010

AnnouncementsI April 29: Movie DayI April 30: Quiz 5 on §§5.1–5.4I Monday, May 10, 12:00noon Final Exam:

I SILV 703 (Section 16)I MEYR 121/122 (Section 6)

. . . . . .

Page 2: Lesson 26: Integration by Substitution (slides)

. . . . . .

Announcements

I April 29: Movie DayI April 30: Quiz 5 on

§§5.1–5.4I Monday, May 10,

12:00noon Final Exam:I SILV 703 (Section 16)I MEYR 121/122 (Section

6)

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 2 / 38

Page 3: Lesson 26: Integration by Substitution (slides)

. . . . . .

Resurrection Policy

If your final score beats your midterm score, we will add 10% to itsweight, and subtract 10% from the midterm weight.

..Image credit: Scott Beale / Laughing SquidV63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 3 / 38

Page 4: Lesson 26: Integration by Substitution (slides)

. . . . . .

Objectives

I Given an integral and asubstitution, transform theintegral into an equivalentone using a substitution

I Evaluate indefiniteintegrals using the methodof substitution.

I Evaluate definite integralsusing the method ofsubstitution.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 4 / 38

Page 5: Lesson 26: Integration by Substitution (slides)

. . . . . .

Outline

Last Time: The Fundamental Theorem(s) of Calculus

Substitution for Indefinite IntegralsTheoryExamples

Substitution for Definite IntegralsTheoryExamples

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 5 / 38

Page 6: Lesson 26: Integration by Substitution (slides)

. . . . . .

Differentiation and Integration as reverse processes

Theorem (The Fundamental Theorem of Calculus)

1. Let f be continuous on [a,b]. Then

ddx

∫ x

af(t)dt = f(x)

2. Let f be continuous on [a,b] and f = F′ for some other function F.Then ∫ b

af(x)dx = F(b)− F(a).

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 6 / 38

Page 7: Lesson 26: Integration by Substitution (slides)

. . . . . .

Techniques of antidifferentiation?

So far we know only a few rules for antidifferentiation. Some aregeneral, like ∫

[f(x) + g(x)] dx =

∫f(x)dx+

∫g(x)dx

Some are pretty particular, like∫1

x√x2 − 1

dx = arcsec x+ C.

What are we supposed to do with that?

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 7 / 38

Page 8: Lesson 26: Integration by Substitution (slides)

. . . . . .

Techniques of antidifferentiation?

So far we know only a few rules for antidifferentiation. Some aregeneral, like ∫

[f(x) + g(x)] dx =

∫f(x)dx+

∫g(x)dx

Some are pretty particular, like∫1

x√x2 − 1

dx = arcsec x+ C.

What are we supposed to do with that?

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 7 / 38

Page 9: Lesson 26: Integration by Substitution (slides)

. . . . . .

Techniques of antidifferentiation?

So far we know only a few rules for antidifferentiation. Some aregeneral, like ∫

[f(x) + g(x)] dx =

∫f(x)dx+

∫g(x)dx

Some are pretty particular, like∫1

x√x2 − 1

dx = arcsec x+ C.

What are we supposed to do with that?

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 7 / 38

Page 10: Lesson 26: Integration by Substitution (slides)

. . . . . .

No straightforward system of antidifferentiation

So far we don’t have any way to find∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, we can be smart and use the “anti” version of one of the mostimportant rules of differentiation: the chain rule.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 8 / 38

Page 11: Lesson 26: Integration by Substitution (slides)

. . . . . .

No straightforward system of antidifferentiation

So far we don’t have any way to find∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, we can be smart and use the “anti” version of one of the mostimportant rules of differentiation: the chain rule.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 8 / 38

Page 12: Lesson 26: Integration by Substitution (slides)

. . . . . .

Outline

Last Time: The Fundamental Theorem(s) of Calculus

Substitution for Indefinite IntegralsTheoryExamples

Substitution for Definite IntegralsTheoryExamples

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 9 / 38

Page 13: Lesson 26: Integration by Substitution (slides)

. . . . . .

Substitution for Indefinite Integrals

Example

Find ∫x√

x2 + 1dx.

SolutionStare at this long enough and you notice the the integrand is thederivative of the expression

√1+ x2.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 10 / 38

Page 14: Lesson 26: Integration by Substitution (slides)

. . . . . .

Substitution for Indefinite Integrals

Example

Find ∫x√

x2 + 1dx.

SolutionStare at this long enough and you notice the the integrand is thederivative of the expression

√1+ x2.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 10 / 38

Page 15: Lesson 26: Integration by Substitution (slides)

. . . . . .

Say what?

Solution (More slowly, now)

Let g(x) = x2 + 1.

Then g′(x) = 2x and so

ddx

√g(x) =

12√

g(x)g′(x) =

x√x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√

g(x) + C =√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 11 / 38

Page 16: Lesson 26: Integration by Substitution (slides)

. . . . . .

Say what?

Solution (More slowly, now)

Let g(x) = x2 + 1. Then g′(x) = 2x and so

ddx

√g(x) =

12√

g(x)g′(x) =

x√x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√

g(x) + C =√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 11 / 38

Page 17: Lesson 26: Integration by Substitution (slides)

. . . . . .

Say what?

Solution (More slowly, now)

Let g(x) = x2 + 1. Then g′(x) = 2x and so

ddx

√g(x) =

12√

g(x)g′(x) =

x√x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√

g(x) + C =√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 11 / 38

Page 18: Lesson 26: Integration by Substitution (slides)

. . . . . .

Leibnizian notation FTW

Solution (Same technique, new notation)

Let u = x2 + 1.

Then du = 2x dx and√1+ x2 =

√u. So the integrand

becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u

=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 12 / 38

Page 19: Lesson 26: Integration by Substitution (slides)

. . . . . .

Leibnizian notation FTW

Solution (Same technique, new notation)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u.

So the integrandbecomes completely transformed into∫

x dx√x2 + 1

=

∫ 12du√u

=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 12 / 38

Page 20: Lesson 26: Integration by Substitution (slides)

. . . . . .

Leibnizian notation FTW

Solution (Same technique, new notation)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. So the integrand

becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u

=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 12 / 38

Page 21: Lesson 26: Integration by Substitution (slides)

. . . . . .

Leibnizian notation FTW

Solution (Same technique, new notation)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. So the integrand

becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u

=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 12 / 38

Page 22: Lesson 26: Integration by Substitution (slides)

. . . . . .

Leibnizian notation FTW

Solution (Same technique, new notation)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. So the integrand

becomes completely transformed into∫x dx√x2 + 1

=

∫ 12du√u

=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 12 / 38

Page 23: Lesson 26: Integration by Substitution (slides)

. . . . . .

Useful but unsavory variation

Solution (Same technique, new notation, more idiot-proof)

Let u = x2 + 1. Then du = 2x dx and√1+ x2 =

√u. “Solve for dx:”

dx =du2x

So the integrand becomes completely transformed into∫x√

x2 + 1dx =

∫x√u· du2x

=

∫1

2√udu

=

∫12u

−1/2 du

=√u+ C =

√1+ x2 + C.

Mathematicians have serious issues with mixing the x and u like this.However, I can’t deny that it works.V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 13 / 38

Page 24: Lesson 26: Integration by Substitution (slides)

. . . . . .

Theorem of the Day

Theorem (The Substitution Rule)

If u = g(x) is a differentiable function whose range is an interval I and fis continuous on I, then∫

f(g(x))g′(x)dx =

∫f(u)du

That is, if F is an antiderivative for f, then∫f(g(x))g′(x)dx = F(g(x))

In Leibniz notation: ∫f(u)

dudx

dx =

∫f(u)du

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 14 / 38

Page 25: Lesson 26: Integration by Substitution (slides)

. . . . . .

A polynomial example

Example

Use the substitution u = x2 + 3 to find∫

(x2 + 3)34x dx.

SolutionIf u = x2 + 3, then du = 2x dx, and 4x dx = 2du. So∫

(x2 + 3)34x dx =

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 15 / 38

Page 26: Lesson 26: Integration by Substitution (slides)

. . . . . .

A polynomial example

Example

Use the substitution u = x2 + 3 to find∫

(x2 + 3)34x dx.

SolutionIf u = x2 + 3, then du = 2x dx, and 4x dx = 2du. So∫

(x2 + 3)34x dx =

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 15 / 38

Page 27: Lesson 26: Integration by Substitution (slides)

. . . . . .

A polynomial example, by brute force

Compare this to multiplying it out:∫(x2 + 3)34x dx =

∫ (x6 + 9x4 + 27x2 + 27

)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do substitution.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 16 / 38

Page 28: Lesson 26: Integration by Substitution (slides)

. . . . . .

A polynomial example, by brute force

Compare this to multiplying it out:∫(x2 + 3)34x dx =

∫ (x6 + 9x4 + 27x2 + 27

)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?

I It’s a wash for low powersI But for higher powers, it’s much easier to do substitution.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 16 / 38

Page 29: Lesson 26: Integration by Substitution (slides)

. . . . . .

A polynomial example, by brute force

Compare this to multiplying it out:∫(x2 + 3)34x dx =

∫ (x6 + 9x4 + 27x2 + 27

)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Which would you rather do?I It’s a wash for low powersI But for higher powers, it’s much easier to do substitution.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 16 / 38

Page 30: Lesson 26: Integration by Substitution (slides)

. . . . . .

Compare

We have the substitution method, which, when multiplied out, gives∫(x2 + 3)34x dx =

12(x2 + 3)4

+ C

=12

(x8 + 12x6 + 54x4 + 108x2 + 81

)

+ C

=12x8 + 6x6 + 27x4 + 54x2 +

812

+ C

and the brute force method∫(x2 + 3)34x dx =

12x8 + 6x6 + 27x4 + 54x2

+ C

Is this a problem?

No, that’s what +C means!

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 17 / 38

Page 31: Lesson 26: Integration by Substitution (slides)

. . . . . .

Compare

We have the substitution method, which, when multiplied out, gives∫(x2 + 3)34x dx =

12(x2 + 3)4 + C

=12

(x8 + 12x6 + 54x4 + 108x2 + 81

)+ C

=12x8 + 6x6 + 27x4 + 54x2 +

812

+ C

and the brute force method∫(x2 + 3)34x dx =

12x8 + 6x6 + 27x4 + 54x2 + C

Is this a problem? No, that’s what +C means!

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 17 / 38

Page 32: Lesson 26: Integration by Substitution (slides)

. . . . . .

A slick example

Example

Find∫

tan x dx.

(Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 18 / 38

Page 33: Lesson 26: Integration by Substitution (slides)

. . . . . .

A slick example

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 18 / 38

Page 34: Lesson 26: Integration by Substitution (slides)

. . . . . .

A slick example

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx.

So∫tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 18 / 38

Page 35: Lesson 26: Integration by Substitution (slides)

. . . . . .

A slick example

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 18 / 38

Page 36: Lesson 26: Integration by Substitution (slides)

. . . . . .

A slick example

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u|+ C

= − ln | cos x|+ C = ln | sec x|+ C

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 18 / 38

Page 37: Lesson 26: Integration by Substitution (slides)

. . . . . .

A slick example

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u|+ C= − ln | cos x|+ C = ln | sec x|+ C

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 18 / 38

Page 38: Lesson 26: Integration by Substitution (slides)

. . . . . .

Can you do it another way?

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solution

Let u = sin x. Then du = cos x dx and so dx =du

cos x.∫

tan x dx =

∫sin xcos x

dx =

∫u

cos xdu

cos x

=

∫uducos2 x

=

∫udu

1− sin2 x=

∫u du1− u2

At this point, although it’s possible to proceed, we should probablyback up and see if the other way works quicker (it does).

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 19 / 38

Page 39: Lesson 26: Integration by Substitution (slides)

. . . . . .

Can you do it another way?

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solution

Let u = sin x. Then du = cos x dx and so dx =du

cos x.

∫tan x dx =

∫sin xcos x

dx =

∫u

cos xdu

cos x

=

∫uducos2 x

=

∫udu

1− sin2 x=

∫u du1− u2

At this point, although it’s possible to proceed, we should probablyback up and see if the other way works quicker (it does).

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 19 / 38

Page 40: Lesson 26: Integration by Substitution (slides)

. . . . . .

Can you do it another way?

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

Solution

Let u = sin x. Then du = cos x dx and so dx =du

cos x.∫

tan x dx =

∫sin xcos x

dx =

∫u

cos xdu

cos x

=

∫uducos2 x

=

∫udu

1− sin2 x=

∫u du1− u2

At this point, although it’s possible to proceed, we should probablyback up and see if the other way works quicker (it does).

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 19 / 38

Page 41: Lesson 26: Integration by Substitution (slides)

. . . . . .

For those who really must know all

Solution (Continued, with algebra help)

∫tan x dx =

∫udu1− u2

=

∫12

(1

1− u− 1

1+ u

)du

= −12ln |1− u| − 1

2ln |1+ u|+ C

= ln1√

(1− u)(1+ u)+ C = ln

1√1− u2

+ C

= ln1

|cos x|+ C = ln |sec x|+ C

There are other ways to do it, too.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 20 / 38

Page 42: Lesson 26: Integration by Substitution (slides)

. . . . . .

Outline

Last Time: The Fundamental Theorem(s) of Calculus

Substitution for Indefinite IntegralsTheoryExamples

Substitution for Definite IntegralsTheoryExamples

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 21 / 38

Page 43: Lesson 26: Integration by Substitution (slides)

. . . . . .

Substitution for Definite Integrals

Theorem (The Substitution Rule for Definite Integrals)

If g′ is continuous and f is continuous on the range of u = g(x), then∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

Why the change in the limits?I The integral on the left happens in “x-land”I The integral on the right happens in “u-land”, so the limits need to

be u-valuesI To get from x to u, apply g

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 22 / 38

Page 44: Lesson 26: Integration by Substitution (slides)

. . . . . .

Substitution for Definite Integrals

Theorem (The Substitution Rule for Definite Integrals)

If g′ is continuous and f is continuous on the range of u = g(x), then∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

Why the change in the limits?I The integral on the left happens in “x-land”I The integral on the right happens in “u-land”, so the limits need to

be u-valuesI To get from x to u, apply g

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 22 / 38

Page 45: Lesson 26: Integration by Substitution (slides)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution (Slow Way)

First compute the indefinite integral∫

cos2 x sin x dx and then

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x+ C.

Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0= −1

3((−1)3 − 13

)=

23.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 23 / 38

Page 46: Lesson 26: Integration by Substitution (slides)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution (Slow Way)

First compute the indefinite integral∫

cos2 x sin x dx and then

evaluate.

Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x+ C.

Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0= −1

3((−1)3 − 13

)=

23.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 23 / 38

Page 47: Lesson 26: Integration by Substitution (slides)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution (Slow Way)

First compute the indefinite integral∫

cos2 x sin x dx and then

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x+ C.

Therefore∫ π

0cos2 x sin x dx = −1

3cos3 x

∣∣∣∣π0= −1

3((−1)3 − 13

)=

23.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 23 / 38

Page 48: Lesson 26: Integration by Substitution (slides)

. . . . . .

Definite-ly Quicker

Solution (Fast Way)

Do both the substitution and the evaluation at the same time.

Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3

∣∣∣∣1−1

=13(1− (−1)

)=

23

I The advantage to the “fast way” is that you completely transformthe integral into something simpler and don’t have to go back tothe original variable (x).

I But the slow way is just as reliable.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 24 / 38

Page 49: Lesson 26: Integration by Substitution (slides)

. . . . . .

Definite-ly Quicker

Solution (Fast Way)

Do both the substitution and the evaluation at the same time. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1.

So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3

∣∣∣∣1−1

=13(1− (−1)

)=

23

I The advantage to the “fast way” is that you completely transformthe integral into something simpler and don’t have to go back tothe original variable (x).

I But the slow way is just as reliable.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 24 / 38

Page 50: Lesson 26: Integration by Substitution (slides)

. . . . . .

Definite-ly Quicker

Solution (Fast Way)

Do both the substitution and the evaluation at the same time. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3

∣∣∣∣1−1

=13(1− (−1)

)=

23

I The advantage to the “fast way” is that you completely transformthe integral into something simpler and don’t have to go back tothe original variable (x).

I But the slow way is just as reliable.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 24 / 38

Page 51: Lesson 26: Integration by Substitution (slides)

. . . . . .

Definite-ly Quicker

Solution (Fast Way)

Do both the substitution and the evaluation at the same time. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du =

∫ 1

−1u2 du

=13u3

∣∣∣∣1−1

=13(1− (−1)

)=

23

I The advantage to the “fast way” is that you completely transformthe integral into something simpler and don’t have to go back tothe original variable (x).

I But the slow way is just as reliable.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 24 / 38

Page 52: Lesson 26: Integration by Substitution (slides)

. . . . . .

An exponential example

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. We have∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u+ 1du

Now let y = u+ 1, dy = du. So

12

∫ 8

3

√u+ 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 25 / 38

Page 53: Lesson 26: Integration by Substitution (slides)

. . . . . .

An exponential example

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. We have∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u+ 1du

Now let y = u+ 1, dy = du. So

12

∫ 8

3

√u+ 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 25 / 38

Page 54: Lesson 26: Integration by Substitution (slides)

. . . . . .

About those limits

Since

e2(ln√3) = eln

√32 = eln 3 = 3

we have ∫ ln√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u+ 1du

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 26 / 38

Page 55: Lesson 26: Integration by Substitution (slides)

. . . . . .

An exponential example

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. We have∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u+ 1du

Now let y = u+ 1, dy = du. So

12

∫ 8

3

√u+ 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 27 / 38

Page 56: Lesson 26: Integration by Substitution (slides)

. . . . . .

About those fractional powers

We have

93/2 = (91/2)3 = 33 = 27

43/2 = (41/2)3 = 23 = 8

so12

∫ 9

4y1/2 dy =

12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 28 / 38

Page 57: Lesson 26: Integration by Substitution (slides)

. . . . . .

An exponential example

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. We have∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 8

3

√u+ 1du

Now let y = u+ 1, dy = du. So

12

∫ 8

3

√u+ 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94=

13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 29 / 38

Page 58: Lesson 26: Integration by Substitution (slides)

. . . . . .

Another way to skin that cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1,

so that du = 2e2x dx. Then∫ ln√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94

=13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 30 / 38

Page 59: Lesson 26: Integration by Substitution (slides)

. . . . . .

Another way to skin that cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1,so that du = 2e2x dx.

Then∫ ln√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94

=13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 30 / 38

Page 60: Lesson 26: Integration by Substitution (slides)

. . . . . .

Another way to skin that cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1,so that du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94

=13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 30 / 38

Page 61: Lesson 26: Integration by Substitution (slides)

. . . . . .

Another way to skin that cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1,so that du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94

=13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 30 / 38

Page 62: Lesson 26: Integration by Substitution (slides)

. . . . . .

Another way to skin that cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u = e2x + 1,so that du = 2e2x dx. Then∫ ln

√8

ln√3

e2x√

e2x + 1dx =12

∫ 9

4

√u du

=13u3/2

∣∣∣∣94

=13(27− 8) =

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 30 / 38

Page 63: Lesson 26: Integration by Substitution (slides)

. . . . . .

A third skinned cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u =

√e2x + 1, so that

u2 = e2x + 1

=⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

=

∫ 3

2u · udu =

13u3

∣∣∣∣32=

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 31 / 38

Page 64: Lesson 26: Integration by Substitution (slides)

. . . . . .

A third skinned cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u =

√e2x + 1, so that

u2 = e2x + 1 =⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

=

∫ 3

2u · udu =

13u3

∣∣∣∣32=

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 31 / 38

Page 65: Lesson 26: Integration by Substitution (slides)

. . . . . .

A third skinned cat

Example

Find∫ ln

√8

ln√3

e2x√

e2x + 1dx

SolutionLet u =

√e2x + 1, so that

u2 = e2x + 1 =⇒ 2udu = 2e2x dx

Thus ∫ ln√8

ln√3

=

∫ 3

2u · udu =

13u3

∣∣∣∣32=

193

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 31 / 38

Page 66: Lesson 26: Integration by Substitution (slides)

. . . . . .

A Trigonometric Example

Example

Find ∫ 3π/2

πcot5

6

)sec2

6

)dθ.

Before we dive in, think about:I What “easy” substitutions might help?I Which of the trig functions suggests a substitution?

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 32 / 38

Page 67: Lesson 26: Integration by Substitution (slides)

. . . . . .

A Trigonometric Example

Example

Find ∫ 3π/2

πcot5

6

)sec2

6

)dθ.

Before we dive in, think about:I What “easy” substitutions might help?I Which of the trig functions suggests a substitution?

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 32 / 38

Page 68: Lesson 26: Integration by Substitution (slides)

. . . . . .

Solution

Let φ =θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφtan5 φ

Now let u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφtan5 φ

= 6∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3=

32[9− 1] = 12.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 33 / 38

Page 69: Lesson 26: Integration by Substitution (slides)

. . . . . .

Solution

Let φ =θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφtan5 φ

Now let u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφtan5 φ

= 6∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3=

32[9− 1] = 12.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 33 / 38

Page 70: Lesson 26: Integration by Substitution (slides)

. . . . . .

The limits explained

tanπ

4=

sinπ/4cosπ/4

=

√2/2√2/2

= 1

tanπ

6=

sinπ/6cosπ/6

=1/2√3/2

=1√3

6(−14u−4

)∣∣∣∣11/

√3=

32

[−u−4

]11/

√3=

32

[u−4

]1/√3

1

=32

[(3−1/2)−4 − (1−1/2)−4

]=

32[32 − 12] =

32(9− 1) = 12

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 34 / 38

Page 71: Lesson 26: Integration by Substitution (slides)

. . . . . .

The limits explained

tanπ

4=

sinπ/4cosπ/4

=

√2/2√2/2

= 1

tanπ

6=

sinπ/6cosπ/6

=1/2√3/2

=1√3

6(−14u−4

)∣∣∣∣11/

√3=

32

[−u−4

]11/

√3=

32

[u−4

]1/√3

1

=32

[(3−1/2)−4 − (1−1/2)−4

]=

32[32 − 12] =

32(9− 1) = 12

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 34 / 38

Page 72: Lesson 26: Integration by Substitution (slides)

. . . . . .

Graphs

. .θ

.y

..π

.

.3π2

.∫ 3π/2

πcot5

6

)sec2

6

)dθ

.y

.

6

.

4

.∫ π/4

π/66 cot5 φ sec2 φdφ

The areas of these two regions are the same.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 35 / 38

Page 73: Lesson 26: Integration by Substitution (slides)

. . . . . .

Graphs

. .φ

.y

.

6

.

4

.∫ π/4

π/66 cot5 φ sec2 φdφ

.u

.y

.∫ 1

1/√36u−5 du

.

.1√3

.

.1

The areas of these two regions are the same.

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 36 / 38

Page 74: Lesson 26: Integration by Substitution (slides)

. . . . . .

Final Thoughts

I Antidifferentiation is a “nonlinear” problem that needs practice,intuition, and perserverance

I Worksheet in recitation (also to be posted)I The whole antidifferentiation story is in Chapter 6

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 37 / 38

Page 75: Lesson 26: Integration by Substitution (slides)

. . . . . .

Summary

If F is an antiderivative for f, then:I ∫

f(g(x))g′(x)dx = F(g(x))

I ∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u) du = F(g(b))− F(g(a))

V63.0121.006/016, Calculus I (NYU) Section 5.5 Integration by Substitution April 27, 2010 38 / 38